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Generic far-away-from-equilibrium many-body dynamics involve entropy production and hence is thermo-
dynamically irreversible. Near quantum critical points, an emergent conformal symmetry can impose strong
constraints on entropy production rates and in some cases can completely forbid entropy production, which
usually occurs for systems that deviate from quantum critical points. In this article, we illustrate how the
vanishing entropy production near a quantum critical point results in reversible far-away-from-equilibrium
dynamics at finite temperatures that is otherwise irreversible. Away from the quantum critical point, the quantum
dynamics is damped, and our analysis directly relates the thermalization timescale to the hydrodynamic viscosity
near quantum critical points with the dynamical critical exponent z = 2. We demonstrate how both controllable
reversible and irreversible dynamics can be potentially studied in cold gas experiments using Feshbach reso-
nances.
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I. INTRODUCTION

In a generic many-body system, a net entropy production
usually occurs in far-away-from-equilibrium dynamics, lead-
ing to irreversible processes. A well-known example is the
free expansion of a weakly interacting gas inside a box, when
the gas is originally confined in, say, the right half of the box.
This energy-conserving process is irreversible since the total
entropy increases by N ln 2, where N (→ ∞) is the number
of particles. The entropy production simply reflects the ex-
ponentially larger number of microstates at a given energy
associated with the whole box compared to half of the box;
there are 2N times more microstates in the whole box. The
exponential increase of microstates results in an exponentially
small probability for observing all N particles in either half of
the box at any time, and hence the dynamics is irreversible.

It is possible to have a similar general paradigm for quan-
tum dynamics. Let us consider a generic interacting Fermi
gas that is in thermal equilibrium within a portion of the
box, and let it expand into the rest of the box. Such a state
is highly excited from the point of view of a thermal state
of N fermions in the whole box. The excitation energy per
particle will then be finite, and the resulting dynamics will be
far-away-from-equilibrium. During the expansion, the initial
state can be projected onto the N-fermion states in the whole
box with the same average total energy, E . At such a large
energy, the density of states, D(E , N ), is exponentially large.
Indeed, a direct count shows that, for energies E/N � εF , the
density of states D(E , N → ∞) scales as

D(E , N ) ∼ 1

E
exp

(
3

2
N ln(E/εF )

)
(1)

for a three-dimensional box. Here εF is the Fermi energy of
an N-particle gas in the whole box of volume V , and E is an
extensive quantity.

In the standard thermalization paradigm, the initial state
will explore the canonical ensemble with the average total
energy E . The interactions, weak or strong, generically lead
to an effective thermal mixture of these microstates after a
sufficiently long time. The physical properties measured after
the thermalization timescale typically do not depend on the
specifics of the initial state (except the initial energy) and are
thus robust. Such quantum dynamics is irreversible for the
same reason as the classical gas; there is an exponentially
large number of microstates for the energy E . The probability
to observe the gas in its initial state is then practically zero,
and the dynamics is irreversible. It is then natural to assert
that the dynamics resulted in an increase in entropy due to the
larger number of microstates.

In this article, we focus on similar far-away-from-
equilibrium quantum dynamics for a gas near a quantum-
critical point. We illustrate that unlike the free expansion
examples discussed above, releasing such a quantum-critical
gas into the vacuum can occur with zero entropy production.
Such a peculiar free expansion which conserves both the
energy and entropy is obviously distinct from the previously
discussed free expansion, which always comes with entropy
production [see Fig. 1(a)]. It is also distinct from typical adia-
batic expansion processes in thermodynamics which conserve
entropy, but do not conserve energy [Fig. 1(b)]. To distin-
guish this peculiar energy and entropy-preserving expansion
from the free and adiabatic expansions defined in the standard
thermodynamic context [1], we name such an expansion free
conformal expansion (fCE) [Fig. 1(c)].
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FIG. 1. Illustration of entropy dynamics (a) during generic free
expansion, (b) during an adiabatic expansion of weakly interacting
fermions, and (c) in a free conformal expansion (fCE) near a critical
point. The energy E is conserved in both panels (a) and (c) but not in
panel (b). Each point in panels (a)–(c) represents a one-particle state
that is either occupied (red open circle) or unoccupied (solid black
dot). The number of possible N-body microstates is eS , where S is the
entropy. The thick solid line indicates the temperature T far beyond
which states are rarely occupied. In panel (a), the number of allowed
microstates states is exponentially larger after expansion. In panel
(b), the energy is reduced because of work done, but the number of
occupied N-body microstates is constant. In panel (c), the Boltzmann
temperature T is rescaled to T ′, in a way identical to panel (b) so that
the entropy is conserved; however, the energy is also conserved since
no work has been done just as in panel (a) (see also Ref. [24]).

