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Abstract

Biodiversity knowledge shortfalls, especially incomplete information on spe-

cies distributions, can lead to false conclusions about global biodiversity pat-

terns. Diversity estimation theory statistically uses species occurrence records

and sampling completeness (coverage) to predict diversity in terms of species

richness, dominance and evenness. We estimated Scleractinia coral species

diversity at different spatial resolutions, based on 109,296 occurrences and

range data for 697 species, using an incidence-based Hill's numbers approach

through a rarefaction and extrapolation technique. We found that spatial pat-

terns of diversity estimates were dependent on a geographic scale. The latitudi-

nal and longitudinal diversity gradients, particularly at finer spatial scales,

differed from species range-based coral biodiversity hotspots of previous stud-

ies. The western Indian Ocean was predicted to have the most coral species,

with greater diversities than in the Indo-Pacific Coral Triangle. We concluded

that the identification of marine biodiversity hotspots is sensitive to species

commission errors (from range maps) and biased sampling coverage. More-

over, estimates of the geographic distribution of species richness informed us

of a set of priority areas (the northeastern coast of Australia, central Coral Tri-

angle and coast of Madagascar) for future sampling of unknown coral species

occurrence. Our findings of biogeographical survey priorities contribute to fill-

ing biodiversity shortfalls for tropical coral reefs through sampling complete-

ness, and consequently for development of conservation planning.
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1 | INTRODUCTION

Fine-scale biodiversity mapping is fundamental to
macroecological studies and spatial conservation prioriti-
zation (Gaston, 2000; Jetz, McPherson, & Guralnick, 2012;

Moilanen, Wilson, & Possingham, 2009; Tittensor et al.,
2010). In recent decades, this approach has led to the crea-
tion of databases referencing the occurrence of millions of
species (or specimen records), which are potentially signif-
icant for biodiversity assessment in space and time
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(Costello, Vanhoorne, & Appeltans, 2015; Graham,
Ferrier, Huettman, Moritz, & Peterson, 2004; Ponder, Car-
ter, Flemons, & Chapman, 2001). However, the incom-
pleteness of occurrence data is a ubiquitous problem
(Boakes et al., 2010; Maldonado et al., 2015) that is inher-
ently associated with the spatial and temporal biases of
sampling effort and species detection. Indeed, deficiency
in species geographical information—the so-called
Wallacean shortfall (Hortal et al., 2015; Jetz et al., 2019)—
has been reported for various taxonomic groups
(e.g., García-Roselló et al., 2015; Hermoso, Kennard, &
Linke, 2015; Troia & McManamay, 2017). The Linnean
(Brito, 2010) and Darwinian (Diniz-Filho, Loyola, Raia,
Mooers, & Bini, 2013) shortfalls are also implicated in
terms of lack of taxonomic and phylogenetic information.
Jointly, these shortfalls hinder ecological interpretation
and/or conservation planning (Girardello, Martellos,
Pardo, & Bertolino, 2018; Hortal, Jiménez-Valverde,
Gómez, Lobo, & Baselga, 2008; Reddy & Dávalos, 2003).
Therefore, improving biodiversity shortfalls is critical
(Meyer, Kreft, Guralnick, & Jetz, 2015; Sánchez-
Fernández, Lobo, Abellán, & Millán, 2011).

One promising approach for filling gaps in knowledge
of biodiversity geographical patterns is the theory of
diversity estimation based on species accumulation cur-
ves (Yang, Ma, & Kreft, 2013) and non-parametric esti-
mation (Chao, 1987). In this context, Hill's numbers
(Hill, 1973) have been recognized as the statistically best
measure of diversity (Jost, 2006). Recently, Chao et al.
proposed a unified theory for interpolation (rarefaction)
and extrapolation of Hill's numbers on the basis of sam-
pling completeness rather than sample size (Chao et al.,
2014; Chao & Jost, 2012). They then developed a tool
(iNEXT) to estimate species diversity (Hsieh, Ma, &
Chao, 2016) using empirical species occurrence data sam-
pled in particular areas or across a large-scale gradient.
Based on their approach, it is possible to predict large-
scale species diversity patterns. Their estimation of the
effective number of species at given sampling complete-
ness and their estimation error are informative in
assessing our current knowledge of species biogeography.
These estimates can help identify priority areas for allo-
cating future sampling effort to improve our knowledge
of biodiversity patterns.

