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Metal and dielectric have long been thought as two different
states of matter possessing highly contrasting electric and optical
properties. A metal is a material highly reflective to electromag-
netic waves for frequencies up to the optical region. In contrast,
a dielectric is transparent to electromagnetic waves. These two
different classical electrodynamic properties are distinguished by
different signs of the real part of permittivity: The metal has
a negative sign while the dielectric has a positive one. Here,
we propose a different topological understanding of metal and
dielectric. By considering metal and dielectric as just two limiting
cases of a periodic metal–dielectric layered metamaterial, from
which a metal can continuously transform into a dielectric by
varying the metal filling ratio from 1 to 0, we further demon-
strate the abrupt change of a topological invariant at a certain
point during this transition, classifying the metamaterials into
metallic state and dielectric state. The topological phase transi-
tion from the metallic state to the dielectric state occurs when
the filling ratio is one-half. These two states generalize our previ-
ous understanding of metal and dielectric: The metamaterial with
metal filling ratio larger/smaller than one-half is named as the
“generalized metal/dielectric.” Interestingly, the surface plasmon
polariton (SPP) at a metal/dielectric interface can be understood
as the limiting case of a topological edge state.
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From classical electrodynamics, metal and dielectric are dis-
tinguished by permittivity with different signs. This basic

understanding forms the basis of plasmonics (1–4). In the field
of metamaterials, artificial properties are created by manipulat-
ing the subwavelength structure mixing metals and dielectrics to
give novel properties such as negative refraction (5, 6). One of
the simplest forms of metamaterials consists of alternate layers
of metal and dielectric, which have shown interesting proper-
ties such as hyperbolicity in dispersion and have been exploited
for superimaging applications (7). The properties of the lay-
ered metamaterial critically depend on the proportion of metal.
Gradually varying the proportion of metal naturally leads to a
continuous transition from solid metal to solid dielectric. At
some ratio of metal to dielectric it is expected that there is
an abrupt transition from metallic to dielectric behavior. The
interface between metal and dielectric supports surface plasmon
polaritons (SPPs) (4, 8, 9) and this is also true of interfaces
between metallic and dielectric metamaterials.

Topology, a mathematical concept (10), has recently been an
intensively researched topic in the field of photonics (11–17).
A topological invariant is a quantized fingerprint that differ-
entiates different materials systems, where the fascinating edge
state exists at the interface between two bulk materials with dif-
ferent topological invariants (18–20). The topological invariant
is like the sign of dielectric function that distinguishes metal
and dielectric. Therefore, it is interesting to see whether metal
and dielectric can be characterized with different topological
invariants.

Here we generalize our previous understanding of metal and
dielectric. These two matters are the limiting cases of a metal–
dielectric layered metamaterial, where a pure metal has a metal

filling ratio fm =1 while a dielectric has fm =0. And the metal
can continuously transform to a pure dielectric by varying fm
from 1 to 0. A topological invariant, the Zak phase (21, 22),
is found to exist in this process and utilized to categorize the
metamaterials with metallic state (fm > 0.5) and dielectric state
(fm < 0.5). This classification generalizes the concept of metal
to the layered metamaterial with fm > 0.5, while the scope of
the dielectric has been extended to the system with fm < 0.5.
The understanding of these generalized metallic and dielectric
metamaterials gives the SPPs at the metal/dielectric interface an
additional physical meaning: the limiting case of a topological
edge state.

Results and Discussion
Continuous Transition from Metal to Dielectric. Fig. 1 illustrates
how a metal continuously transitions into a dielectric, where the
cyan region corresponds to the metal and the white region to the
dielectric. Starting from a pure metal, we can deliberately cut it
into unit cells consisting of many slabs with a period d . After
that, we gradually decrease the filling ratio of the metal fm (a
pure metal has a filling ratio 1). When continuously decreasing
the filling ratio fm , the pure metal first transitions into a metal–
dielectric layered system that has more metal (fm > 0.5). By
further reducing fm , we arrive at a critical point where the ratio of
the metal is the same as that of the dielectric; i.e., fm =0.5. After
this point, continuous decreasing of the metal filling ratio leads
to the dielectric-rich case (fm < 0.5). In the limit, the metal filling
ratio fm goes down to 0, which corresponds to a pure dielectric.

