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Abstract
Systems supporting Weyl points have gained increasing attention in condensed physics, photonics and acoustics due
to their rich physics, such as Fermi arcs and chiral anomalies. Acting as sources or drains of Berry curvature, Weyl points
exhibit a singularity of the Berry curvature at their core. It is, therefore, expected that the induced effect of the Berry
curvature can be dramatically enhanced in systems supporting Weyl points. In this work, we construct synthetic Weyl
points in a photonic crystal that consists of a honeycomb array of coupled rods with slowly varying radii along the
direction of propagation. The system possesses photonic Weyl points in the synthetic space of two momenta plus an
additional physical parameter with an enhanced Hall effect resulting from the large Berry curvature in the vicinity of
the Weyl point. Interestingly, a helical Zitterbewegung (ZB) is observed when the wave packet traverses very close to a
Weyl point, which is attributed to the contribution of the non-Abelian Berry connection arising from the near
degenerate eigenstates.

Introduction
Similar to electrons in solid state materials1, an optical

beam obliquely incident to an interface between two
transparent media experiences a spin-dependent trans-
verse shift in the centre of energy (mass) of the reflected/
refracted beam. This particular shift is called the spin Hall
effect of light (SHEL), which results from the spin−orbit
interactions (SOI) or spin−orbit coupling of photons2–5.
Separate from the light-interface interaction, a pure geo-
metric spin Hall effect6,7 is observed for a transmitted
optical beam across an oblique polarizer7. SHEL has also
been studied for structured surfaces, and it was recently
shown that a metasurface possessing a linear phase gra-
dient could introduce a giant SHEL for an anomalously
refracted beam, even when the light was at a normal

incidence8. Moreover, analogous to the quantum spin
Hall effect of electrons in topological insulators, one-way
transport of the spin-valley-locked edge states has been
observed in photonic topological insulators9–12. With the
rapid development in the field of nanophotonics, artifi-
cially structured photonic crystals and metamaterials
bring about opportunities to manipulate photonic SOI.
Among the reported artificial structures, photonic

honeycomb lattices13–18 have received considerable
attention, in part because of their direct analogue to
graphene, where the electron wave has the dispersion of a
massless particle close to the Dirac points. Photonic
honeycomb lattices provide two new degrees of freedom,
pseudospins and valleys, to describe the state of light. For
in-plane propagation of light, SHEL was proposed in a
photonic analogue of graphene, where the SOI was
induced by the splitting between transverse-electric (TE)
and transverse-magnetic (TM) optical modes13. In a
staggered graphene analogue with time-reversal sym-
metry14,15, breaking inversion symmetry can also induce
SOI and allow a valley Hall effect of photons15. Due to the
time-reversal symmetry, there is an opposite transverse
shift of the incident optical beam when the in-plane
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momentum matches different valleys in reciprocal space.
Recently, increasing focus has been made on waveguide
arrays arranged in a honeycomb lattice, which provides a
powerful platform for investigating topological photonics,
enabling the realization of photonic Floquet topological
insulators16, unconventional edge states17, and
pseudospin-mediated vortex generation18.
Berry curvature underlies many interesting phenomena

in crystalline systems. It is the counterpart of a magnetic
field in momentum space and plays an important role in
the motion of a wave packet in both the real space and
momentum space19,20. It is known, for instance, that the
wave packet velocity receives an ‘anomalous’ contribution
proportional to the Berry curvature in momentum
space1,19. In three-dimensional (3D) systems, the sources
and drains of Berry curvature are Weyl points, which
occur at points of double-degeneracy in the 3D band
structure. Weyl points have been found in solid state
systems of electrons21–23 and 3D photonic crystals24–26,
magnetized plasma27, and photonic metamaterials28,29.
However, the investigations of Berry curvature effects are
not straightforward in photonic systems possessing Weyl
points in 3D momentum space [kx, ky, kz]. Since the
‘anomalous’ contribution to the wave packet velocity
depends on the product of the time derivative of the wave
vector and the momentum space Berry curvature1,19,
Berry curvature effects cannot be observed in a homo-
geneous photonic system, which has an invariant wave
vector during the propagation. Recently reported syn-
thetic Weyl points30–32 provide a new means to construct
photonic Weyl points in synthetic 3D space. However,
similar to homogeneous Weyl systems in 3D momentum
space, a wave packet propagating in the previously
reported synthetic Weyl systems30–32 has an invariant
momentum in the synthetic space and, therefore, cannot
interact with the Berry curvature.