From a viewpoint of marine biodiversity conserva-
tion, tropical stony corals (Scleractinia) are a founda-
tional taxon that build coral reef ecosystems in shallow
marine waters and support about one-quarter to one-
third of all marine species (Costello, 2015) and associated
ecosystem services (Moberg & Folke, 1999). Indeed, loss
of coral biodiversity due to human impacts and climate
change emphasizes the failure to implement effective
conservation strategies (e.g., Bellwood, Hughes, Folke, &

Nyström, 2004; Huang, 2012; UNEP, 2010). To prioritize
areas for systematic conservation planning (Asaad,
Lundquist, Erdmann, & Costello, 2018), expert range
maps of coral species have been commonly stacked and
then investigated to better understand large-scale
regional diversity patterns (Bellwood, Hughes, Con-
nolly, & Tanner, 2005; Sanciangco, Carpenter, Etnoyer, &
Moretzsohn, 2013; Tittensor et al., 2010). A particular
concern with this approach is that coral species distribu-
tions are mostly delineated empirically (Veron, 2000) or
modeled by a habitat suitability model (Couce,
Ridgwell, & Hendy, 2012). Specifically, coral diversity
maps based on stacking species distribution ranges can
include false-positives of species presence (commission
error) that may hinder a precise understanding of coral
diversity patterns and the underlying mechanisms. From
this point of view, diversity estimation theory using spe-
cies occurrence data is helpful: these field observations
suffer more from omission than commission error. A
comparison of range maps with species occurrence diver-
sity estimation may reveal artifacts related to data incom-
pleteness when identifying coral diversity hotspots at the
global scale.

In this study, we compiled 109,296 occurrence records
for 697 species of Scleractinia stony corals inhabiting
tropical and temperate shallow water across the world.
We estimated species diversity using Hill's numbers stan-
dardized using a rarefaction and extrapolation technique
based on sampling completeness (Chao et al., 2014). Sam-
pling completeness, species diversity values and their
estimation errors were evaluated per grid cell at different
spatial resolutions. We examined scale-dependent geo-
graphical patterns of the species diversity values, includ-
ing latitudinal and longitudinal diversity gradients, and
then compared them with a range-map-based diversity
pattern (Veron, 2000). In addition, we investigated genus-
level diversity estimations and explored their geographi-
cal patterns to determine the impact of taxonomic
uncertainty—another serious problem in species occur-
rence records for coral species (Veron, 2013). Finally, we
recommend field survey priorities to fill diversity knowl-
edge shortfalls for coral reefs, and thus provide more
accurate diversity estimation.

2 | METHODS

2.1 | Occurrence data

We downloaded global-scale occurrence (incidence) data
of Scleractinia species from the Global Biodiversity Infor-
mation Facility (GBIF; https://www.gbif.org/) and the
Ocean Biogeographic Information System (OBIS; http://
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www.iobis.org/). To compile a data set of species occur-
rence, we excluded occurrence records not identified to
species level and/or without a geographical coordinate.
We also removed duplicated information (i.e., identical
species names, longitudes and latitudes, where the aver-
aged positioning resolution was approximately 0.2�)
within and between the two data sources. Species names
were standardized following the World Register of
Marine Species (WoRMS) (Horton et al., 2019); subspe-
cies and variety were merged into their respective species.
To focus on tropical coral reefs, we filtered out particular
species (e.g., deep-sea or cold-water corals) not previously
recorded from coral reef areas (Figure 1; ReefBase;
http://www.reefbase.org/main.aspx). We finally obtained
109,296 geo-referenced occurrence points for 697 species
(Figure 1a).

2.2 | Defining species incidence

We defined the frequency of species incidence at six spa-
tial resolutions: 1, 2, 4, 6, 10 and 15� grid cells
(Figure 1b). We divided each grid cell into 0.01� of sub-
gridded cells, counted the number of sub-gridded cells
that contained occurrence records for individual species,
and then created the dataset of species incidence at the
grid cell level. To obtain reliable estimates of species
diversity, we excluded grid cells with few occurrence
records from analysis (Figure S1), that is, if the observed
number of species was less than six, the number of sub-
gridded cells with at least one incidence was less than six,
or the total number of species incidences was equal to
the number of unique species (species that are each
detected in only one sub-grid cell).

