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Abstract
A sequencing batch reactor fed mainly by acetate was operated to perform enhanced bio-

logical phosphorus removal (EBPR). A short-term pH shock from 7.0 to 6.0 led to a com-

plete loss of phosphate-removing capability and a drastic change of microbial communities.

16S rRNA gene pyrosequencing showed that large proportions of glycogen accumulating

organisms (GAOs) (accounted for 16% of bacteria) bloomed, including Candidatus Compe-

tibacter phosphatis and Defluviicoccus-related tetrad-forming organism, causing deterio-

rated EBPR performance. The EBPR performance recovered with time and the dominant

Candidatus Accumulibacter (Accumulibacter) clades shifted from Clade IIC to IIA while

GAOs populations shrank significantly. The Accumulibacter population variation provided a

good opportunity for genome binning using a bi-dimensional coverage method, and a

genome of Accumulibacter Clade IIC was well retrieved with over 90% completeness. Com-

parative genomic analysis demonstrated that Accumulibacter clades had different abilities

in nitrogen metabolism and carbon fixation, which shed light on enriching different Accumu-

libacter populations selectively.

Introduction
Enhanced biological phosphorus removal (EBPR) is a cost-effective and environmental
friendly technology to promote excess phosphorus (P) removal from wastewater. Polypho-
sphate-accumulating organisms (PAOs) are considered as the contributors for EBPR by accu-
mulating large quantity of phosphorus from the bulk liquid to biosynthesize intracellular
polyphosphate. Among the PAOs, a population of microorganisms named Candidatus Accu-
mulibacter phosphatis (henceforth referred to Accumulibacter) was readily enriched with ace-
tate as the primary carbon source in sequencing batch reactors (SBRs) [1] and thought to be
responsible for EBPR in both lab-scale and full-scale plants [2, 3]. The Accumulibacter lineage
can be subdivided into five clades in Type I and seven clades in Type II based on the phyloge-
netic distance of the gene encoding polyphosphate kinase (ppk1) [4–6]. Another population of
putative PAOs, members of genus Tetrasphaera which can be phylogenetically divided into
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three distinct clades [7], was detected in many full-scale EBPR plants using glucose or acetate
as carbon sources [8]. Besides these two major PAOs, Gemmatimonas aurantiaca [9] isolated
from an EBPR SBR and CandidatusHalomonas phosphatis [10] identified by microautoradio-
graphy combined with fluorescence in situ hybridization (FISH) in full-scale EBPR plants are
also putative PAOs.

Under the alternative anaerobic feast and aerobic famine conditions, PAOs theoretically
assimilate anaerobic carbon source by utilizing the aerobically stored polyphosphate. In this pro-
cess, glycogen-accumulating organisms (GAOs) are considered as competitors to PAOs, as they
compete for volatile fatty acids (VFA) under anaerobic condition but do not take up phosphorus
in excess of the requirement for growth. GAOs convert VFA to polyhydroxyalkanoates (PHA)
under anaerobic condition, then oxidize PHA to CO2 or transform to glycogen in the following
aerobic phase. This glycogen provides energy and reducing equivalents for the VFA uptake and
transformation that will occur in the coming anaerobic period [11, 12]. GAOs are known to be
abundant in deteriorated EBPR plants and thought to be responsible for poor phosphorus
removal [13]. Two major lineages of GAOs have been intensively studied, Candidatus Competi-
bacter phosphatis (henceforth referred to Competibacter) in the γ-Proteobacteria class [14, 15]
andDefluvicoccus-related tetrad-forming organism (TFO) in α-Proteobacteria class [16–19],
which can be further subdivided into seven subgroups [20] and four clades [13], respectively.