Results
In this Letter we consider a system exhibiting Weyl

points in a synthetic 3D space, where two of the axes are
momentum coordinates kx and ky, and the third axis is the
physical parameter η that adiabatically varies with the
spatial coordinate z. A wave packet propagating in the z
direction experiences a variant η and, consequently, a z-
dependent Berry curvature generated by the synthetic
Weyl points. It is therefore expected that a Berry
curvature-induced Hall effect can be readily observed. To
put it simply, as a wave packet moves through a region
where the Berry curvature is large, its velocity will be
significantly modified from the group velocity, and this
effect will be evident as an additional shift in the final
position of the packet. Our system consists of an array of
evanescently coupled rods tapered along the z direction
and arranged in a honeycomb array. By slowly varying the

diameters of the rods along the direction of propagation
(z), the two-dimensional (2D) Dirac points in the
momentum space can be turned into synthetic Weyl
points that, hence, generate a distribution of Berry cur-
vature in the synthetic space. Based on the semi-classic
equations of motion for wave packet propagation in the
presence of Berry curvature1,19,20,33,34, the centre-of-
energy velocity of the wave packet contains an ‘anom-
alous’ contribution proportional to the Berry curvature of
the band, and this contribution is responsible for various
Hall effects1,19,33. Since each Weyl point is a monopole of
the Berry curvature in the momentum space, it is
expected that a relatively large Hall effect should be
observed in its vicinity. In addition to this photonic Hall
effect, we also observe an interesting helical Zitterbewe-
gung (ZB)35–38 arising from the non-Abelian Berry con-
nection close to the Weyl point. That is, the centre of
energy of the optical beam exhibits a helical trembling
motion around its mean trajectory during the
propagation.
Figure 1a shows our proposed array of dielectric rods

with lattice constant a. The radii of rods RA and RB in sub-
lattices A and B are designed to vary slowly in the z
direction. At one end of the rod array, the A lattice has a
larger diameter than the B lattice, whereas this is reversed
on the opposite end of the waveguide array. Somewhere in
the middle of the waveguide array, the A and B lattices
have the same size, closing the band gap at this plane.
Figure 1b shows the first Brillouin zone of the honeycomb
lattice. As will be shown in the following, the Weyl points
in the 3D synthetic space are located at points denoted by
K and K'. The propagation of light in the array of rods
along z axis can be taken as an adiabatic process where the
reflection of light in this direction is negligible. Under the
tight-binding approximation, the dynamics of the propa-
gation of a Bloch wave with the wave vector (kx, ky) along
the rods can be cast into the form of a Schrödinger-type
equation for a two-level system (for detailed derivation,
see Supplementary information Note 1),

i d
dZ juki ¼ H k; ηð Þjuki;
H k; ηð Þ ¼ �Re SðkÞ½ �σx þ Im SðkÞ½ �σy � ησz

ð1Þ

where η ¼ ðβA � βBÞ= 2κð Þ, SðkÞ ¼ 1þ 2 cos 1
2 kxa
� �

ei
ffiffi
3

p
2 kya.