FIGURE 1 Global distribution of occurrence records of tropical Scleractinia stony corals and the evaluation procedure of species

incidence to estimate species diversity. (a) Occurrence records of coral species derived from the Global Biodiversity Information Facility and

Ocean Biogeographic Information System (109,367 points). Light-blue areas represent the coral reef distribution provided by ReefBase

(http://www.reefbase.org/main.aspx). (b) Compilation of species incidence data: dividing the globe into grids of different size of (1, 2, 4, 6,

10 and 15�); subdividing each grid into 0.01 × 0.01 sub-gridded cells; counting the number of sub-gridded cells containing occurrence

records in each grid for each species; creating species incidence distribution in each grid and calculating relevant values (U = sum of species

incidences, T = number of sub-grids where at least one incidence was found, Q2 = number of duplicates, Q1 = number of uniques,

Sobs = observed number of species)
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2.3 | Environmental data

For analysis, we defined the potential habitats for coral spe-
cies based on environmental conditions that included mean
sea surface temperature (World Ocean Atlas: https://www.
nodc.noaa.gov/OC5/woa18/) and water depth (ETOPO1:
https://www.ngdc.noaa.gov/mgg/global/) at a 0.01� spatial
resolution.

2.4 | Diversity estimation and
comparison

We estimated the Hill's diversity indices (qD, q = 0, 1, 2)
based on the species incidence data in each grid cell at
different spatial resolutions (1, 2, 4, 6, 10 and 15�) as:

qD=
XS
i=1

pqi

 !1= 1−qð Þ
ð1Þ

where pi is the relative incidence frequency of the ith spe-
cies in a grid: i = 1, 2…. S. That is, pi represents the pro-
portion of sub-grids that the ith species can be detected
(i.e., at least one individual of the ith species can be
detected) in the grid. The parameter q determines the
sensitivity to species incidence frequencies (Chao et al.,
2014): 0D is species richness, where frequency of inci-
dence is not accounted for (i.e., each species has equal
weight); 1D is the exponential of the Shannon entropy
index, where species are weighted by their incidence fre-
quency (i.e., highlighting frequent species); 2D is the
inverse of the Simpson concentration index
(i.e., highlighting highly frequent species). We evaluated
the standard error of these estimates (0D, 1D and 2D) by a
boot-strapping method, and computed sampling com-
pleteness by sampling coverage (SC) with respect to spe-
cies incidence (Chao et al., 2020 under review):

SC=1−
Q1

U
1−Bð Þ

B=

2Q2= T−1ð ÞQ1 + 2Q2½ �, if Q2 > 0

2= T−1ð Þ Q1−1ð Þ+2½ �, if Q2 = 0,Q1 > 0

1, if Q1 =Q2 = 0

8>><
>>: ð2Þ

where U is the total number of species incidences; T is
the number of sub-gridded cells where at least one inci-
dence was recorded; and Q1 and Q2 are the number of
unique and the number of duplicates (species that are
each detected in exactly two sub-grid cells), respectively.
We refer to qD at observed SC as reference diversities

(qDref). Asymptote diversity qDasymwas estimated at SC = 1
under the assumption that sampling effort is hypotheti-
cally expanded to be large, and sample coverage
approaches unity, by means of extrapolation.

Generally, when q = 0, qDasym provides a minimum
number of true species richness (or Chao 2 estimator;
Chao, 1987), whereas for q = 1 and 2, qDasym infers the
true diversity in a grid. We also assessed the associated
standard error for each asymptotic richness estimate to
reflect sampling uncertainty. To fairly compare among
the grid cells in terms of sampling completeness, we esti-
mated qD at the fixed SC (qDSC#) using 1 and 5% percen-
tile of SC at doubled sample sizes (15–57%; see Table S1
for specific figures for each spatial resolution). The rela-
tively small thresholds of SC were to minimize the
extrapolation of more than doubled sample size: either
rarefaction or extrapolation within doubled sample sizes
was applied to 99% (or 95%) of grid cells.

