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Abstract
Topological physics mainly arises as a necessary link between properties of the bulk and the appearance of surface
states, and has led to successful discoveries of novel topological surface states in Chern insulators, topological
insulators, and topological Fermi arcs in Weyl, Dirac, and Nodal line semimetals owing to their nontrivial bulk topology.
In particular, topological phases in non-Hermitian systems have attracted growing interests in recent years. In this
work, we predict the emergence of the topologically stable nodal disks where the real part of the eigen frequency is
degenerate between two bands in non-ideal magnetohydrodynamics plasma with collision and viscosity dissipations.
Each nodal disk possesses continuously distributed topological surface charge density that integrates to unity. It is
found that the lossy Fermi arcs at the interface connect to the middle of the projection of the nodal disks. We further
show that the emergence, coalescence, and annihilation of the nodal disks can be controlled by plasma parameters
and dissipation terms. Our findings contribute to understanding of the linear theory of bulk and surface wave
dispersions of non-ideal warm magnetic plasmas from the perspective of topological physics.

Introduction
Plasma, widely considered as the fourth states of matter,

is a completely ionized gas consisting of freely moving
ions, nuclei, and electrons. Plasma is believed to account
for over 99% of the matters in the universe. Under-
standing the bulk and the surface wave dispersions of
plasma’s magnetic hydrodynamics is of great importance
for both fundamental interests in topological matter states
and broad applications in fusion energy harvesting,
plasma diagnostics etc. In applications with low particle
density and negligible temperature effect such as neon
tubes1, known as “cold plasma”, the charged particles are
assumed to oscillate without significant inter-particle
interactions due to the diminishing Lamor radius2.

Landau3 considered magnetic fluids as continuous media
and used the cold plasma theory to describe the excita-
tions in plasma as frequency dependent, local (meaning
no spatial dispersion) dielectric functions. Such electro-
dynamics of continuous media theory has been experi-
mentally testified to give satisfying descriptions of zonal
flows, Geodesic acoustic mode, and Alfven waves4.
However, in higher energy regimes, such as thermo-

nuclear weapons, tokamak configuration with magnetic
and inertial confinement, and intense X-ray sources, the
particle density is immensely higher, and the temperature
effect cannot be neglected5–7. As a consequence, the
dynamics of the plasma are thermal-dependant and
described by the Navier–Stokes equations, and are known
as “warm plasma”, whose dielectric functions are not only
frequency dependant but also spatially dispersive (non-
local). Study of the bulk and surface wave dispersions of
the “warm plasma” can be used for plasma diagnostics and
for understanding astrophysical problems in the magne-
tosphere, the solar corona and surface waves enhanced
electron heating, ion acceleration, synchrotron radiation,
and static magnetic generation. Furthermore, surface
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waves are also involved in laser fusion, which is valuable
for energy productions through controlled thermonuclear
reactions (CTR)8–10.
It has been shown previously that Weyl points may exist

in cold plasma, leading to observation of interesting
topological effects such as presence of Fermi arcs11,12.
Since large dissipation terms could arise in warm
plasma13,14, they provide an interesting platform for
studying non-Hermitian topological physics, which has
become a vibrant research field in recent years15–25.
Topologically protected degeneracies in Hermitian sys-
tems such as Weyl points are stable, due to the partici-
pation of all three Pauli matrices in constructing the low-
energy Hamiltonian. However, with additional degree of
freedom from the loss/gain, the probability of finding a
degeneracy is lower than is dictated by the Von
Neumann–Wigner theorem26. This means the two band
Hamiltonian may experience level repulsion lifting the
degeneracies. For instance, the conical refraction phe-
nomenon could be destroyed by introducing another “loss
optical axis”27. However, interestingly, rather than simply
lifting the degeneracy, the non-Hermicity may turn a
Weyl point into a two-dimensional nodal disk where the
real part of the complex eigen frequencies becomes
degenerate, which is surrounded by an exceptional loop
(EL), where both the complex eigen frequency and eigen-
states coalesce. Till now, besides being theoretically
investigated in a minimum 2-by-2 Hamiltonian
model15,28–31, there have been only a few studies on
topological ELs in optical lattices and woodpile photonic
crystals32–34.
In this work, we predict the emergence of topologically