The microbial competition of PAOs and GAOs could be affected by influent C:P ratio [21],
carbon substrates [22–24], temperature [25, 26], salinity [27] and pH [28–30]. Among these
factors, pH has been considered as the crucial one affecting the energy requirement of VFA
uptake by PAOs under anaerobic conditions. PAOs were reported to take up acetate slower
than GAOs when pH of the anaerobic zone was less than 7.25 [29, 31]. Moreover, the acidic
pH in the aerobic zone will inhibit the growth of PAOs due to the proliferation of GAOs in the
EBPR system, resulting in deteriorated EBPR system [28]. It’s been reported that a slight
change of pH from 7.0 to 6.5 had led to EBPR deterioration and a drastic change of microbial
populations in a SBR [32].

Different phylotypes of PAOs and GAOs were often found to coexist in EBPR systems [6, 20,
33]. Their population dynamics in plants were intensively revealed by FISH [3, 34] and clone
libraries [7]. Currently the fast-developed high throughput sequencing has accelerated profiling
the EBPR microbial community and functional characteristics [35]. Specific metabolic models
have been constructed based on reassembled genomes of EBPR-related bacteria, e.g. Candidatus
Accumulibacter phosphatis Clade IIA strain UW-1 (referred to CAP IIA UW-1) [36], Clade IA
strain UW-2 (referred to CAP IA UW-2) [37], Clade IB strain HKU-1 [38] and Clades IIF, IIC
and IC [39], Tetrasphaera sp. [8], Candidatus Competibacter denitrificans and Candidatus Con-
tendobacter odensis [14], and Defluviicoccus-related TFOs Clusters I [19] and II [40].

These intensive studies have given a deeper, but still inconclusive, insight into the shift of
microbial communities involved in EBPR process under the changes of operational conditions.
Different genomic characteristics among uncultured Accumulibacter lineages in EBPR have
not been fully uncovered. Therefore this study aims at a) revealing variation of abundances of
PAOs and GAOs by using high throughput sequencing, b) uncovering the shift of Accumuli-
bacter clades and c) disclosing the difference of functional potentials among Accumulibacter
clades after retrieving another novel genome.

Materials and Methods

Sludge sampling and DNA extraction
A cylinder SBR with a working volume of 2 L and 8 cm inner diameter was operated under
alternatively anaerobic/aerobic phases at room temperature. The SBR was run at cycles of 6 h
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(5 min filling, 2.25 h anaerobic phase, 2.75 h aerobic phase, 1 h settling and 5 min withdrawing)
with hydraulic retention time of 12 h and solid retention time of about 5 d. The synthetic influ-
ent contained (per liter) 15 mg orthophosphate, 14 mg NH4

+-N and 100 mL concentrated car-
bon solution which consisted of 422 mg sodium acetate, 86 mg glucose and 80 mg yeast
extract. The inoculums came from a laboratory reactor performing nitrification stably. The pH
was controlled at 7.2 ± 0.1 except at 60th d when accidentally overdosed acidic solution to
decrease pH to 6.0 for almost one day (~20 hours).

Sludge samples were taken from the SBR after running for 22 d (A), 33 d (B), 48 d (C), 125
d (D) and 182 d (E) (Fig 1). Total DNA from each sludge sample was extracted in triplicate
using Fast DNA Spin kit for Soil (MP Biomedicals, Solon, OH, USA). The concentration and
integrity of DNA were measured by NanoDrop1 spectrophotometer ND-1000 (Thermo Fisher
Scientific, USA) and agarose gel electrophoresis, respectively.

Bacterial diversity revealed by 16S rRNA gene pyro-tags
16S rRNA genes targeting V3 and V4 regions were amplified from the triplicate DNA extracts
of each sample following the procedures specified before [38]. PCR amplicons were purified
with a quick-spin Kit (iNtRON, Seoul, Korea), and concentrations were measured by Nano-
Drop1 spectrophotometer ND-1000. The purified amplicons were sent out for pyrosequen-
cing on the Roche 454 FLX Titanium platform at the BGI Company (BGI, Shenzhen, China).