The normalized coordinate Z=
R
κdz is an integral of the

effective coupling coefficient κ between the nearest-
neighbour rods in sub-lattices A and B. βA and βB are
the propagation constants of the fundamental mode
supported by isolated rods with radii RA and RB, respec-
tively. Thus, the parameter η is Z dependent when
(RA−RB) varies along the propagation direction. Pauli
matrices σx, σy and σz are defined by the sub-lattice
degrees of freedom. The Hamiltonian H in Eq. 1 is defined
in a synthetic 3D space [k, η]. Using the generic
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expression of the Berry curvature of a two-level system1,
the Berry curvature of the lower-energy state defined in
the synthetic space is found to be

Ω1 ¼ Ωkyη ¼
ffiffi
3

p
a

2β3Z
cos 1

2 kxa
� �

´ 2 cos 1
2 kxa
� �þ cos

ffiffi
3

p
2 kya

� �h i

βZ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
η2 þ SðkÞj j2

q ð2aÞ

Ω2 ¼ Ωηkx ¼ a
2β3Z

sin 1
2 kxa
� �

sin
ffiffi
3

p
2 kya

� �

Ω3 ¼ Ωkxky ¼ � ffiffi
3

p
a2

4β3Z
η sin kxað Þ

ð2bÞ

Figure 1c shows the distribution of the Berry curvature,
which becomes singular at the Weyl points located at [±K,
0], where the two bands linearly cross each other along all
directions in the 3D synthetic space. The Hamiltonian
close to the Weyl points can be approximately expressed
as

H �K þ q; ηð Þ ¼ ±

ffiffiffi
3

p
a

2
qxσx �

ffiffiffi
3

p
a

2
qyσy � ησz

ð3Þ

Furthermore, the Berry curvature (Fig. 1d, e) in its vector
form is

Ωð1Þð�K þ q; ηÞ ¼ ± 3a2

4η2 þ 3q2a2ð Þ3=2
qx; qy; η
� �

ð4Þ

Due to the presence of time-reversal symmetry, the
Berry curvature has an opposite sign at valleys K and K′. It
is straightforward to show that by integrating the Berry
curvature in Eq. 4 over an equi-energy surface enclosing a
single Weyl point, one can obtain a value of ±2π corre-
sponding to a quantized Chern number of ±1.
Similar to a wave packet propagating in the waveguide

array, the equation of the motion for the centre-of-energy
coordinate of the Bloch wave XCk is given by (for detailed
derivation, see Supplementary information Note 2)

dXCk

dZ
¼ huk j∂kHðk; ηÞjuki

huk juki þ XB
0 � XA

0

� � huk jΞðkÞjuki
huk juki

ð5Þ

2

a c

b

d e

0

–2

–5

–0.10
–0.10

–0.10

–0.05

–0.05

–0.05

0.05

0.05

0.05

0.00

0.00

0.00

0.10

0.10

0.10

0

A

B

y

x
z

kxa

qya
–0.10

–0.05

0.05
0.00

0.10

qya

qxa
–0.10

–0.05

0.05

0.00

0.10

qxa

ky

kx

M KK ′

K ′

K ′
K

K

�

�

�

–0.10

–0.05

0.05

0.00

0.10

�

kya

5
–4

–2

0

2

4

Fig. 1 The evanescently coupled rod array arranged in a honeycomb lattice with slowly varying radii along the propagation direction
(z-direction). a The schematic illustration. b The first Brillouin zone in the reciprocal space of the honeycomb lattice with the positions of K=−4π

3aex
and K′= 4π

3aex. c The distribution of the Berry curvature of the lower-energy state in the synthetic space [k, ƞ]. d, e Local distributions of the Berry
curvature close to the two Weyl points
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in which ΞðkÞ ¼ Im SðkÞ½ �σx þ Re SðkÞ½ �σy. XA
0 and XB

0 are,
respectively, the relative positions of rods located at sub-
lattices A and B within one unit cell. The first term on the
right-hand side describes the motion of the Bloch wave
determined by the Hamiltonian. The second term is the
velocity of the centre of energy due to the transition
between sub-lattices A and B within each unit cell of the
honeycomb lattice. The Bloch wave can be expressed as a
superposition of the lower- and upper-energy states {Ψ1,
Ψ2} of the Hamiltonian in Eq. 1 with the eigenvalues
{−βZ, βZ}, i.e., juki ¼ ½jψ1i; jψ2i�ρ; ρ ¼ ½b1; b2�T . The
column vector ρ describes the coefficients of the eigen-
states in the Bloch wave. Thus, the Schrödinger-type
equation (Eq. 1) and the centre-of-energy velocity of the
Bloch wave (Eq. 5) can be rewritten as (for detailed
derivation, see Supplementary information Note 3)