stable nodal disks and ELs in non-ideal magnetohy-
drodynamics (MHD) plasma by taking into account the
dissipations, including collisions and viscosity forces.
While previous works have focused on ELs, we find the
nodal disks to be more topologically important than the
ELs mainly in two aspects: (1). The Berry curvatures are
primarily emitted from the nodal disks. (2). The Fermi
arcs connect to the centers of the nodal disks projected
onto the interface. These nodal disks are non-Hermitian
generalizations of the Weyl points whose topological
charge can be confirmed by the distribution of non-
Hermitian Berry curvature under bi-orthogonal basis15,35–38.
Momentum-space positions of nodal disks are sensitive to
the plasma temperature, magnitude of the magnetic field,
and the viscosity force. They could coalesce and annihilate
through variation of these parameters, and this phenom-
enon has not been readily found in other systems. In the
lossless limit, these nodal disks reduce into type-II Weyl
points and could further transform into transitional Weyl
points, which lies between type-I and type-II with the
dispersion of one participating mode being perfectly flat,

by reducing the plasma temperature to zero. Dissipative
surface states (Fermi arcs) are also found to emanate from
the topologically charged nodal disks. Interestingly, visc-
osity force is found to introduce extra type-I nodal disks
at larger momentum. By tuning the magnitude of the
viscosity loss, the extra type-I nodal disks could coalesce
and annihilate with type-II nodal disks. Our study intro-
duces the modern topological band theory into the
century-long research field of warm plasma.

Results
Hamiltonian formalism derived from the plasma fluid
dynamics
In a warm plasma, the charged particles’ macroscopic

motion can be described by the fluid dynamics
(Navier–Stokes equation) with parameters, such as pres-
sure and density. In contrast to conventional fluid where
only longitudinal wave exists due to the absence of tan-
gential resilience, warm plasma’s dispersion is more
complicated due to the presence of electromagnetic force.
In this work, MHD in combination with Maxwell equa-
tions are used to describe the fluid motions of the plasma
under electromagnetic interactions. Taking into account
the dissipation terms, which include the collision and
viscosity, the plasma fluid dynamics equation is given as,

∂ue

∂t
þ ue � ∇ue ¼ qene E þ 1

c
ue ´B

� �
� ∇Pe
neme

þ ue

τ
þ η∇2ue

ð1Þ

Where ne is the plasma density, me is the electron mass, qe
is the elementary charge, Pe is the electrons thermal
pressure, η is the viscosity coefficient, which arises from
the frictions between counter-propagating electrons, τ is
the mean free time between electrons collision. The
corresponding Hamiltonian formalism is given as (Sup-
plementary Note 1 for detail).
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where ωp ¼ n0e2=með Þ1=2 is the equilibrium plasma

frequency, ωc ¼ qeB
mec

is the electron cyclotron frequency,

kp ¼ ωp=c, Δ= σy 0; 0 0
� �

, I is the identity matrix, and

κ2 ¼ P0γ
n0mc2 with γ being the ratio of specific heats, n is the

fluctuation of plasma density, j the polarized current. In
the rest of the paper, the frequencies are normalized by
ωp, η has unit of kg= m�s2ð Þ corresponding to actual
viscosity coefficient to η/ωp whose unit is kg= m�sð Þ. The
traditional mathmatically complicated calculation of the
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nonlocal dielectric functions is thus transformed into an
eigen-value problem.
We start by considering only the collision dissipation