Raw reads were analyzed using Quantitative Insights Into Microbial Ecology (QIIME v.
1.3.0) pipeline [41]. The sequencing data were initially de-multiplexed and separated into dif-
ferent samples based on their nucleotide barcodes. Then, the sequences in each sample were
denoised by AmpliconNoise. Chimera checking was performed using Chimera Slayer [42]. The

Fig 1. Phosphorus removal and sludge sampling for 16S rRNA gene pyrosequencing from the SBR performing EBPR. The pH of solution in the
SBR was maintained at 7.2 ± 0.1 except at 60 d when accidentally overdosed acidic solution to decrease pH to 6.0 for around 20 h.

doi:10.1371/journal.pone.0161506.g001
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effective reads which we called pyro-tags were produced. Briefly, the pyro-tags were clustered
and assigned to operational taxonomic units (OTUs) with 97% similarity cutoff. Taxonomy of
representative sequences from each OTU was aligned using the SILVA bacterial database
implemented in Mothur platform (v. 1.33.2) [43]. And the diversity indicators including
Good’s coverage, ACE and Chao 1 richness estimators were calculated as well.

Abundances of PAOs and GAOs
Following the methodology published previously [44], an approach was applied to quantify the
abundances of PAOs and GAOs using reference 16S rRNA genes (� 1200 bp). BLASTN
(v.2.2.29+) was used to align pyro-tags to representative PAO 16S rRNA genes from Accumuli-
bacter, Tetrasphaera sp., CandidatusHalomonas phosphatis and Gemmatimonas aurantiaca
(S1 Table) and GAO 16S rRNA genes from Competibacter and Defluvicoccus-related TFOs (S2
Table) according to the best-hit method. Then, pyro-tags were assigned as PAO-like or GAO-
like at 97% similarity and 400 bp alignment length cutoff referring to the above references. To
evaluate the reliability of the method, the PAO-like and GAO-like pyro-tags were manually
checked online at NCBI to validate the identification.

Diversity of the Accumulibacter lineage
A published primer set (ACCppk1-254F and ACCppk1-1376R) targeting the Accumulibacter
cluster [4] was applied to amplify ppk1 gene fragments from A and C DNA samples. The
amplified fragments were used for constructing the clone library and then sequencing of posi-
tive clones. The obtained DNA sequence was compared to search their closest ppk1 gene
sequences available in GenBank. Then DNA sequences and their closest reference sequences
were aligned by MEGA (v.5.02) [45] to construct a phylogenetic tree using neighbor-joining
method with a bootstrap of 500. Quantitative real-time PCR (qPCR) assay was adopted to eval-
uate the relative abundances of Accumulibacter in different clades by using primer sets target-
ing ppk1 genes of five specific clades [5].

Metagenomic sequencing, quality filtering, assembly and gene
prediction
The DNA samples from sludges A and C (S1 Fig) were sent to BGI company for paired-end
sequencing (2×100 bp) using an Illumina HiSeq 2000 platform. The raw metagenomic
sequences were trimmed when having more than 50% nucleotides with the quality scores of
lower than 20 [46]. The de novo assembled scaffolds (� 1 kbp) by CLC Bio Genomics Work-
bench (v. 6.0.2) [47] were retained for further analysis. Open reading frames (ORFs) were pre-
dicted using Prodigal (v. 2.50) [48].

Genome binning and gene annotation
To bin the genome of dominant Accumulibacter in both A and C microbial communities, a
combination of bi-dimensional coverage and tetranucleotide frequency patterns was applied
[49]. Scaffold coverage was calculated by mapping the metagenomic reads to the assembled
scaffolds using the CLC’s map reads to a reference algorithm with a minimum similarity of
90% over 95% of the read length. The highly conserved 16S rRNA gene which had not been
assembled in scaffolds was reconstructed using EMIRGE [50, 51]. The completeness and
potential contamination of the draft genome were evaluated according to the well-recognized
cluster of orthologous genes (COG)-based [37, 52] and essential single copy genes (ESCG)-

Shift of Microbial Structure and Function in EBPR

PLOSONE | DOI:10.1371/journal.pone.0161506 August 22, 2016 4 / 16



based methods [14, 53]. Gene annotation was conducted based on best-hit BLASTP (v.2.2.29+)
[54] results again NCBI nr database (downloaded on July 18, 2014).

