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We investigate the role of the effective range on the bulk viscosity of s- and p-wave Fermi gases. At
resonance, the presence of the effective range breaks the scale invariance of the system, and hence results in
a nonzero bulk viscosity. However, we show that the effective range plays a very different role in the two
cases. In the s-wave case, the role of the effective range is perturbative, and its contribution to the bulk
viscosity vanishes in the limit of zero effective range. On the other hand, the effective range in p-wave
Fermi gases leads to a nonzero bulk viscosity, even in the zero-range limit. We employ a general
diagrammatic approach to compute the bulk viscosity spectral function that includes the effects of the
effective range. We then compute the analytic expressions for the spectral function in the high temperature
limit, at low and high frequencies. We also derive the sum rules for the bulk viscosity spectral function for
both s- and p-wave gases.
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Introduction.—One of the most unique features of
ultracold atomic gases is their universality [1]. At low
energies, the details of the short-range interatomic potential
are irrelevant, and only a few low-energy scattering
parameters are needed to describe the low-energy proper-
ties of the system [2,3]. In the case of s-wave interactions, it
is known that the scattering length, a0, is the only relevant
low-energy parameter for the so-called broad Feshbach
resonance [4]. At resonance, when a0 ¼ �∞, the system
acquires scale symmetry, which imposes severe constraints
on the thermodynamic [5,6], and transport properties of the
system, the most amazing of which is the vanishing of the
bulk viscosity [7–10].
In actual dilute gas systems, however, a nonzero effective

range always exists which breaks the scale symmetry of the
system at resonance. A similar situation also arises in
neutron matter, where the presence of the effective range is
even more pronounced [11–13]. It is then natural to expect
that the thermodynamic and transport properties of these
systems will also depend on the effective range. To be
specific, let δlðkÞ be the phase shift for two colliding
particles with relative wave number, k, and angular
momentum, l, then [14]

k2lþ1 cot δlðkÞ ¼ −
1

al
− Rlk2 þ � � � : ð1Þ

We will refer to al as the scattering length, and Rl as the
effective range, noting that for p-wave scattering, a1 has
dimension of volume and R1 has dimension of wave
number. In actual experiments, a Feshbach resonance
allows one to tune the scattering length, al, while the

effective range, Rl, is approximately a constant. For any
given system, the effective range, Rl, will be determined by
the range of the inter-atomic interaction, r0. As a result,
Eq. (1) is only valid at low energies k ≪ r−10 . For the s
wave, this means that k ≪ R−1

0 while for the p wave,
k ≪ R1.
To see the effects of the effective range, let us consider,

for example, the binding energy of the two-body bound
state, Eb, close to threshold, when Rl is small. In the s-
wave case, Eb ¼ −ðℏ2=mÞð1=a20 − 2R0=a30Þ and tends to
the universal result −ℏ2=ðma20Þ when R0 → 0; the effect of
R0 is perturbative. On the other hand, for the p-wave case
[15,16], the existence of the shallow bound state depends
crucially on the effective range: Eb ¼ −ℏ2=ðma1R1Þ. It is
thus impossible to set R1 ¼ 0 while maintaining a finite
bound state energy. The role of the effective range on the
energetic properties of the many-body system has been
discussed for both s-wave [12,17–22] and p-wave cases
[23–27].
In this Letter, we investigate a natural extension of the

above studies: what is the role of the effective range on the
dynamics of s- and p-wave Fermi gases. In particular, we
discuss the role of the effective range in the transport
properties of both s- and p-wave Fermi gases. To our
knowledge such an investigation has not been conducted,
and a priori it is not obvious how the effective range will
alter the dynamics. To this end, we calculate the bulk
viscosity spectral function in the high temperature limit,
and investigate how it depends on the effective range,
particularly at resonance, i.e., when the scattering length is
infinite: a−1l ¼ 0. In this limit, the viscosity spectral
functions do not depend on al, and the role of the effective
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range is most transparent. If the effective range is an
irrelevant quantity in the low-energy limit, scale invariance
will be restored when one sets Rl to zero. As a result, the
bulk viscosity will necessarily vanish. However, if the
effective range is relevant in the low-energy limit, it will be
impossible to truly set the effective range to zero; the scale
symmetry will then remain broken, and there will be a finite
bulk viscosity.
General setup.—To describe both the resonant s- and p-

wave Fermi gases in a unified scheme, we use the following
two-channel Hamiltonian describing a system of fermions
with spin σ, and 2lþ 1 molecules interacting via the lth
partial wave channel (we set m ¼ ℏ ¼ 1):