while neglecting the effect of viscosity. The dispersion of
MHD plasma can be solved by diagonalizing the Hamil-
tonian in Eq. (1). The absolute value of the complex fre-
quency of the non-ideal magnetized warm plasma is
shown in Fig. 1a with ωp ¼ 3:5 ´ 1012 rad=s, ωc ¼ 2ωp,
κ= 0.4, τ= 2, corresponding to a magnetized plasma
system with an electron density of 3:9´ 1019 1=m3, an
external magnetic field B of 8.01 T, an electron thermal
temperature of 27.3 keV and an electronic collision

frequency of 1:75 ´ 1012 rad=s. The band structure shows
four bands, which, ordered from low to high frequencies,
are the first right-handed circularly polarized band (R-
wave), the longitudinal Langmuir (LM) wave (see detail in
Supplementary Fig. 1), the left-handed circularly polarized
band (L-wave) and the second band of R-wave. In the
lossless limit R-wave and L-wave’s dispersions are

expressed as kR=L ¼ ω
c 1� ω2

pe

ω2 1�ωce=ωð Þ
h i1=2

. The LM wave’s

dispersion is given by ω2 ¼ ω2
pe þ κ2c2k2, which can

reduce to the cold plasma’s4 oscillation frequency by
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Fig. 1 Existence of Nodal disks in magnetohydrodynamic plasma. a Dispersion of the absolute value of eigen frequency ω with
ωc ¼ 2; κ ¼ 0:4; τ ¼ 2. Along the kz axis, the bands are differentiated as right/left handedness circular polarization wave (R/L-wave) and Langmuir
wave whose polarization is only in the z-direction. The bands along transverse directions (x-direction) have degeneracies denoted by the red/blue
dots. Owing to the rotational symmetry in the plasma system, the dots in a form the loops in b. Akin to the Weyl points, there are two species of
Nodal disks in the plasma system with opposite topological charge (+/–1 charge denoted by the red/blue color) that are connect by the spatial
inversion operation. c–f Real and imaginary part of the eigen frequency in the kx−kz and kx−ky plane. Note that in the kx−kz plane, real and imaginary
parts are simultaneously degenerated at isolated points away from the kz axis. While in the kx−ky plane, the degeneracies form a ring
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taking κ= 0. (Supplementary Note 2 for detail and Sup-
plementary Fig. 2). The positions of the Weyl points are
caculated in Supplementary Fig. 3. To better understand
these linear band crossing, we apply the k·p theory
(effective Hamiltonian theory) under collisionless condi-
tions to obtain the approximate Hamiltonian near the
degeneracies. Expanding to first order in the vicinity of the
outer degeneracy, we find the effective Hamiltonian as:

H1 ¼ Aþ N
2

kzσz þMkxσx �Mkyσy þ A� N
2

Ikz

ð3Þ
where A ¼

ffiffiffiffiffi
ε12

p
2 ε212 � ε12 þ 2ð Þ, N ¼ ω2

p
ffiffiffiffi
ωc

p

2 ωp þωcð Þ ffiffiffiffiffiffiffiffiffiffiffi
ωc �ωp

p κ2, M ¼ffiffiffiffiffi
ε12

p

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ε212 � ε12 þ 2

p , and ε12 is sum of the diagonal and off-

diagonal elements of the dielectric matrix evaluated at the

Weyl’s frequency, which can be expresses as ωweyl ¼

ωp þ ω2
pωc

2 ω2
c �ω2

pð Þ κ
2 (Supplementary Note 3 for detail). These

linear degeneracies are Weyl points that function as the
sources and drains of Berry curvature flux lines. Owing to
the electrons collision, the new degeneracy points where
both the real and the imaginary part of the complex
frequency spectrum are degenerate shift away from the kz
axis, as denoted by the colored dots in Fig. 1a. Owing to
the rotational symmetry of the system around kz axis, the
degeneracy points form exceptional loops in the kx-ky
plane in Fig. 1b. Figure 1c, d show the real and imaginary
parts of the eigen frequency in kx–kz direction, where the
degeneracy line for the real part of the eigen frequency in
the kx–kz plane forms a bulk nodal disk due to the
rotational symmetry. The dispersion of the real and
imaginary parts of the eigen frequency on the kx-ky plane
are presented in Fig. 1e, f, respectively, which show the
presence of an EL. As shown in Fig. 1, the modified
dispersion of the LM wave is curved due to the thermal
effect, providing the possibility of forming three pairs of
nodal disks between the LM Wave and the L/R-wave. In
contrast the cold plasma can at most possess two pairs of
Weyl points due to its dispersionless LM mode39. As
shown in Fig. 1a, two types of band-crossing exist: the
band crossings between the LM wave and the L-wave at
small k, and the other two between the LM wave and the
first R-wave at larger k’s. These band crossings are
guaranteed by the polarization orthogonality between the
longitudinal LM waves and the transverse L and R waves.