Comparative analysis of Accumulibacter genomes
Average nucleotide identity (ANI) between two genomes was calculated using the reciprocal
best hits method [55]. Genes of one Accumulibacter genome were compared with the genes of
another and vice versa, using BLASTN. The results were screened to remove any alignment
that was less than 40% of the gene length. Another in silico genome-to-genome comparison
was conducted by using Genome-to-Genome Distance Calculator (GGDC) 2.0 [56] to replace
the wet-lab DNA-DNA hybridization (DDH), which in principle was an estimate of the overall
similarity between the genomes of two strains.

Following the methods published before [8], the unique and conserved genes in the Accu-
mulibacter genomes were identified by comparing the protein sequences from each Accumuli-
bacter genome against the total proteins in the four available Accumulibacter genomes Clade
IIC using BLASTP. Under the criteria of> 50% identical over> 50% of the protein sequence,
the genes that cannot hit to any genes from the other Accumulibacter genomes were consid-
ered as unique genes, otherwise as non-unique (or conserved) genes.

More detail can be found in S1 Text Supplementary Materials and Methods. The metage-
nomic sequencing data sets have been deposited in the NCBI Sequence Read Archive (SRA)
database under the accession number of SRP041328. The sequences of Accumulibacter Clade
IIC HKU-2 draft genome have been deposited in the NCBI Whole Genome Shotgun Database
under the accession number of LBIV00000000.

Results and Discussion

SBR performance
Five sludge samples performing different P removal efficiencies were extracted for microbial
structure comparison. The P removals at the initial stage were below 10% (sludge A), then
climbed up to over 60% (sludge B) after 33 d enrichment and achieved almost 100% (sludge C)
at 48th d. However, the P removal decreased from the peak due to a short-term pH shock down
to pH of 6 at 60th d. Although the pH was recovered to 7.2 ± 0.1 within 1 d, the P removal rates
were quite unstable and achieved as low as 9% at 125th d (sludge D). At this moment, the
organisms completely lost phosphate-accumulating capability, indicated by the drastic reduc-
tion of biomass P content from 7% (C) to 2% (D) and poor P removal in effluent. After two
months recovery, the P removal rose again to achieve over 80% at 182nd d (sludge E). Similar
pH-effect patterns on EBPR SBR performance have been vigorously studied [32, 57], but the
drastic change of microbial population have not been fully uncovered due to certain limitations
of molecular technologies and EBPR-related microbial information at that time. In order to
reveal the microbial structure variation in the community, DNA samples from A—E were
extracted in triplicate for 16S rRNA gene pyrosequencing.

Microbial community structure
Totally 139,736 pyro-tags targeting 16S rRNA genes in V3 and V4 regions were obtained, with
4,402 to 13,461 sequences in different samples and Good’s coverage of above 98% (S3 Table).
The rarefaction curves (S2 Fig) illustrated that the microbial diversities increased from sludge
A to E under the EBPR selecting pressure. Pyro-tags showed that the bacteria in sludges A and
C mainly belonged to β-Proteobacteria and α-Proteobacteria classes (S3 Fig), respectively. The
representative sequences of OTU 6 and OTU 27 were assigned to Accumulibacter and
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clustered in Accumulibacter Clade IIC and Clade I 16S rRNA gene homologies, respectively
(S4 Fig).

P removal rates were basically proportional to the abundances of PAOs and inversely pro-
portional to the abundances of GAOs. Among the five sludge samples, Accumulibacter domi-
nated the PAO population while there were rare (<0.5%) Tetrasphaera sp. (most of which
belonged to Clade I), negligible (<0.2%) Gemmatimonas aurantiaca, and no CandidatusHalo-
monas phosphatis (Fig 2). Similar to previous studies, the dominance of Accumulibacter was

Fig 2. Population dynamics of PAOs and GAOs involved in the SBR. The abundance was calculated based on bacterial
pyro-tags which best hit the representative 16S rRNA gene sequences of specific PAO or GAO group with minimum identity of
97% and alignment length cutoff of 400 bp. Standard deviation was calculated from the triplicate pyrosequencing data sets for
each sludge sample.

doi:10.1371/journal.pone.0161506.g002
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easily identified in EBPR-plants mainly fed by acetate [58]. The small amount of Tetrasphaera
was probably enriched by utilizing a small proportion of glucose in the influent, since genomic
annotation demonstrated that Tetrasphaera genomes carried enzymes responsible for glucose
assimilation while Accumulibacter genomes did not [8].