Ĥl¼
X

k;σ

�
k2

2
−μ

�
ψ†
σðkÞψσðkÞ

þ
X

Q

Xl

m¼−l

�
Q2

4
þν−2μ

�
d†mðQÞdmðQÞ

þg
Xl

m¼−l

X

Q;k;σ

ffiffiffiffiffiffi
4π

V

r
kl

�
Yl;mðk̂Þd†mðQÞψσ

�
Q
2
þk

�
ψσ̄

�
Q
2
−k

�
þH:c:

�
: ð2Þ

ψσðkÞ is the field operator for the fermions with spin
projection σ and momentum k, while dmðQÞ is the field
operator for the molecules with an azimuthal quantum
number, m, and momentum Q. V is the volume of the
system, ν is the detuning of the molecular field, and g is the
fermion-molecular coupling. We also let μ be the chemical
potential, and Yl;mðk̂Þ is simply the ðl; mÞ-spherical
harmonic function. It is important to note that for s-wave
interactions we assume the fermions have two spin pro-
jections: σ ¼ −σ̄ ¼ 1=2, while for the p-wave interactions,
all the fermions have the same projection σ ¼ σ̄. Here we
have assumed that the scattering potential is isotropic in
space, and the coupling constants ν and g are independent
of the azimuthal quantum number, m. By examining the
two-body scattering of this model and comparing it to
Eq. (1), the bare coupling constants ν and g can be related to
the low-energy scattering parameters in the effective range
expansion. For the s-wave case, we have 1=ð4πa0Þ ¼
Λ=ð2π2Þ − ν=g2 and R0 ¼ 4π=g2, while for p-wave
interactions 1=ð2πa1Þ ¼ Λ3=ð3π2Þ − ν=g2 and R1=2π ¼
Λ=π2 þ 1=g2, where Λ is an ultraviolet cutoff. The two-
channel formulation has been successful in describing
various thermodynamic properties of both s-wave [1,17]
and p-wave gases [23,27,28].
Bulk viscosity with finite effective range.—With the

theory renormalized, we can now proceed to investigate
the bulk viscosity for both the s- and p-wave gases. Using
Kubo’s formalism, the bulk viscosity is defined via the
retarded correlation function of the stress-energy tensor [8,10]:

ζðωÞ ¼ Im½χRðωÞ�
9ω

; ð3Þ

χRðωÞ ¼ i
Z

∞

0

dte−iωth½Π̂ðtÞ; Π̂ð0Þ�i; ð4Þ

where the brackets denote the thermal average at temperature
T ¼ 1=β, and hΠ̂ðtÞi ¼ 3pðtÞV is the trace of the stress-
energy tensor at time t, and pðtÞ is the pressure. As discussed
in a recent work [29], this formula, as it stands, requires
modification since it neglects the contributions to the bulk
viscosity from pressure fluctuations. However, in the regimes
of interest to us here, we obtain the same results using Eqs. (3)
and (4). By employing a scaling analysis, one can show that
[30]

Π̂ðtÞ ¼ 2Ĥl þ
ð2lþ 1ÞĈalðtÞ

al
þ ð2l − 1ÞĈRl

ðtÞRl: ð5Þ

Here we have defined two thermodynamic contact operators
as the derivatives of the Hamiltonian with respect to the
scattering length and the effective range: Ĉal ¼ −∂Ĥ=∂a−1l
and ĈRl

ðtÞ ¼ −∂Ĥ=∂Rl. Explicitly, they are given by

ĈalðtÞ ¼
Xl

m¼−l

g2

4πAl

Z
dRd†mðR; tÞdmðR; tÞ ð6Þ

ĈRl
ðtÞ ¼

Xl

m¼−l

g2

4πAl

Z
dRd†mðR; tÞ

�
i∂t þ

∇2

4

�
dmðR; tÞ;

ð7Þ
where Al ¼ 1 − δl;1=2, is a symmetry factor that represents
the indistinguishable nature of the fermions when l ¼ 1. The
thermodynamic contacts represent the change in the energy
with respect to the scattering length, al, and the effective
range, Rl, respectively [31–34]. We note that in order to
obtain the current form of ĈRl