2.5 | Biogeographical patterns

We mapped SC, the diversity estimates, and the standard
errors at different spatial resolutions and examined their
geographical patterns. We then investigated the patterns
of the diversity estimates across latitudinal and longitudi-
nal gradients using LOWESS smoothing splines. We also
compared the smoothing curves of the diversity estimates
with those derived from the expert range maps
(Figure S2; Veron, 2000) for 690 species common with
this study, which were resampled at corresponding spa-
tial resolutions for the analysis.

2.6 | Optimal sampling effort allocation

From a statistical viewpoint, grid-cells with low SC can
be considered as priority areas for additional sampling.
Meanwhile, in practice, our research effort is defined by
the number of occurrence records, and its total amount
has a limitation in a unit of time. In addition, a biased
allocation of research effort may promote the difference
between under-sampled and over-sampled sites, which
make a fair comparison difficult. Therefore, a sampling
strategy which effectively fills spatial knowledge gaps is
helpful in conservation planning. Here, we simulated an
optimal sampling strategy, based on an optimization
analysis, to fill knowledge gaps in the current occurrence
dataset of coral species. We identified spatial priority
areas for future additional sampling to effectively
improve the spatial bias of sampling completeness. We
used grid cells at a 1� resolution because a high-
resolution map would be required from a practical point
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of view. In the simulation, we assumed that the potential
number of incidences in a grid cell (i.e., “T” in the equa-
tion for SC) was represented by the number of sub-
gridded cells (0.01�) which were available habitat for
coral species in terms of sea surface temperature
(18–36�C) and sea depth (−40 to 0 m). The simulation
was carried out using the following procedures: we
(a) calculated the current inequality of SC using the Gini

index (2Σ
n
i=1iSCi

nΣn
i=1SCi

− n+1
n ), where SCi is SC in the ith cell of

n cells sorted by ascending order; (b) added a species inci-
dence in each grid cell according to the relative species
incidence frequencies in the cell, where we assumed that
an unrecorded species has the same relative frequency as
that of uniques; (c) calculated SC; (d) calculated a potential
increase in SC for each grid cell and subsequent change in
the Gini-index; (e) allocated a new sample to the cell in
which an additional sample has most impact on the Gini
index; and (f) repeated these procedures until we reached a
given limit of sample-size. We assumed a sample limit of
15,000, which roughly corresponds to the annual average of
the number of registered samples of stony corals in GBIF
for the 10 years between 2008 and 2018 (129,133 records).
We repeated this simulation 30 times.

All analyses and graphic works were conducted using
R and related packages: “rgbif” for retrieving occurrence
records from GBIF (Chamberlain et al., 2019), “iNEXT”
for biodiversity estimation (Hsieh et al., 2016),
“maptools”(Bivand & Lewin-Koh, 2019), “raster”

(Hijmans, 2018), and “spatialEco” (Evans, 2018) for
editing raster data.

3 | RESULTS

Sampling completeness (measured by sampling coverage,
SC) of coral species occurrence was relatively consistent
across the spatial resolutions (>0.8 on average;
Figure S3a). SC was especially high in coastal areas
around Australia and Central America, while relatively
low on the coast of Madagascar and some Polynesian
islands (Figure 2). Standard errors of diversity estima-
tions were not affected by spatial resolutions
(Figure S3b–d).

The maps of observed species diversity (0Dref) showed
areas of high species richness on the north coast of
Australia and in the western Indian Ocean (Figures 3
and S4). The estimation error was highest on the coast of
Madagascar compared with other regions, and consis-
tently so across different spatial resolutions (Figure S5).
The diversities standardized for sampling completeness
(0DSC1,

0DSC5 and
0Dasym) were consistently greater in the

western Indian Ocean at all spatial resolutions, and rela-
tively lower on the coast of Central America and in the
eastern Pacific. In general, those diversity patterns with
the species diversity of the smallest order (q = 0) were
similar to those with the species diversities of larger
orders (q = 1, 2) (Figure S6–S15).