i
d
dZ

ρ ¼ Hk � ΛðηÞη′
h i

ρ ð6aÞ
d
dZ

XCk � ΛðkÞ
D Eh i

¼ ∂kHk
� �� ΩðkηÞ

D E
η′

þV PT � d
dZ

ΛðkÞ
	 
 ð6bÞ

where η′ ¼ dη=dZ;Hk ¼ diag½�βZ; βZ�. The Berry con-
nections Λ(k) and Λ(η) defined in the synthetic 3D space

are 2 × 2 matrices with non-zero elements given by ΛðkÞ
12 ¼

ihψ1j∂kψ2i and ΛðηÞ
12 ¼ ihψ1j∂ηψ2i. In Eq. 6b, �h i refers to

the state average, e.g., ΛðkÞ� � ¼ ρþΛðkÞρ. The right-hand
side of Eq. 6b consists of four velocity terms. The first
term is the average group velocity. The second term is the
anomalous velocity1, which is proportional to the Berry

curvature ΩðkηÞ ¼ i½ΛðkÞΛðηÞ � ΛðηÞΛðkÞ� in the synthetic

space [Ω
ðkyηÞ
11 ¼ Ω1 in Eq. 2a and ΩðkxηÞ

11 ¼ �Ω2;Ω
ðkxkyÞ
11 ¼

Ω3 in Eq. 2b]. Close to the Weyl points in the synthetic
space studied here, this anomalous velocity is perpendi-
cular to the incident plane and therefore leads to the
photonic Hall effect. The third term V PT ¼
XB

0 � XA
0

� �
ΞðkÞh i is the second term in Eq. 5. Because

lattices A and B correspond to the two different
pseudospin states in the honeycomb system, this velocity
is therefore named the pseudospin transition velocity
(PTV). The fourth term corresponds to the contribution
from the gradient of Berry connections Λ(k) in Z. Another
contribution to the motion comes from the displacement

ΛðkÞ� �
on the left-hand side of the equation. The

displacement induced by the non-Abelian Berry connec-
tion (with nonvanishing off-diagonal elements) plays an
essential role in generating the ZB effect, where the
optical beam features a trembling motion around its mean
trajectory, which is the photonic analogue of the
behaviour of a free-electron wave packet described by
the Dirac equation35–37. Note that although the Berry

connection Λ(k), the Berry curvature Ω(kη) and the average
group velocity ∂kHk are individually gauge dependent,
their overall contribution in Eq. 6b is gauge independent.
Thus, the centre-of-energy velocity is non-Abelian gauge
invariant. During the adiabatic evolution, off-diagonal
elements of the Berry connection with nondegenerate
modes are usually negligible. An non-Abelian Berry
connection only appears in the synthetic space with
degenerate or near degenerate states, such as in the
vicinity of a Weyl point.

To look into the dependence of ZB motion over the
detailed form of the band structure, we consider a rod
array with a uniform radius of rods along the propagation
direction of light, that is η′= 0. A simple expression of the
centre-of-energy position38 can obtained from Eq. 6b

XCk ¼ b�1b2 ei2βZ Z0�Zð Þ � 1
� �

Λ
ðkÞ
12 þ c:c:

þ b2j j2� b1j j2� �
∂kβZð Þ Z � Z0ð Þ

ð7Þ

where Λ
ðkÞ
12 ¼ ΛðkÞ

12 � eyaSðkÞ=ð2
ffiffiffi
3

p
βZÞ, and c.c. denotes

the complex conjugate. Equation 7 shows that the ZB
motion (first term on the right-hand side) can occur at a
frequency equal to the band gap 2βz when the incident
wave is in the superposed state. It is worth noting that
the ZB motion is proportional to the complex vector Λ