, we have integrated out the
fermionic degrees of freedom using the Heisenberg equation
of motion for the molecular field.
After substituting Eq. (5) into Eq. (4), one can see that

the calculation of the bulk viscosity reduces to the
evaluation of three retarded correlators [35]:

χRa;aðωÞ ¼ i
ð2lþ 1Þ2

a2l

Z
∞

0

dte−iωth½ĈalðtÞ; Ĉalð0Þ�i ð8Þ

χRa;RðωÞ¼ i
ð2l−1Þð2lþ1ÞRl

al

Z
∞

0

dte−iωth½ĈalðtÞ;ĈRl
ð0Þ�i
ð9Þ

χRR;RðωÞ ¼ ið2l − 1Þ2R2
l

Z
∞

0

dte−iωth½ĈRl
ðtÞ; ĈRl

ð0Þ�i:

ð10Þ

PHYSICAL REVIEW LETTERS 125, 240402 (2020)

240402-2



It is possible to evaluate the correlation functions in
Eqs. (8)–(10) diagrammatically, as depicted in Fig. 1. In
this scheme, the molecular propagator is dressed by the
process of dissociation and association of two fermions. We
neglect further interactions. For the bulk viscosity, these
interactions will appear in four-body, or molecule-molecule
scattering, processes. In the high temperature limit (see

below), these terms are higher order in the fugacity
expansion, and are safely ignored.
After evaluating the diagrams shown in Fig. 1 in

Matsubara space and by performing the standard analytical
continuation, one can then show that the bulk viscosity in
the normal phase is explicitly given by ζlðωÞ ¼ ζa;aðωÞ þ
2ζa;RðωÞ þ ζR;RðωÞ with

ζa;aðωÞ ¼
ð2lþ 1Þ2
9a2lV

X

m;Q

Z
∞

−∞

dx
π
Im

�
g2DðQ; xþ iδÞ

4πAl

�
Im

�
g2DðQ; xþ ωþ iδÞ

4πAl

�
fðx;ωÞ ð11Þ

ζa;RðωÞ ¼
ð2l−1Þð2lþ 1ÞRl

9alV

X

m;Q

Z
∞

−∞

dx
π
Im

�
g2DðQ; xþ iδÞ

4πAl

�
Im

�
g2DðQ; xþωþ iδÞ

4πAl

�
fðx;ωÞ

�
x−

Q2

4
þ 2μþω

2

�
ð12Þ

ζR;RðωÞ ¼
ð2l − 1Þ2R2

l

9V

X

m;Q

Z
∞

−∞

dx
π
Im

�
g2DðQ; xþ iδÞ

4πAl

�
Im

�
g2DðQ; xþ ωþ iδÞ

4πAl

�
fðx;ωÞ

�
x −

Q2

4
þ 2μþ ω

2

�
2

; ð13Þ

where fðx;ωÞ ¼ ω−1½nBðxÞ − nBðxþ ωÞ� and nBðxÞ ¼
½expðβxÞ − 1�−1 is the Bose-Einstein distribution function.
DðQ; xÞ is the molecular propagator with momentum Q
and frequency x, evaluated in the presence of a thermal
fermionic background [26]. Equations (11)–(13) provide
the general expressions for the bulk viscosity for both s-
and p-wave Fermi gases while including the effective
range.
In the high temperature limit, i.e., for small fugacities,

z ¼ eβμ ≪ 1, it is possible to neglect the presence of the
thermal fermionic background, and use the two-body
results. In this limit, Eq. (11) for s-wave interactions is
consistent with the results obtained in Refs. [36–38]. A
similar expression was also obtained in Ref. [39] for one-
dimensional Fermi gases with three-body s-wave inter-
actions. In addition to this term, the presence of the

effective range has generated two additional contributions
to the bulk viscosity. We note that the bulk viscosity
calculated in a similar limit is also of interest in nuclear
physics in relation to the binary neutron star merger, and its
subsequent viscous damping [40]. Similarly, the high
temperature expansion is relevant to hot neutron matter,
and is discussed in Refs [41,42].
At high frequencies, the bulk viscosity spectral function

exhibits power law tails, while the magnitude of the tail is
proportional to the contacts. In practice, the high frequency
limit is determined by setting the frequency much larger
than the bound state energy: ω ≫ a−20 for the s wave and
ω ≫ 1=ða1R1Þ for the p wave, but much smaller than the
scale set by the effective range: ω ≪ R−2