FIGURE 2 Geographic maps of sampling coverage (SC) at different spatial resolutions (1, 2, 4, 6, 10 and 15� cells). Note, all maps are

drawn at 5 × 5� resolution for visibility
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The observed (qDref, q = 0, 1, 2) and SC-standardized
species diversities (qDSC1,

qDSC5 and qDasym, q = 0, 1, 2)
showed a latitudinal gradient. This peaked at around
20�S (including northern Australia and Madagascar) and
decreased towards the south and north poles, especially
at finer spatial resolutions (Figures 4, S16, S17). This lati-
tudinal gradient became non-distinct (nearly flat) at
coarser spatial resolutions.

Longitudinal diversity gradients were also found
(Figures 5, S18, S19). The observed diversities (qDref,
q = 0, 1, 2) showed that a unimodal-shaped longitudinal
pattern peaked at around 120–150�E (including eastern
Australia) at finer spatial resolutions. In contrast, the SC-
standardized diversities (qDSC1,

qDSC5 and qDasym, q = 0,

1, 2) showed a peak near 40�E (western Indian Ocean)
and decreased linearly eastwards with a spike around
150�E at finer spatial resolutions. This spike disappeared
at the coarser spatial resolutions.

Latitudinal and longitudinal patterns of diversity
estimates using species occurrence data differed sub-
stantially from diversity patterns derived from the
expert range maps (dashed lines on Figures 4 and 5).
Species range maps showed a near symmetrical
unimodal latitudinal pattern peaking at the equator and
between 120 and 180�E longitude. These discrepancies
in the diversity patterns between the two data types
were more distinctive at finer than coarser spatial
resolutions.

FIGURE 3 Geographical patterns of coral species diversity (Hill's number of order q = 0) at different spatial resolutions (1, 4 and 15�

cells). Diversity is estimated at four sampling coverages (SC): observed SC (0Dref) (top row), 1% percentile of SC values of doubled sample size

(0DSC1) (second from the top row), 5% percentile of SC values of doubled sample size (0DSC5) (third row) and infinite SC (i.e., asymptote

diversity; 0Dasym) (bottom row). Exact values of percentiles of SC values are listed in Table S1. Maps for other spatial resolutions (2, 6 and 10�

cells) are provided in Figure S4. For visibility, maps with higher spatial resolutions (1 and 4� cells) are drawn at 5 × 5� resolution. Values are
log10-transformed. Potential outliers (i.e., extremely high values compared with others) are represented by reddish color scale
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Results of genus-level analyses were generally similar
to those of species-level analyses described above. Coral
genus diversity, estimated by controlling SC, was greater
in the western Indian Ocean and on the northern coast
of Australia (Figures S20–S23). The latitudinal and longi-
tudinal patterns of genus diversity were also similar to
those of species diversity, while the discrepancy at the
diversity peak of 0�E between the data types was smaller
than in species-level analyses (Figures S24 and S25).

Simulation analysis revealed priority areas for
additional sampling that not only improved SC but

also reduced the spatial bias of SC among sites
(Figure 6). The average SC was improved from 0.39 to
0.79, and the Gini index of SC among the grid cells
decreased from 0.53 to 0.13. Some cells prioritized for
additional sampling occurred in all regions with
corals (Figure 6). The biogeographical survey priori-
ties (top 5, 10, and 20% fractions) were mainly found
on the northern coast of Australia, center of the Indo-
Pacific Coral Triangle, western Indian Ocean, central
areas of the Red Sea and Persian Gulf, and coast of
Central America.

FIGURE 4 Latitudinal

patterns of coral species diversity

(Hill number of order q = 0)

estimated at different spatial

resolutions (1, 2, 4, 6, 10 and 15�

cells). Diversity is estimated at four

sampling coverages (SC): observed

SC (ref ), 1% percentile of SC values

of doubled sample size (SC1), 5%

percentile of SC values of doubled

sample size (SC5) and infinite SC

(i.e., asymptote diversity; asym).

LOWESS curves are also shown.

Thick and thin lines represent

entire cells and cells located on

coral reef areas by ReefBase (http://

www.reefbase.org/main.aspx). The

broken line is the number of species

calculated by stacking expert range

maps (Veron, 2000)

FIGURE 5 Longitudinal

patterns of coral species diversity

(Hill number of order q = 0)

estimated at different spatial

resolutions (1, 2, 4, 6, 10 and 15�

cells). Diversity is estimated at four

sampling coverages (SC): observed

SC (ref ), 1% percentile of SC values

of doubled sample size (SC1), 5%

percentile of SC values of doubled

sample size (SC5), and infinite SC

(i.e., asymptote diversity; asym).