Our main conclusions are twofold. First, when the interac-
tions are tuned to a quantum-critical point with the dynamical
exponent z = 2, a fCE can be fully reversible under a time
reversible action. Second, away from the quantum-critical
point, a hydrodynamic analysis suggests irreversible dynam-
ics where thermalization occurs at a timescale, 1/�, that is
inversely proportional to the bulk viscosity ζ , i.e., 1/� ∼ 1/ζ .
This timescale approaches infinity when approaching a con-
formal symmetric critical point.

Although our conclusions apply to a number of strongly
interacting scale-invariant quantum systems, we primarily fo-
cus on the application to the resonant Fermi gas in three
dimensions. At resonance and in the zero-range limit, the
Fermi gas is well described by a quantum-critical point with
the dynamical exponent z = 2 [2]. This should be differen-
tiated from the traditional unitary Fermi gas that does not
have the exact conformal symmetry if the gas is near but not
exactly at resonance. It is beneficial to study this system as
it can be precisely manipulated by a number of experimental
techniques [3,4]. For this reason, both the reversible dynamics

at the critical point and the irreversible dynamics away from
the critical point can be readily studied by using Fermi gases
and Feshbach resonances.

The remainder of the article is organized as follows. Sec-
tion II discusses how the conformal and SO(2,1) symmetries
equate the expansion dynamics to the dynamics of a gas gov-
erned by a fictitious projective Hamiltonian. We then discuss
how this relation is equivalent to entropy conservation and
fCE. In Sec. III we examine the prospect of reversible dynam-
ics for harmonically trapped unitary Fermi gases. In Sec. IV
we then consider how the breaking of scale invariance leads to
irreversible dynamics for harmonically trapped Fermi gases.
Our conclusions are presented in Sec. V.

II. ENTROPY PRODUCTION IN CONFORMAL
EXPANSION

The quantum dynamics that we discuss are dictated by
emergent nonrelativistic scale and conformal symmetries
[5–7] near a critical point with the dynamical critical exponent
z = 2. Many-body systems related to such a quantum-critical
point can be strongly interacting electrons near Lifshitz tran-
sitions driven by external pressures [8] or scale-invariant
quantum gases, both in the presence and absence of harmonic
trapping potentials. Some primary examples of such quantum
gases are three-dimensional atomic gases with short-ranged
s-wave interactions at a Feshbach resonance [2,4] or strongly
interacting quantum gases in one dimension [9–11].

Generally, quantum-critical points with emergent Galilean
invariance exhibit SO(2,1) conformal symmetry [12–16], in
addition to the usual scale symmetries. One remarkable con-
sequence of conformal symmetry is the absence of the bulk
viscosity in the hydrodynamics of systems in their normal
state [17–19], although the shear viscosity remains finite
[20–22]. Recently, the vanishing bulk viscosity has been fur-
ther explicitly related to the emergence of strongly interacting
conformal tower states and consequential density matrix dy-
namics [23]. Indeed, another distinct feature of the general
SO(2,1) conformal dynamics is that the density matrix will
maintain the same amount of information during expansion. A
conformal quantum fluid can therefore undergo a free expan-
sion into the vacuum with both energy and entropy conserved,
in stark contrast with the free expansion of a classical thermal
gas into a vacuum, where the entropy always increases.

To facilitate this discussion, we consider a resonantly in-
teracting Fermi gas initially confined in a three-dimensional
harmonic trap of frequency ω0 and at thermal equilibrium
with temperature T0. Since the gas is in thermal equilibrium,
the initial density matrix is a mixed state that is governed by
the Boltzmann distribution. In the position representation the
initial N-body density matrix can be written as

ρeq

(
{ri}, {r′

i}, i = 1, . . . , N ;
ω0

T0

)
, (2)

where the subscript denotes the density matrix is of the equi-
librium form. The Hamiltonian describing the system initially
is given by Hs + ω2

0C, where we define the scale-invariant
Hamiltonian for the system Hs in the absence of the har-
monic trapping potential C. In our case, the scale invariant
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FIG. 2. (a) The many-body spectra during the conformal ex-
pansion. Solid lines are for the initial potential, and dashed lines
are for the projective Hamiltonian with ω(t ) in Eq. (4). The bold
[dashed] thick line indicates the temperature T0 [T (t )]. (b) ω(t ) of
the projective Hamiltonian after a quench of the trapping potential
from ω0 to ω f . The conformal dynamics follows this projective trap
frequency ω(t ), while the physical trap frequency ω f is a constant
shown as the dashed line.