0 for s-wave
interactions and ω ≪ R2

1 for p-wave interactions. For
frequencies larger than the scale set by the effective range,
our effective field theory is inapplicable, as mentioned
previously. Evaluating Eqs. (11)–(13) at high frequencies,
and in the high temperature limit, yields the following
divergent terms:

ζd0ðωÞ ≈
ffiffiffiffi
ω

p
R2
0

36V

�
Ca0

�
1 −

1

a20ω
−

4

a0R0ω

�
þ CR0

ω

�
; ð14Þ

ζd1ðωÞ ≈
ffiffiffiffi
ω

p
36V

�
Ca1

�
1þ 10

a1R1ω

�
þ 7CR1

2ω

�
; ð15Þ

for the s wave (ζd0), and the p wave (ζd1), respectively. Here
we note that the high temperature limit also requires
1=a20 ≪ kBT ≪ R−2

0 , for s-wave gases, while for p-wave
gases: 1=ða1R1Þ ≪ kBT ≪ R2

1. We also define Cal as the
thermal expectation value of the contact operator:

(a)

(c)(b)

FIG. 1. Diagrammatic calculation for contact-contact correla-
tion functions. (a) The full molecular propagator (solid double
line) is given by the bare molecular propagator (dashed double
line) dressed by fermionic pair propagation (single solid line).
(b) The diagram for the scattering amplitude of two fermions.
(c) The diagram for the calculation of bulk viscosity. Each vertex
(red) represents an insertion of a contact operator Ĉal or ĈRl

, see
Eqs. (8)–(10).
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Cal ¼ hĈali. Equations (14), (15) represent the divergent
high-frequency terms that enter the viscosity sum rule
(discussed below), and arise solely from the contributions
due to the effective range, ζR;RðωÞ and ζa;RðωÞ. This is one
of the main results of this work.
Upon examining Eqs. (14) and (15), it is possible to

understand the relevancy of the effective range in the s- and
p-wave cases. In the case of s-wave interactions, one can
safely set the effective range R0 → 0 while still being
consistent with the requirement: ω ≪ R−2

0 . Since the
divergent term ζd0ðωÞ is proportional to R2

0, the high
frequency tails simply vanish when R0 → 0. From
Eq. (11), one reproduces the standard result that

ζ0ðω; R0 → 0Þ ¼ 1

9a20

1

ω3=2

Ca0

V
: ð16Þ

This expression is equivalent to the single channel model
results obtained previously [10,36–38]. This result rein-
forces the common procedure of taking the zero-range limit
for s-wave interactions. In the limit of a small, but finite,
effective range, R0, the correction to the zero-range bulk
viscosity is perturbative in nature, and can be ignored. On
the other hand, the role of the effective range, R0, is most
apparent at unitarity, when a0 → �∞. In this limit, the
presence of the effective range breaks the scale invariance
of the unitary Fermi gas, and leads to a finite bulk viscosity.
The bulk viscosity will entirely be due to ζR;RðωÞ in
Eq. (13), and yields the following divergent term:

ζd0ðω; a0 → �∞Þ ¼ R2
0Ca0

36V

ffiffiffiffi
ω

p
: ð17Þ

At resonance, the leading term in the contact Ca0
is a constant, independent of R0, and therefore
ζd0ðω; a0 → �∞Þ ∝ R2

0.
In the case of p-wave interactions, it is clear that we

cannot take the zero-range limit, R1 → 0, while maintain-
ing the high frequency regime: 1=ða1R1Þ ≪ ω ≪ R2

1. In
practice, R1 is finite, and a well-defined high frequency
limit can always be achieved close to resonance. For
instance, 40K has R1 ≈ 25kF, which yields a low-energy
window: 0 ≪ ω ≪ 600ϵF. In this regime, the high fre-
quency tails of ζ1ðωÞ will certainly be relevant in actual
experiments. At high frequencies, one finds the same

ffiffiffiffi
ω

p
dependence, as in the s-wave case, with a coefficient
proportional to Ca1 :