Significance

We extend the concept of metals and dielectrics to the “gen-
eralized metal/dielectric” by treating a pure metal or dielectric
as the limiting case of a metal–dielectric layered metama-
terial. Specifically, the metamaterial with metal filling ratio
larger than one-half shares the same topological invariant as a
pure metal and thus exhibits some metallic behaviors. In con-
trast, the dielectric-rich metamaterial and a pure dielectric are
topologically equivalent and display dielectric properties. The
topological edge state exists between the generalized metal
and dielectric, giving the surface plasmon polariton (SPP) an
additional physical meaning: the limiting case of a topological
edge state.
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metal dielectric
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Fig. 1. Schematic for the continuous transition from metal to dielectric.
By continuously decreasing the metal filling ratio fm, the pure metal first
transforms into a metal-rich case with fm > 0.5. Further decreasing the fill-
ing ratio, we arrive at the half-way point fm = 0.5. After that, the system
enters into the dielectric-rich case, with a filling ratio fm < 0.5. In the limit
of fm→ 0, the system becomes a pure dielectric. Note that the cyan region
corresponds to the metal and the white region to the dielectric.

This kind of transition from a pure metal to a pure dielec-
tric links metal and dielectric in a continuous manner so that
metal and dielectric can be understood as two limiting states
of a metal–dielectric system. In Topological Transition and Zak
Phase, we study the topological properties during this continuous
transition.

Topological Transition and Zak Phase. To characterize the topolog-
ical property of this periodic system, the Zak phase is used as a
topological invariant during this continuous transition. Note that
the unit cell has an inversion symmetry such that the Zak phase
of this one-dimensional periodic system can be quantized as π or
0 (21). This requirement of an inversion symmetry can be real-
ized by choosing the center of the metal or the dielectric as the

unit cell center. Here we put the metal in the cell center with-
out loss of generality. Also, a Drude model is used for the metal

(εm =1− ω2
p

ω2 with ωp =8.95 eV/~) (23), while vacuum (εd =1)
is used for the dielectric.

To obtain the Zak phase of this periodic slab system as it
transforms from metal to dielectric, we need first to calculate
the corresponding band structure. For this one-dimensional pho-
tonic crystal, we have a Bloch k-vector K in the x direction and
a continuous k-vector ky in the y direction. The dispersion rela-
tion of this periodic slab system can be obtained from the transfer
matrix method (24) and is written as (SI Appendix)

2 cos(Kd)= 2 cosh(fm |ky |d) cosh((1− fm)|ky |d)
+ (ε+1/ε) sinh(fm |ky |d) sinh((1− fm)|ky |d),

[1]

which determines the dispersion surface ω(ky ,K ).
The band structure relating frequency ω and K is calcu-

lated and summarized in Fig. 2. Note that the band structure in
Fig. 2 is a cross-section of two dispersion surfaces, where the k-
vector ky is chosen randomly as 1/d . Then, the Zak phase of
each band can be calculated by integration in the first Brillouin
zone −0.5<Kd/2π< 0.5 (20, 21, 25). We can also derive the
Zak phase by analyzing the symmetry of the eigenmodes at the
center and edge of the Brillouin zone (K =0 and K =±π/d)
(21, 26) (SI Appendix). For a given band, if the symmetries
of the eigenmode at K =0 and K =±π/d are different, the
Zak phase of this band is quantized as π. On the contrary, the
band possesses a Zak phase 0 if the symmetries at K =0 and
K =±π/d are the same. Following these procedures, we cal-
culate the Zak phase for all of the bands, which are labeled in
Fig. 2 A–E.