Hamiltonian Hs and the trapping potential C are given by

Hs =
∫

dr ψ†(r)

(
−∇2

2

)
ψ (r)

+
∫

drdr′ψ†(r)ψ†(r′)Vs(r − r′)ψ (r′)ψ (r),

C =
∫

dr ψ†(r)
r2

2
ψ (r), (3)

where ψ (†)(r) is the second quantized annihilation (creation)
operator, and Vs(r − r′) is a scale-invariant two-body poten-
tial. An example of such a potential is a short-ranged isotropic
interaction with infinite s-wave scattering length, as = ∞. We
have also suppressed the spin indices as they do not play a
major role in our discussions.

A consequence of the SO(2,1) conformal symmetry is that
once the gas has been released into free space without a
confining potential, the physical state of the gas at an arbitrary
time, t , can be mapped onto an equilibrium state of a fictitious
projective Hamiltonian, Hproj(t ), at temperature T (t ) [23]. The
mapping is exact up to a position-dependent gauge factor that
induces a hydrodynamic current [14]. The projective Hamil-
tonian is given by

Hproj(t ) = Hs + 1
2ω2(t )C, (4)

where Hs and C are both defined in Eq. (3). The physical
Hamiltonian Hphys, under which the dynamics are studied, is
simply Hs, i.e., Hphys = Hproj[ω(t ) = 0]. In this representation
both the frequency ω(t ) and the temperature T (t ) are rescaled
in a time-dependent fashion:

h̄ω(t ) = h̄ω0

λ2(t )
, T (t ) = T0

λ2(t )
, (5)

where λ(t ) is a dynamical rescaling factor that is given by
(1 + ω2

0t2)1/2 for the expansion into free space. The projective
equilibrium temperature T (t ) [24] is rescaled in a fashion
identical to that of ω(t ). Although the states of the pro-
jective Hamiltonian become denser in energy space as ω(t )
decreases, the Boltzmann weight for a given state is constant
since ω(t )/T (t ) is invariant in time. This is depicted in Fig. 2.
Therefore, the N-particle density matrix at time t takes a

simple form:

ρN ({ri}, {r′
i}, i = 1, . . . , N ; t )

= G
1

λ3N (t )
ρeq

({
ri

λ(t )

}
,

{
r′

i

λ(t )

}
, i = 1, . . . , N ;

ω(t )

T (t )

)
.

(6)

From Eq. (6), one can see that the time-dependent density
matrix is obtained from its initial equilibrium value, Eq. (2),
via a time-dependent rescaling of the position coordinates, and
a gauge transformation, G, that is irrelevant to our discussions.

The conformal structure of Eq. (6) suggests that entropy
must be conserved, as the information content in the density
matrix is unchanged. To see this more clearly we note that the
entropy S(t ) is defined via

S(t ) =
∫

drS(r, t ) = −Tr[ρN · ln ρN ], (7)

where Tr denotes the trace over the N position coordinates,
and ln ρN is the log of the N-body density matrix. In Eq. (7)
we have also defined an entropy density, S(r, t ), which can be
obtained by performing a partial trace over N − 1 coordinates
in Eq. (7). It is straightforward to verify that the dynamics of
the density matrix in Eq. (6) translates into similar dynamics
for the entropy density,

S(r, t ) = 1

λ3(t )
S

(
r

λ(t )
, 0

)
, (8)

which conserves the total entropy. Such a conclusion was
obtained in Ref. [23], using the SO(2,1) symmetry to obtain a
differential equation for the entropy density. Here we provide
an alternative description using the projective Hamiltonian as
it provides a clear intuitive picture for the conservation of
entropy.