LOWESS curves are also shown.

Thick and thin lines represent

entire cells and cells located on

coral reef areas as recorded by

ReefBase (http://www.reefbase.org/

main.aspx). The broken line is the

number of species calculated by

stacking expert range maps

(Veron, 2000)
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4 | DISCUSSION

The diversity estimation using the global-scale occur-
rence data of Scleractinia stony corals controlled the
inequality of sampling completeness and revealed fairly
comparable species diversity at different spatial scales.
We found scale-dependent patterns of coral diversity
despite relatively coarse spatial resolutions (≥1� grid cell:
about 111 km2 at the equator). Latitudinal diversity gra-
dients were more distinct at finer spatial resolutions
(Figure 4) while longitudinal gradients were more or less
consistent across the spatial resolutions. Such scale-
dependent patterns in species diversity suggest shift of
ecological and/or evolutionary processes (Willis & Whit-
taker, 2002) and idiosyncratic relationships between local
assemblages and regional species pools (Karlson & Cor-
nell, 1998). Our findings may support a hypothesis of
coral diversity hotspots, which states that local species
diversities are regulated by idiosyncratic assembly pro-
cesses, while an extensive species pool was formed by
overlapping species distribution ranges at a large scale
(Bellwood, Renema, & Rosen, 2012; Gaither & Rocha,
2013). The size of species pools and species sorting from

them to local assemblages may be regulated by region-
specific biogeographical settings, including environmen-
tal conditions, habitat availability, and geological histo-
ries including changes in sea-level (Bellwood, 2001;
Costello & Chaudhary, 2017; Leprieur et al., 2016; Ren-
ema et al., 2008; Sanciangco et al., 2013; Tittensor
et al., 2010).

Interestingly, we found the richest species pool
(gamma diversity) and greatest local (alpha) diversity in
the western Indian Ocean, comparable or even larger
than those of the Coral Triangle. The Indian Ocean
includes regions with high species endemicity, such as
the Red Sea, extended Indo-west Pacific, and
South Africa (Costello et al., 2017), and the presence of
high diversity areas in the western parts (around Mada-
gascar) has been reported (e.g., Ateweberhan &
McClanahan, 2016; Connolly, Bellwood, & Hughes,
2003). At larger spatial resolutions (10� and 15�), the spe-
cies richness even at observed sampling coverage (i.e., no
extrapolation nor interpolation) was the highest at the
western Indian Ocean. This finding was supported by a
regional-scale diversity estimation in the Coral Triangle
and near-Madagascar (Chao et al., under review). To con-
firm such regional diversity bias, a further investigation
of alpha/gamma diversity (but also from a view point of
species turnover, beta diversity) is needed. In fact, the
high diversity areas in the western Indian Ocean were
characterized by a low sampling coverage and high esti-
mation error (Figure 2 and S4), suggesting the possibility
of overestimation due to extrapolation, especially at finer
spatial resolutions.

Large-scale species occurrence datasets (mostly
presence-only data) are strongly influenced by sampling
bias and thus tend to suffer from false-absence (omission
errors) because of insufficient sampling effort (Hermoso
et al., 2015). Indeed, we found a significant spatial bias in
occurrence records: the sampling completeness was spa-
tially inequivalent. Such spatial knowledge gaps theoreti-
cally can be improved by using the diversity estimations
standardized by sampling completeness, as we examined
for coral diversity (qDSC1,

qDSC5 and qDasym). Therefore,
these estimates allow fair comparisons of species diversity
between places with different sampling effort (Chao &
Jost, 2012). Meanwhile, stacked species range maps con-
tain many commission errors and thereby overestimate
the number of co-occurring species (Hurlbert & White,
2005; Jetz et al., 2019). Such a difference in data types in
terms of species geography affects the geographic pattern
of species diversity (Hurlbert & White, 2005). Indeed, our
estimates of coral diversity patterns based on species inci-
dence across a global-scale gradient were inconsistent
with those derived from expert range maps (Figure S2;
Veron, 2000), especially at finer spatial resolutions. A