Topological phase transition in the dissipating collision
plasmas
By tuning the thermal parameter κ and the cyclotron

frequency ωc under a fixed collision coefficient τ= 2, the
nodal disks’ location in the momentum space can be

shifted along the kz direction, or even merged or annihi-
lated. In Fig. 2a, the transition of the number of nodal
disks is illustrated in a phase map in the parameter space
(ωc, κ), which shows that the system acquires either three
pairs or a single pair of nodal disks. Right at the phase
boundary, the two nodal disks at larger kz join with each
other. The difference in the real part of the frequency
between the LM wave and R-wave constituting the nodal
disks for different κ values is given in Fig. 2d–f. As shown
in Fig. 2d, when κ= 0.52, ωc= 2 (below the critical
transition value), the nodal disks are separate (white dash
lines). While at the critical transition value κ= 0.5228,
ωc= 2 the exceptional loops merge into each other and
the nodal disks form a closed nodal surface, as shown in
Fig. 2e. The corresponding 3-D band structures to Fig. 2d,
e are given in Fig. 2b, c. It should be noted that even
though the Chern number of the closed nodal surface is
zero since the topological charges of the two nodal disks
cancel each other, the Berry curvatures do not vanish
because of the nonzero topological charge density on the
surface. Further increase of κ beyond the critical value
leads to simply shrinkage of the closed nodal surface and
lifting of the degeneracy as is shown in Fig. 2f.

Berry curvatures and topological dissipating fermi arc of
the bulk nodal disk
Similar to Weyl points in Hermitian systems, nodal

disks are sources and drains of Berry curvatures in non-
Hermitian systems. In such a dissipative system, Berry
curvatures can be derived from any entry of the Berry
connection matrix: AI;J

μ ¼ ihIj∂μjJi; I; J 2 L;Rf g. In Sup-
plementary Note 5, it is shown that this matrix is Her-
mitian, whose diagonal entries are real, and off-diagonal
complex. The matrix entries satisfy the relation:
AL;L
μ ¼ AR;R

μ ≠AL;R
μ ¼ AL;R�

μ , where the sign * stands for the
complex conjugate. It could be further shown that the
Berry curvature calculated from different matrix entries
are locally different, however, their integral over the
nodal disk, the Chern numbers, are the same (for the
complex term AL;R

μ and AL;R
μ , only real parts are inte-

grated)15. In dissipative MHD plasma, Berry curvature
flux distribution from the nodal disk between the LM
and the R waves is shown in Fig. 3a, where the red rings
represent the ELs in kx−ky plane and the blue solid line is
the projection of the nodal disk in kx−kz plane. Figure 3a
clearly shows that the nodal disk is the source of Berry
curvature. In proximity to the EL, the derived Berry
curvatures diverage is at the rate of 1=

ffiffi
r

p
, where r is the

distance to the exceptional loop (see detail in Supple-
mentary Note 5). This means the Berry curvature emit-
ted by the exceptional loop has neligible value. Hence it
is confirmed that the topological charge is continuously
distributed across the bulk nodal disks, rather than
concentrated at the ELs.
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Owing to the nontrivial topological charge of the nodal
disk, presence of Fermi arcs is expected. To solve for the
Fermi arc, we consider an abrupt interface between the
MHD plasma and vacuum, which can be found in mag-
netic confinement plasmas such as Tokamak configura-
tions. Because of the nonlocality of the system, an
additional boundary condition that the current density
diminishes in the surface normal direction should be
imposed, together with the conventional electromagnetic
wave continuity conditions. Considering the continuity of
bulk displacement current normal to the interface, this
additional boundary condition is equivalent to continuity
of Ex across the interface