In sludges A—C, GAOs were rarely identified. However, large proportions of GAOs includ-
ing Competibacter and Defluvicoccus-related TFOs (dominated by Cluster I) presented in
sludges D and E when poor P removal occurred (Fig 2 and S5 Fig). The detected Competibacter
in this SBR mainly belonged to subgroup 4 while subgroups 5, 6 and 7 were not identified, con-
sistent with the in situ observation from an A/O (anoxic/oxic) SBR fed mainly with acetate [59]
and a membrane A/O SBR fed with acetate [20]. The acidic pH shock may led to the prolifera-
tion of GAOs and reduction of PAOs, which can be explained by the higher energy demand for
PAOs to take up acetate anaerobically and followed by a slower growth rate of PAOs in the aer-
obic zone [60].

Because 16S rRNA genes cannot reveal the Accumulibacter diversity in a higher resolution,
we used the clone library and qPCR analysis of ppk1 genes to quantify the abundance of spe-
cific Accumulibacter clades. The most abundant Accumulibacter belonged to Clade IIC in
sludges A, B and C, but shifted to Clade IIA in sludges samples D and E (Fig 3). Therefore, the
unstable operation of SBR might reduce the PAO/GAO ratio and induced the shift of Accumu-
libacter clades. In order to uncover the metabolic characteristics among Accumulibacter clades,
another genome in Clade IIC was retrieved from the metagenomic data sets.

Assembled scaffolds and genome binning
The two metagenomes from sludge samples A and C resulted in 29.9 and 29.4 million reads
after quality filtering respectively which were assembled together using CLC de novo algorithm,
resulting in 12,801 scaffolds with a minimum length of 1 kbp (Table 1). A genome bin

Fig 3. Relative abundances of ppk1 genes of different clades in the microbial communities. The
abundance of Accumulibacter was calculated according to the copy numbers of Accumulibacter and bacterial
16S rRNA genes by qPCR analysis. Meanwhile the 2 copies of rrn operon in CAP IIA UW-1 and 4 copies of
rrn operon in the available bacterial finished genomes have been taken into account. The proportions of
different ppk1 genes in one sample was estimated by the copy numbers obtained from the qPCR assay using
primer sets targeting ppk1 genes of specific clades.

doi:10.1371/journal.pone.0161506.g003
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containing 369 scaffolds and 4.3 Mbp in total was retrieved as the Accumulibacter Clade IIC
draft genome (defined as CAP IIC HKU-2) mainly according to its coverage in the metagen-
ome (Fig 4), which was consistent with those coverage values estimated from the results of
ppk1 gene clone libraries and qPCR quantification. CAP IIC HKU-2 carried 4,129 genes with
an average GC content of 61% (Table 1 and S6 Fig). To determine the completeness of CAP
IIC HKU-2, both COG-based and ESCG-based approaches were applied. Among 889 COG
functions that were at least present once in all of the seven neighboring reference genomes (S7
Fig), 95 (11%) were missing from CAP IIC draft genome and the completeness was estimated

Fig 4. Extraction of the initial genome of Accumulibacter Clade IIC which dominated the PAOs in sludge
samples A and C by using the coverage-definedmethod. Each circle represents an assembled scaffold, with the
size proportional to its length and colored by phylum. Only scaffolds� 10 kbp are shown. The box encloses scaffolds
representing the initial CAP IIC HKU-2 genome bin.

doi:10.1371/journal.pone.0161506.g004

Table 1. Characteristics of assembled scaffolds and the retrieved CAP IIC HKU-2 draft genome.