It is important to note that Eq. (8) has a caveat. Although
for the convenience of presentation we have assumed that the
gas is initially in thermal equilibrium in an isotropic harmonic
potential, this condition is not essential. For example, if the
initial state is in thermal equilibrium in an anisotropic har-
monic potential, there will be entropy production at earlier
stages of the dynamics. However, the rate of entropy pro-
duction in this case quickly vanishes in the long time limit,
resulting in an asymptotic fCE with an emergent conformal
symmetry. In contrast, when the scale symmetry is explicitly
broken, there will be a finite entropy production even in the
long time limit [23,25]. For the remainder of this work, we fo-
cus on the case of Fermi gases initially in thermal equilibrium
inside isotropic harmonic potentials as entropy is conserved
exactly for scale-invariant interactions.

Below we explore a specific consequence of entropy con-
servation: the prospect of reversible dynamics and how the
breaking of scale symmetry undoubtedly leads to irreversible
and entropy-producing dynamics. The reversible far-away-
from equilibrium quantum dynamics we propose below is,
to our knowledge, one of very few examples that is avail-
able in strongly interacting quantum many-body systems. The
scale and conformal symmetry, on the other hand, can also
be present in noninteracting quantum systems. In that case,
the nonequilibrium quantum dynamics can also be reversible
[25]. In classical thermal gases, the possibility of reversible
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FIG. 3. Reversible versus irreversible nonequilibrium dynamics.
(a) The frequency of a harmonic potential in a time-reversible cycle,
Eq. (9). (b) and (c) The scaling factors for reversible dynamics as a
function of time when th is commensurate and incommensurate with
π/ω f , respectively. We have chosen ω0 = 5ω f for the simulations.
(d) The scaling factor for reversible dynamics for viscosities ζ̃ = 0.1
(solid black line) and ζ̃ = 0.4 (red dashed line) when th → ∞. The
thermalization time, τ , is inversely proportional to the viscosity co-
efficient ζ̃ .

entropy-conserving dynamics was pointed out by Ludwig
Boltzmann more than a century ago. More recently, such
a reversible dynamics was observed in classical gases in a
beautiful experiment at JILA [26]. The reversible dynamics
which we discuss next, and which is based on conformal sym-
metry, can be considered a quantum version of the Boltzmann
breather in a strongly interacting quantum gas, a quantum
Boltzmann breather.

III. REVERSIBLE DYNAMICS

In order to discuss reversible dynamics, we need a time-
reversal symmetric Hamiltonian. To this end we consider a
resonantly interacting, three-dimensional, normal Fermi gas,
which is equilibrated at temperature T0. The gas is also subject
to the following time-dependent harmonic trapping frequency:

�(t ) =
{
ω0, |t | > th/2,

ω f , |t | < th/2,
(9)

where ω0 � ω f . A schematic for this trapping potential is
shown in Fig. 3(a). The initial trap restricts the fermions in a
small spatial region for t < −th/2. At t = −th/2, the fermions
are released into a much flatter trap with frequency ω f . After
a hold time, th, the trapping potential reverts to its initial
frequency. The benefit of Eq. (9) is that it mimics releasing
the N-fermion state from a small region into a much larger
region and allows for the gas to be recollected in the original
spatial region at a later time.

The initial state of the system is still given by Eq. (2).
As shown in Appendix A, the dynamics of this many-body
system can still be projected onto an equilibrium state defined
by a fictitious projective Hamiltonian, Hproj(t ), with a projec-
tive trapping frequency, ω(t ), given by Eq. (5)—just like the

expansion into the vacuum. For this case λ(t ) is given by

λ(t ) =
{

cos2
[
ω f

(
t + th

2

)]
+ ω2

0

ω2
F

sin2
[
ω f

(
t + th

2

)]}1/2

(10)

for |t | < th/2. As stated previously, the statistical temperature
T (t ) will have the same time dependence as ω(t ).

Although the physical state of the system can be mapped
onto an equilibrium state of the projective Hamiltonian up to a
gauge, generally Hproj(t ) is distinctly different from the physi-
cal Hamiltonian Hphys = Hproj[ω(t ) = ω f ] between −th/2 and
th/2 [27], as shown in Fig. 2(b). Hence the dynamic states are
highly excited from the point of view of Hphys and are truly far
away from equilibrium.

To highlight this point, consider an initial state with ex-
ponentially small entropy, or T0 � h̄ω0. The dynamic state
at t + th/2 = π/(2ω f ) will be dilated by a factor of λ(t ) =
ω0/ω f , corresponding to an equilibrium state of the fictitious
potential: ω(t ) = ω2

f /ω0. However, this state is (ω0/ω f )1/2

(�1) larger than the size of the ground state of the physical
trap, ω f . Furthermore, as the entropy remains nearly zero
during the expansion, this dynamic state cannot be related to
an equilibrium state of Hphys, with the same larger size, as it
would have a much higher entropy. This concludes that the
dynamic state is truly far away from equilibrium.