ðkÞ
12

[≈ΛðkÞ
12 in the vicinity of K point because S(K)= 0], which

directly displays the trajectory of the ZB motion projected
onto the x−y plane. Figure 2 shows that the ZB motion
depends on both the momentum relative to K point and
the width of the band gap. In the case that the band gap
closes (η= 0, Fig. 2b), the ZB motion is linear, with azi-
muthally oriented linear motion relative to the K point
(Fig. 2f). Exactly at the K point, the ZB disappears due to
the degeneracies of the two pseudospin eigenstates.
Interestingly, for non-zero η (Fig. 2a, c, d), the ZB motion
is elliptical, having an increasing amplitude and a more
circular trajectory when the momentum is closer to the K
point (Fig. 2e, g, h). Importantly, the direction of the
motion (clockwise or counter-clockwise) depends on the
sign of η. Away from the Weyl point (double degenerate)
when increasing the parameter η or the distance from the
K point, the amplitude of the ZB motion decreases
because the non-Abelian Berry connection decreases with
the widened band gap.

Next, we consider a variation of the radii of rods along
the propagation direction, with a linear dependence ƞ=
0.23Z. For a Bloch wave in the lower-energy state with
wave vector k= 0.95K at the incident point Z0=−3, Fig.
3a shows the evolution of the two mode coefficients
during the propagation (Eq. 6a). Close to the location of
the Weyl point (Z= 0) where two eigenmodes are nearly
degenerate, the two coefficients experience rapid changes,
and the magnitude of the non-Abelian Berry connection
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Λ(η) is at its maximum. The coefficient of the upper-
energy state (b2) significantly increases and becomes
greater than that of lower-energy state (b1). When Z is
greater than 2, the Bloch wave turns into a superposed
state with the two relatively stable mode coefficients.
Figure 3b shows the evolution of centre-of-energy shift in
the y direction (Hall shift) induced by the displacement
hΛðkÞi, the anomalous velocity, and the combined con-
tribution of hΛðkÞi, the anomalous velocity, and VPT,
respectively. The combined contribution (the last one)
agrees well with the exact Hall shift calculated using Eq.
6b. It follows that the ZB motion and the transverse tra-
jectory of the centre-of-energy of the Bloch wave are
mainly determined by hΛðkÞi and the anomalous velocity,
whereas VPT is relatively small. Away from the Weyl point
when Z is greater than 3, the anomalous velocity becomes
very small due to the nearly vanishing Berry curvature.
Similar with the array having a uniform radius in Fig. 2,
the motion of the Bloch wave in the real space exhibits a
spiral trajectory but has a decreased diameter during the
propagation away from the Weyl point (Fig. 3c). On the
other hand, a Bloch wave in the lower-energy state with a
wave vector k= 0.8K (which is relatively far away from
the location of the Weyl point), stays mainly in the low-
energy state with a very small upper-energy state coeffi-
cient during the propagation (Fig. 3d). This is due to the
nearly vanishing Berry connection and Berry curvature
(Fig. 1c). The Hall shift induced by the displacement
hΛðkÞi is approximately zero. Interestingly, the pseudospin
transition velocity VPT plays a leading role in the Hall shift

(Fig. 3e). A small wiggling feature at a large Z is a result of
the contribution by VPT and is shown in Fig. 3f.
Furthermore, we investigate the behaviour of the output