40. The dissipating Fermi arc near
the outer the nodal disk at the real frequency parts of 1.76
ωp, 1.86 ωp, and 1.96 ωp is given in Fig. 3b (more details
are shown in Supplementary Fig. S7). Interestingly, at the
EL frequency, the dissipative Fermi arc connects between
the projected nodal disks right in the middle, as shown in
Fig. 3c. However, away from the exception loop fre-
quency, the Fermi arc could exist inside the bulk state
continuum, as shown in Fig. 3b. Detailed derivations are
provided in the Supplementary Note 4, and the surface
modes at different frequencies are presented in Supple-
mentary Fig. S4.

Extra nodal disks and topological transition induced by
viscosity force
In the above, we have studied the warm magnetic

plasma with collision loss. However, in tokamaks and
helical devices, there also exists strong anomalous visc-
osity14. As indicated by Eq. (2), viscosity leads to an extra
quadratic term in the dispersion of the LM wave, which
becomes significant at large momentum. The significantly
modified dispersion of the LM wave could introduce an
extra pair of nodal disks by intersecting the R-wave again.
The real part of the eigen frequency spectrum around the
nodal disks is given in Fig. 4a. Comparing with that in a
plasma with only collisions, the nodal disk in a plasma
with viscosity dissipation is highly curved due to the
presence of the higher order term in the momentum. The
curved nodal disks can be attributed to the k2x;y terms
present in the effective Hamiltonian model (Supplemen-
tary Note 7). Increasing the strength of the viscosity force
could induce coalescence and annihilation of the nodal
disks as shown in Fig. 4b–d. Similar to the effects shown
in previous sections, at a certain viscosity force, tuning the
magnetic field strength and electron thermal parameter,
the 2nd and 3rd nodal disks could annihilate, leaving only
the 1st and the 4th exceptional loops.
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Discussion
In this paper, we have studied the nodal disks and the

topological band theory in MHD plasma by considering
the collision and viscosity effects. Electron thermal pres-
sures drives the plasma oscillation (longitude mode)
propagation and modifies the dispersion slope. Topolo-
gical charged nodal disks are observed due to the dis-
sipation effects arising from collision and viscosity.
Topological protected dissipating fermi arcs are observed,
which connects to the bulk nodal disk. Importantly, the
emerge, coalesce, and annihilation of these nodal disks
can be tuned by thermal parameter and the external
magnetic field. Our discoveries could facilitate studies of
both the linear theory of MHD plasma and the non-
Hermitian topological band theories.

Methods
Plasma encompass a very large range of scales in length,

density and temperature. Our theoretically predicted

topological phase transitions could be observed in a broad
range of the above parameters. For simplicity we nor-
malize the cyclotron frequency ωc, the electron collision
frequency 1/τ and the viscosity coefficient η by the plasma
oscillation frequency ωp. In our work, the electron density
is 3:9 ´ 1019 1=m3, which corresponds to the plasma fre-
quency ωp ¼ 3:5´ 1012 rad=s, the electron thermal tem-
perature of 27.3 keV with an external magnetic field of
8.01 T.
The dissipative surface states in our work are

obtained by two methods: (1) solving the plane wave
solution of Eq. (2) followed by matching the boundary
condition and (2) numerical simulation with COMSOL,
a commercially available software. In the first method,
extra boundary condition demanding the continuity of
the surface normal direction’s electric field is added.
This extra condition ensures the plasma will not spill
out into the surrounding medium. In COMSOL, the
surface states are solved using the generalized PDE
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module, and the results can be found in Supplementary
Fig. S4 and Supplementary Note 6 in the Supplementary
Information.
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