Let us now examine the motion of a Fermi gas in the
trapping potential given by Eq. (9). We summarize the results
of the reversible dynamics in Fig. (3). For |t | < th/2, the
dynamics of the density matrix is given by Eq. (6) with the
time-dependent rescaling factor defined in Eq. (10). The gas
will exhibit undamped oscillations at a frequency of 2ω f .

These perfect oscillations go beyond the breathing and
collective mode physics previously discussed in the litera-
ture [28–38]. To understand the difference, we first note that
Eqs. (6) and (10) describe highly nonlinear, far-away-from-
equilibrium dynamics, as we are interested in the limit of
ω f � ω0. This is in contrast to standard collective mode
physics which is usually explored around equilibrium via
linearized equations of motion [28–30].

However, if one considers the limit when ω f � ω0, and
linearizes the conformal dynamics in Eqs. (6) and (10), the
conformal dynamics predict an undamped breathing mode
with a frequency pinned at 2ω0. This undamped breathing
mode has been both predicted and observed for scale-invariant
quantum gases [12–14,26,32,33,35]. Here we stress that the
dynamics at resonance is protected by conformal symmetry
and always exhibits the forementioned undamped oscillations
at 2ω0. Our results are hence valid in both the hydrodynamic
and collisionless regimes, defined below, as long as the inter-
actions are scale invariant. Another case where dynamics are
constrained by conformal symmetry is for nearly noninteract-
ing gases. Indeed, it is well-known that a classical thermal gas
can support an undamped Boltzmann breather which had been
recently observed in cold gases [26].

On the other hand, for generic strongly interacting gases
away from resonance, the breathing mode frequency is no
longer pinned at 2ω0 and, in fact, can substantially deviate
from 2ω0 [29,30]. Such deviation near resonance is also ad-
dressed in the hydrodynamic limit discussed below. In the
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TABLE I. Comparison of the breathing mode in the hydrody-
namic and collisionless regimes in a generic interacting quantum
gas away from resonance, and the symmetry-protected conformal
dynamics at resonance. We compare the frequency, the damping rate
�, and whether the motion is described by a linearized equation of
motion. Finite damping away from resonance in collective modes is
indicated by the finite entropy production in dynamics.

Frequency � Linear

Hydrodynamic 	= 2ω0 Finite Yes
Collisionless 	= 2ω0 Finite Yes
Conformal = 2ω0 Zero No

same context, we also find these collective modes in general
will have finite damping in the absence of conformal symme-
try, a consequence of nonvanishing entropy production.

Generically, the collective mode damping rate � is a
function of the relaxation time τ [28,39]. At high temper-
atures, T � εF , where εF is the Fermi energy, one can
estimate τ−1 ∼ n/T 1/2, while at temperatures T � εF , τ−1 ∼
T 2/n2/3. In the hydrodynamic limit, ω0τ → 0, the damping
rate is � ∝ ω2

0τ , while in the collisionless limit, ω0τ → ∞,
� ∝ 1/τ . In Table I we compare the conformal solution to the
dynamics, Eq. (10), and the collective mode physics.

For times t > th/2, there are two possibilities for the long-
time dynamics. If the holding time th is matched to nπ/ω f for
some integer n, the density matrix, Eq. (6), will exactly return
to its initial thermal equilibrium form, right as the trap returns
to its initial value. In this case, the dynamics not only conserve
energy and entropy, but it is possible to completely retrieve
the initial quantum state. This retrieval is a full many-body
effect related to the conformal symmetry. For other values of
th, λ(t ) will further oscillate at frequency ω0 after the initial
trap is restored, as the gas will not be in an equilibrium state
right after the second quench. These oscillations will also be
undamped as the dynamics still conserves entropy.