FIGURE 6 Spatial priority areas for future sampling to fill

biodiversity knowledge shortfalls of tropical coral species at 1�

gridded cells: (a) map; (b) histogram of simulated optimal sampling

in each grid cell. The top 5, 10 and 20% fractions of priority grid

cells are shown. In the simulation, the number of additional

samples is set as 15,000, roughly corresponding with the average

number of Scleractinia stony coral specimens registered to GBIF in

the 10 years between 2008 and 2018 (N = 129,133). The sampling

simulation was repeated 30 times, with results per grid cell

averaged
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contrasting pattern of coral diversity between species
occurrence and range map data (e.g., weak latitudinal
diversity gradient) suggests that the two datasets showed
different aspects of coral diversity. The former described
scale-dependent structure of local (alpha) diversities
across spatial scales, while the latter consistently
described the maximal size of a species pool at a site
(i.e., gamma diversity). These should be similar patterns
when spatial resolution becomes larger, as shown in Fig-
ures 5 and 6. Furthermore, this finding of contrasting
diversity estimates from point versus range map data are
likely to apply to other taxa.

In macroecological studies of Scleractinian corals, the
Linnean/Darwinian shortfalls are another critical issue,
especially for estimating species diversity (Fukami, 2015).
Nonetheless, our genus-level diversity estimates showed
a similar diversity pattern (Figure S20–S25). This suggests
that our observed biogeographical patterns were rela-
tively robust to taxonomic errors, in contrast to the
Wallacean shortfall (deficiency of geographical occur-
rence), at least in the current nomenclatural system
(i.e., WoRMS; Horton et al., 2019).

We also identified geographical survey priorities by
means of an optimization analysis that accounted for
the spatial bias of sampling completeness (Figure 6).
Ideally, coral sampling effort should be allocated across
the world in proportion to the diversity of a region; intu-
itively, more diverse regions may need more sampling
to estimate their species richness. We found many
unexplored areas with limited species incidence
(Figure S1), low SC (Figure 2) and/or high estimation
errors (Figures S5, S10 and S15). Most importantly, the
northeastern coast of Australia, center of the Coral Tri-
angle, coast of Madagascar, central areas of the Red Sea
and Persian Gulf, and coast of Central America and
higher latitudinal regions (e.g., Japanese archipelago)
were identified as coral survey priorities (Figure 6) to
effectively fill knowledge gaps in coral diversity. These
priority areas may be consistent with macro-ecologically
important areas with evolutionary potential for coral
reef diversity (Spano, Hernández, & Rivadeneira, 2016)
or frontlines of poleward shift in coral distribution in
response to global warming (Mizerek, Baird, Beau-
mont, & Madin, 2016).

In our analysis, we only used the two major databases
of GBIF and OBIS, but there may be other unknown data
sources as yet not digitized and included in any database
(Page, MacFadden, Fortes, Soltis, & Riccardi, 2015). For
example, Speed et al. (2013) mobilized regional data from
published literature and unpublished data to examine
coral reef dynamics in Western Australia. In this sense,
our sampling completeness may underestimate our
potential knowledge. Therefore, the priority areas that

we identify (Figure 6) are regarded as important coral
areas not only for additional field sampling but also for
effective mobilizing occurrence data.

5 | CONCLUSION

The estimated species diversity of Scleractinia stony
corals showed a distinct scale-dependent pattern along
latitudinal and longitudinal gradients that differed sub-
stantially from previous range-map-based diversity
patterns, especially at finer spatial scales. The geo-
graphical pattern of coral species diversity estimated at
various spatial-scales may shed new light on gaps in
our knowledge. Greater species diversity was identified
in the western Indian Ocean, for example, than in the
Coral Triangle in the Indo-Pacific region, which has
been argued to represent a coral diversity hotspot. The
theory of biodiversity estimation statistically connects
the occurrence records (which reflect our sampling
effort), sampling completeness, the state of true diver-
sity, and the reliability of diversity estimates. This
framework has successfully evaluated a huge spatial
bias in coral species occurrences and its sampling
completeness. More importantly, it has informed us of
a set of priority areas for future sampling of unknown
coral species occurrence. Our findings of biogeographi-
cal survey priorities contribute to filling biodiversity
shortfalls of tropical coral reefs through sampling com-
pleteness, and consequently to developing conservation
planning.
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