By calculating the Zak phase, we can study how this topologi-
cal invariant evolves when a metal continuously transforms into a
dielectric. Starting from the nearly pure-metal case (fm =0.999)
in Fig. 2A, both lower and upper bands have a Zak phase
π. When decreasing the metal filling ratio to 0.9, we observe
that the band gap becomes smaller, but the Zak phase remains

Zak Phase Zak PhasePhase transition

continuous
transition

A

B C D

E

Fig. 2. Evolution of band structure and Zak phase on continuously changing the metal filling ratio fm. (A) For a nearly pure metal case (fm = 0.999), two
bands with Zak phase π are separated with a gap. (B) On reducing the filling ratio to 0.9, the gap gets smaller but the Zak phase remains unchanged.
(C) The band gap closes at singular point fm = 0.5 where a topological phase transition happens. (D) The band gap reopens after passing through
the singular point, and the Zak phase becomes 0 (fm = 0.1). (E) The band gap becomes larger when further decreasing fm to 0.001, while the Zak phase
stays at 0.
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Fig. 3. Edge state for a realistic plasmonic system. (A) The system consists of three finite photonic crystals PC1, PC2, and PC3, where PC2 has a filling ratio
fm > 0.5 while PC1 and PC3 have a complementary filling ratio 1− fm. (B) Dispersion relation of the edge state with different filling ratios. (C) Decay length
of the edge state as a function of the filling ratio fm. (D) Mode profile of excited edge states with different fm, which is numerically calculated in Comsol
with a damping Γ = 65.8 meV/~ in the metal.

unchanged as π. As a topological invariant, the Zak phase is pre-
served during this continuous transition until the filling ratio fm
decreases to 0.5. At the half-filling ratio, when fm =0.5, the band
gap closes at surface plasmon frequency ωsp =ωp/

√
1+ εd . This

is a transition point after which the Zak phase changes from π
to 0 abruptly. If we keep decreasing the filling ratio fm , the Zak
phase stays as 0 until we reach a pure dielectric. In particular, we
observe that when fm→ 0 or fm→ 1, both lower and upper bands
become flat, where the lower band approaches ω=0 while the
upper band approaches ω=ωp , forming a wide gap in between.
Note that we have used quasistatic approximation in the band
structure calculation, where only the electrostatic mode is con-
sidered, and the electromagnetic mode is neglected. To sum up,
we have given metal and dielectric a topological property: The
metal (fm =1) is topologically equivalent to a periodic slab sys-
tem with fm > 0.5 as they share the same Zak phase π, while the
dielectric (fm =0) is topologically equivalent to a periodic slab
system with fm < 0.5 whose Zak phase is 0. This is the main result
of this paper.

In the above calculation of the Zak phase, the metal/dielectric
considered is lossless, i.e., a Hermitian system (27). When the
loss is present, especially in the metal, we end up with a non-
Hermitian system. For a non-Hermitian system, both left and

right eigenstates should be considered, which are generally not
equal (28). However, we demonstrate these two eigenstates are
the same in our system and further show that the Zak phase
of our metal–dielectric slab system is still quantized as π or
0 in the quasistatic limit despite non-Hermiticity (SI Appendix).
This means the topological properties of our system are robust
to the loss.