waves when a Bloch wave is incident onto the rod array
with varying in-plane wave vectors in the x direction. Here
the y-direction centre-of-energy shift corresponds to the
Hall shift. The Z coordinate of the input and output
interfaces are fixed at −3 and 12, respectively, which
guarantees that the Bloch wave will pass through the
location of the Weyl point (Z= 0) during its propagation.
As the Hall shift depends on the initial states, we studied
the momentum dependence for two different initial states:
the lower-energy state and the pseudospin Sz= 0 state
(equal mixing between sub-lattices A and B). For an
incident Bloch wave in the lower-energy state, only when
the wave vector is in the vicinity of the K point, it can be
converted into a combination of states at the output facet
(Fig. 4a) due to the effect of the non-Abelian Berry con-
nection. However, when the incident Bloch wave with
wave vector exactly matching the K point, its energy is
only located at the sub-lattice B during the propagation
due to the conservation of the z component of the
pseudospins. As a result, x- and y-directional shifts of its
centre of energy are zero (Fig. 4b, c). In the vicinity of the
K point, the Hall shift (Fig. 4c) displays a Fano-like line
shape. On the other hand, for an incident Bloch wave in
the pseudospin Sz= 0 state, the mode coefficient and the
lateral shifts of the beam exhibit quite different line shapes
from that of the lower-energy initial state (Fig. 4a–c) in
the vicinity of the K point, as shown in Fig. 4d–f. A clear
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enhancement of the Hall shift at the K point is evident in
Fig. 4f. Since the Hall shift in our system originates from
the pseudospin−orbit interactions (Eq. 1), different
pseudospins lead to different wave motion.

Discussion
To confirm the above results, we simulate the propa-

gation of Gaussian beam in the rod array (for details, see
Supplementary information Note 4). A hexagonal array
(Fig. 1a) with 50 rods arranged on each side (14,554 rods
in total) is used in the calculation. An incident Gaussian
beam with a centre of energy X0, central wave vector kC,
and beam waist radius W is selected to be in the lower-
energy state of the Hamiltonian H(kC, η(Z0)) at the inci-
dent position. We calculate the centre-of-energy shifts
and 3D trajectories of two Gaussian beams with para-
meters (X0, kC, W) equal to (0, 0.8K, 50/|K|) and (0,
0.95K, 50/|K|), and find that both trajectories agree well
with those of the Bloch wave obtained by solving Eqs. 6a
and 6b, as detailed in the Supplementary information.
Thus, the propagation of Gaussian beams with relatively
large waist radii are well described by Bloch waves.

In conclusion, we have proposed and demonstrated that
a coupled rod array arranged in a honeycomb lattice with
variant radii possesses photonic Weyl points in a 3D
synthetic space, which become Dirac points when pro-
jected down to a 2D momentum space. The advantage of
our system is obvious for probing the Berry phase effects
that arise fromWeyl points. Due to the presence of a local
Berry curvature in the synthetic space, the wave packets
experience an anomalous velocity in the vicinity of Weyl
points, which leads to an enhanced Hall effect. Further-
more, because the eigenstates of the system at the Weyl
point are double-degenerate, a non-Abelian Berry con-
nection appears in the vicinity of the Weyl point, which
leads to a helical ZB effect. Therefore, our system provides
a powerful platform for studying the effects of the Berry
phase on the dynamics of photonic wave packets.

Materials and methods
We discuss the practical realization of the rod array

necessary to reproduce the above findings. Similar to the
reported photonic graphene analogues fabricated via
femtosecond direct laser writing in fused silica17,39, we
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select the refractive index of the rods Δn= 2 × 10−4

greater than the silica background. At a wavelength of
488 nm, the radii R of rods in sub-lattice A (B) linearly
increase (decrease) from 3.5 μm (4.5 μm) to 6 μm (2 μm)
in z direction at the very small ratio ΔR/Δ Z= 0.5 × 10−4,
which corresponds to (βA− βB)/2 increasing from −2 to
7 cm−1. Thus, the total length of the silica rods array is
approximately 5 cm. Furthermore, with the lattice con-
stant a equal to 21 μm, the averaged effective coupling
coefficient κ is approximately 2.9 cm−1 (for details, see
Supplementary information Note 5). It is worth noting
that the incident Bloch wave with the pseudospin Sz= 0 is
equivalent to an incident Gaussian wave. So, by gradually
varying the incident angle of the Gaussian beam, we can
measure the relative displacements between the centres of
the input and output beams using a quadrant detector8.
Furthermore, the helical ZB can be observed by measur-
ing the centre-of-energy displacement of the output beam
through rod arrays of different lengths.
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