Characteristics Assembled scaffolds CAP IIC HKU-2

Number of scaffolds (� 1 kbp) 12,801 369

Total length (bp) 43,617,366 4,262,673

Mean scaffold length (bp) 3,407 11,552

N50 5,466 17,588

Maximum scaffold length (bp) 361,587 65,828

GC content (%) 52 61

ORF number 48,827 4,129

Mean ORF length (bp) 807 922

Total ESCG \ 108

Unique ESCG \ 105

Completeness (COG) \ 89%

Redundancy (COG) \ 6%

ppk1 Gene_2225 (Scaffold_5930) Gene_2225 (Scaffold_5930)

16S rRNA gene a \ 1,567 bp

a 16S rRNA gene was reconstructed by EMIRGEmethod [50].

doi:10.1371/journal.pone.0161506.t001
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to 89%. However, all 105 ESCG in β-Proteobacteria were carried by this draft genome with
only 2 ESCGs had two extra copies indicating that CAP IIC HKU-2 should be over 90% com-
pleteness with< 2% redundancy.

A ppk1 homolog was identified in a long scaffold (scaffold_5930, 22,567 bp) of CAP IIC
HKU-2 draft genome sharing 99% nucleotide identity with a Clade IIC ppk1 identified previ-
ously from Candidatus Accumulibacter sp. SK-02 (GenBank EX188565) [39], and clustered
with other Clade IIC ppk1 gene sequences (Fig 5). Moreover, an almost full length of 16S rRNA

Fig 5. Maximum likelihood phylogenetic tree of Accumulibacter ppk1 gene sequences. The ppk1 genes of the reconstructed
Accumulibacter genomes are indicated in green, while those from clone library of sludges A and C are colored in orange. Seven and nine partial
ppk1 gene sequences with 99% identity were obtained from sludge A and C respectively. Reference sequences attached with their accession
numbers are extracted from NCBI database. Node labels refer to bootstrap support values and Rhodocyclus tenuis ppk1 gene is employed as the
outgroup sequence.

doi:10.1371/journal.pone.0161506.g005
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gene (1,567 bp) clustering in Clade IIC&IID was reconstructed by using EMIRGE approach
(S4 Fig). As 16S rRNA gene and ppk1 gene were originally used to define the Accumulibacter
lineage and Accumulibacter clade phylogeny, the reconstruction of the 16S rRNA gene and the
presence of a Clade IIC ppk1 homolog within the genome bin provided additional confidence
on taxonomy of Clade IIC HKU-2.

Comparative analyses of Accumulibacter genomes
To determine the similarity of Accumulibacter genomes, ANI between two genomes were cal-
culated by the well-recognized reciprocal best hit analysis. The results showed that ANI
between two Accumulibacter genomes from different types, such as IIA UW-1 and IA UW-2,
were below 81%, while the ANI between two genomes from the same type, such as IIA UW-1
and IIC HKU-2, were ranged in 79%–99% (Table 2). The Accumulibacter Clade IIC genomes,
HKU-2 and SK-02 had an ANI score of 99%, which indicated that they were likely strains of
the same species [55]. However, both genomes contained large sets of different genes (892 and
742 genes respectively) (Fig 6), which was similar to CAP IA UW-2 and CAP IA BA-93 with a
high ANI score of 99% but large unique genes greater than that reported for strains in some
genera. The in silico genome-to-genome distance calculation illustrated that the probability for
them from the same sub-species (DDH> 79%) is 63%, while those for CAP IA UW-2 and
CAP IA BA-93 was 43%. Therefore, the true similarity between the two genomes requires fur-
ther analysis of shared gene complement [39].

The conserved genes from all four Accumulibacter genomes of Clade IIC constitute 1,860
sequences (Fig 6) including those encoding enzymes responsible for the central metabolic path-
ways of glycolysis through Embden-Meyerhof-Parnas (EMP) pathway, the tricarboxylic acid
(TCA) cycle, acetate uptake, PHA synthesis, polyphosphate metabolism, transportation of
orthophosphate and assimilatory sulfate reduction. The unique genes constitute from 439 to
1,859 sequences. Different from Accumulibacter genomes of other clades, four of the Accumu-
libacter Clade IIC genomes carry the respiratory nitrate reductase gene subunits (narGHIJ)
that initiated a prokaryotic denitrification pathway [61].