Topological Edge State. From the phase transition in Fig. 2, we
learn that two periodic slab systems with a metal filling ratio
fm > 0.5 and fm < 0.5 are characterized with different topolog-
ical invariants. According to the bulk-edge correspondence (12,
13, 20), a topological edge state is expected to exist in the energy
gap at the interface between these two layered systems. To inves-
tigate this topological edge state, we study a realistic system
shown in Fig. 3A, which consists of three photonic crystals: the
left one with Zak phase 0 (photonic crystal [PC]1), the middle
one with Zak phase π (PC2), and the right one with Zak phase 0
(PC3). Each of these bulk materials is composed of five unit cells
and they form two interfaces of interest, marked with red dashed
lines. The dispersion relation of the edge state localized on these
two interfaces can be calculated for different filling ratios shown
in Fig. 3B, where the filling ratio of PC2 is chosen as fm while the
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two crystals on either side, PC1 and PC3, are both complemen-
tary to PC2 with filling ratio 1− fm . On increasing fm , the filling
ratio of PC2 increases, while that of PC1 and PC3 decreases. In
the limit of fm→ 1, the PC1/PC2/PC3 system in Fig. 3A reduces
to a single metal slab surrounded by a dielectric. By calculating
the dispersion relation for the edge state, one observes that there
exists a gapless edge state within the gap of corresponding bulk
materials (see SI Appendix for the projected bulk band of dif-
ferent filling ratio fm). Comparing the dispersion relation of the
PC1/PC2/PC3 system with that of a metal slab having the same
thickness as the bulk PC2, we can observe that the edge-state dis-
persion relation asymptotically approaches the SPP dispersion.
Therefore, we conclude that the SPP is a limiting case of the
topological edge state. This is another important result of this
paper.

Finally, we study the mode configuration for different filling
ratios with finite-element solver Comsol Multiphysics. By posi-
tioning a dipole source at the two interfaces, the edge state can
be excited, as shown in Fig. 3D. By comparing the field profile for
fm =0.6, fm =0.8, and fm =1, we can observe the mode getting
more and more localized and enhanced at the interface when
increasing fm . A filling ratio of fm =1 corresponds to the single
metal slab case and gives the smallest decay length of the edge
state. When the filling ratio fm is decreased, the decay length of
the edge state becomes larger until fm→ 0.5, where the decay
length diverges, and the edge state becomes a bulk mode. This
divergence behavior of the edge state can also be understood
with effective medium theory, from which the metal–dielectric
photonic crystal can be effectively modeled as an anisotropic
material described as (6, 29)

ε‖ = fmεm +(1− fm)εd

ε⊥ =
εmεd

fmεd +(1− fm)εm
,

[2]

where ε‖ and ε⊥ correspond to the effective permittivity parallel
and normal to the metal–dielectric interface, respectively. For an
edge state with a given ky , the corresponding decay length inside

the anisotropic medium is 1/
√

ε‖
ε⊥

k2
y (SI Appendix). This decay

length increases when the filling ratio decreases and eventually
diverges when fm→ 0.5 (Fig. 3C).

Conclusion
We assign a topological classification to metals and dielectrics
by considering metal and dielectric as two limiting cases of a
one-dimensional photonic crystal consisting of alternating lay-
ers of metal and dielectric slabs. The Zak phase of the system
undergoes an abrupt transition between 0 and 1 at the critical
filling ratio fm =0.5. This topological transition offers us a dif-
ferent understanding of the electromagnetic properties of metals
and dielectrics: A metal is topologically equivalent to the lay-
ered metamaterial with fm > 0.5 while a dielectric is topologically
equivalent to this system with fm < 0.5. Finally, the SPP can
be understood as the limiting case of a more generalized edge
state at the interface between metallic and dielectric metamateri-
als. Our increased understanding of metals and dielectrics leads
to the concept of “generalized metal” and “generalized dielec-
tric,” which gives the material design a much higher degree of
freedom.

Materials and Methods
For a detailed description of methods, see SI Appendix.

Calculation of Dispersion Relation. The transfer matrix method is used in
the calculation of band dispersion for periodic layered metamaterials. We
choose magnetic field Hz as the eigenfield, which in the periodic slab sys-
tem follows the Bloch condition. By using the Bloch theorem in the transfer
matrix method, we obtain the band dispersion of the metal–dielectric lay-
ered metamaterial in Eq. 1. Similarly, we calculate the transfer matrix for the
whole PC1/PC2/PC3 system in Fig. 3, from which the edge-state dispersion
relation can be obtained.

Calculation of Zak Phase. The Zak phase of a band is calculated by analyzing
the symmetry of eigenfield Hz at the center and the edge of the first Bril-
louin zone, which is consistent with our numerical integration of the Berry
connection in the first Brillouin zone.

Data Availability. All of the data are included in this paper.
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