ζd1ðω; a1 → �∞Þ ¼ Ca1

36V

ffiffiffiffi
ω

p
; ð18Þ

where the contact Ca1 ∝ R−1
1 , and so ζd1ðω; a1 →�∞Þ ∝ R−1

1 . This expression is divergent in the zero-range
limit, when R1 → 0, in contradistinction to the s-wave case.
As in the s-wave case, the presence of the p-wave effective
range breaks the scaling symmetry of the system, and

results in a nonzero bulk viscosity. However, its
effect is dominant in the zero-range limit for the
p-wave case.
The importance of the effective range can also be seen in

the low-frequency limit. Here we report the bulk viscosities
strictly at resonance when a−1l ¼ 0. The relevant high
temperature limit for the s-wave case is given by:
1=a20 ≪ kBT ≪ R−2

0 , and for p-wave case: 1=ða1R1Þ ≪
kBT ≪ R2

1. One can again see that in the s-wave case, the
high temperature limit can be safely taken in the zero range
limit, while it is impossible for the p-wave case. From
Eqs. (11)–(13), one obtains

ζ0ðω → 0Þ ≈ 25=2z2

9

R2
0

λ5T
∝ T5=2R2

0; ð19Þ

ζ1ðω → 0Þ ≈ 25=2z2

3

1

R2
1λ

5
T

∝
T5=2

R2
1

; ð20Þ

where z ¼ expðβμÞ is the fugacity, and λT ¼ ffiffiffiffiffiffiffiffi
2πβ

p
is the

thermal wavelength [43]. Although Eqs. (19) and (20) look
similar, we note that due to the physical requirement of low
energies, the effective range has opposite roles in the s- and
p-wave case. When one takes the zero range limit, the bulk
viscosity is vanishingly small for s-wave gases, but
diverges for p-wave gases.
Sum rules for bulk viscosity spectral function.—Finally,

we report the sum rules for the bulk viscosity spectral
function. As noted from Eqs. (14) and (15), the spectral
function is divergent. In order to have a well-defined sum
rule, it is necessary to remove these divergent pieces, which
we have labeled as ζdlðωÞ. Once that is done, it is possible to
use the Kramers-Kronig relations to show that ζlðωÞ
satisfies the following sum rules:

Z
∞

−∞

dω
π

½ζlðωÞ − ζdlðωÞ�

¼ −
1

9V

�
ð2lþ 1Þ2 ∂Cal

∂al þ ð2l − 1Þ2 ∂CRl

∂R−1
l

þð2l − 1Þð2lþ 1Þ
�

1

alRl

∂Cal

∂R−1
l

þ alRl
∂CRl

∂al
��

: ð21Þ

This relation generalizes the already well-known sum rule
for the s-wave Fermi gases derived in Refs. [10,36–38] to
include the presence of the effective range, as well as being
applicable for p-wave gases.
Conclusions.—In this work we illustrated how the bulk

viscosity spectral function depends on the effective range
for both s- and p-wave Fermi gases. We focused on the case
of resonantly interacting Fermi gases in the high-temper-
ature limit, where the effects of the effective-range are most
transparent. We show that the presence of the effective
range introduces a second thermodynamic contact, and as a
result, new terms to the bulk viscosity. For s-wave Fermi
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gases, the effective range is an irrelevant parameter; the
low-energy and zero-range limits can be simultaneously
taken. The bulk viscosity will then vanish alongside the
effective range at resonance. While for p-wave gases the
situation is different, the effective range is a relevant
parameter; the low-energy and zero-range limits can not
be simultaneously taken. Therefore, even at resonance, the
presence of the effective range will lead to a finite bulk
viscosity. This work clearly reinforces the traditional
prescription of taking the zero-range limit for s-wave gases,
for both the energetics and transport dynamics, and shows
how the p-wave gas is fundamentally different.
In principle, one could extend this calculation to gases

interacting via higher partial waves, and to arbitrary order
in the effective range expansion. However, the calculation
becomes increasingly complex, as one needs to consider
the correlations between the different contact operators. A
simple scaling analysis shows that for a given partial wave,
l, the first lþ 1 terms in the effective range expansion are
relevant; with the higher order terms irrelevant. This scaling
analysis is consistent with the results obtained in this Letter.
Such physics could potentially be studied in atomic gases,
thanks to the discovery of higher partial-wave Feshbach
resonances [44–46].
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