The principal coordinates analysis (PCoA) results based on COG categories (S7 Fig) dem-
onstrated the Accumulibacter genomes were closer to each other than to their neighboring
genomes. Each gene inventory of the 12 Accumulibacter genomes were mapped to functional
categories in COG database respectively, which comprises those encoding enzymes for central
metabolic pathways. According to the COG distribution profile (S8 Fig), majority pertained to

Table 2. The ANI and orthologous genes shared by each pair of Accumulibacter genomes.

Genome IA UW-2 IA BA-93 IB HKU-1 IC BA-92 IIA UW-1 IIC BA-91 IIC SK-01 IIC SK-02 IIC HKU-2 IIF BA-94 IIF SK-11 IIF SK-12

IA UW-2 \ 99% 86% 86% 81% 80% 80% 80% 80% 80% 80% 79%

IA BA-93 4801 \ 86% 86% 81% 80% 80% 80% 80% 80% 80% 79%

IB HKU-1 2395 2756 \ 91% 81% 80% 80% 80% 80% 80% 79% 79%

IC BA-92 3296 3766 3029 \ 81% 79% 80% 79% 79% 80% 79% 79%

IIA UW-1 1685 1925 1249 1649 \ 81% 82% 81% 81% 81% 82% 81%

IIC BA-91 772 869 597 758 1243 \ 89% 88% 88% 80% 79% 79%

IIC SK-01 1184 1326 889 1133 1757 2024 \ 94% 94% 80% 80% 79%

IIC SK-02 1155 1327 937 1169 1853 2497 3738 \ 99% 80% 79% 79%

IIC HKU-2 1113 1274 2395 1078 1733 2237 3464 4598 \ 80% 80% 79%

IIF BA-94 916 1017 670 787 1166 491 809 782 701 \ 88% 88%

IIF SK-11 946 1052 680 841 1356 549 907 888 813 1313 \ 86%

IIF SK-12 1239 1424 986 1153 1818 752 1151 1208 1114 1770 2279 \

doi:10.1371/journal.pone.0161506.t002
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COGs of three essential functional categories, including ‘signal transduction mechanisms’
(13.0%), ‘general function prediction only’ (10.4%), as well as ‘amino acid transport and metab-
olism’ (7.8%).

Additionally, comparing the genomic information of CAP IIC HKU-2 and CAP IIA UW-1,
we found that CAP IIA UW-1 had genes required for carbon fixation, however, the key genes
required for the Calvin cycle, ribulose-1,5-bisphosphate carboxylase/oxygenase (rubisco) and
ribulose-phosphate 3-epimerase (Rpe) appeared to be absent from CAP IIC HKU-2. This
implied that Accumulibacter Clade IIA might survive in organic carbon deficient conditions
when occurring proliferation of GAOs which assimilated VFA to outcompete PAOs. The geno-
mic difference may stimulate the shift of Accumulibacter clades in the SBR but it needs further
experimental validations.

Conclusions
This study revealed the population dynamics of PAOs and GAOs involved in the EBPR pro-
cess. The proliferation of GAOs may induce the shift of dominant Accumulibacter clades from
Clade IIC to IIA. In order to find the clues for explaining the shift, another Accumulibacter
genome in Clade IIC was retrieved with over 90% completeness. Comparative analyses of
EBPR metabolic pathways uncovered that the key genes for carbon fixation appeared in CAP
IIA UW-1 were absent in CAP IIC HKU-2, which may help explain the shift of Accumulibacter
clades and provide new insights for selective enrichment of the significant PAOs.

Fig 6. Venn diagram of conserved and unique genes for four Accumulibacter genomes of Clade IIC.

doi:10.1371/journal.pone.0161506.g006
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