Equations (6) and (10) are indicative of the existence of
N-body conformal tower states studied before [13–15,23,25].
The SO(2,1) symmetry suggests that the spectrum of
Hproj[ω(t ) = ω f ] can be divided into a number of towers, each
labeled by conserved quantities such as the angular momen-
tum, etc. Each tower hosts a set of states that are equally
spaced with a universal spacing of 2ω f , independent of the
label for an individual tower. Following Eqs. (6) and (10), the
density matrix dynamics only involves frequencies of 2nω f

for n = 0,±1,±2, . . . The many-body dynamics with a sin-
gle fundamental frequency can only occur if the eigenstates
of Hprof (ω(t ) = ω f ) have this equally spaced character (i.e.,
the states are equally spaced within each tower labeled by a
conserved angular momentum).

IV. IRREVERSIBLE DYNAMICS AND
THERMALIZATION TIME

To contrast the above reversible far-away-from-
equilibrium dynamics due to the emergent conformal
symmetry with more conventional irreversible dynamics,
we further examine the dynamics of away-from-resonance
Fermi gases in the normal phase when subjected to a quantum

quench in the trapping frequency: ω0 to ω f � ω0 at t = 0.
In this case, the conformal symmetry is explicitly broken by
a finite correlation length, ξ , or equivalently by the large but
finite scattering length as. We focus on the hydrodynamic
limit where the dynamics at frequency ω f is much slower
than the intrinsic scattering rate, ω f τ � 1, which is valid
for a wide range of temperatures near resonance, where
atoms scatter most frequently. In this case, the entropy is no
longer conserved, resulting in a finite bulk viscosity, ζ . The
hydrodynamic viscosity near resonance has been carefully
calculated in a number of thorough studies [40–43] which
we refer to for explicit details. The results obtained there are
consistent with a general analysis based on the breaking of
conformal symmetry near quantum-critical points [23].

Here we examine the dynamics of the scaling parameter
in the presence of entropy production. Applying the standard
hydrodynamic techniques [22,44,45] to the moment of inertia,
〈r2〉(t ) = λ2(t )〈r2〉(0), one can obtain the following differen-
tial equation for the scaling parameter:

d2λ2(t )

dt2
= 2

[
ω2

0 + ω2
f

] − 4ω2
f λ

2(t )

+ P̃

(
1

λ(t )
− 1

)
− ζ̃

dλ2(t )

dt
, (11)

where P̃ = 6
∫

d3rP(0)/[mN〈r2〉(0)] is due to the de-
viation of the pressure from its scale invariant value, ζ̃ =
9
∫

d3rζ (r, 0)/[mN〈r2〉(0)] is the bulk viscosity, and m is
the single-particle mass. For more details see Appendix B.
Equation (11) is the main result on hydrodynamics near a
conformal symmetric, strongly interacting critical point.

At the critical point, when P̃ = 0 and ζ̃ = 0, the hydro-
dynamic solution for λ2(t ) is identical to Eq. (10), the full
quantum solution suggested by conformal symmetry. There-
fore, the hydrodynamic solution is fully consistent with the
conformal structure of the density matrix in Eq. (6) and
the microscopic conformal tower states discussed previously
[13–15,23,25].

It is worth remarking that the shear stress tensor does not
enter the above equation for the scaling parameter λ2(t ) and
makes no contributions to the dynamics here. Thus, even if the
initial state is not perfectly isotropic (and as a result there can
be entropy production and dissipation in other degrees of free-
dom or higher moments due to the finite shear viscosity), the
dynamics associated with λ2(t ) is still reversible as the bulk
viscosity in Eq. (11) vanishes exactly when the interactions
are tuned to a scale-invariant critical point, such as Feshbach
resonance. Moreover, one can further show this is also gener-
ally true even in the collisionless limit, i.e., the frequency of
oscillation and the damping dynamics associated with λ2(t )
are constrained by conformal symmetry when the interactions
are at a scale-invariant critical point. The absence of the
damping in the moment of inertia, and the independence of
this result on the initial conditions, can also be seen generally
from the Heisenberg equation of motion, where the SO(2,1)
conformal symmetry guarantees both the frequency and the
persistence of the motion. For more details see Appendix C.

Away from the resonant critical point, the bulk viscosity
becomes finite; following Ref. [28], the entropy production
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can be expressed as

∂S(t )

∂t
= 9

4T0

∫
d3rζ (r, 0)

(
dλ2(t )

dt

)2

. (12)

Therefore, the inclusion of the bulk viscosity ζ̃ in the
hydrodynamic equation allows one to explicitly examine ir-
reversible dynamics in the vicinity of critical points and to
investigate the relation between the thermalization timescale
and entropy production, or equivalently the viscosity. The
results are shown in Fig. 3(d) where we have solved Eq. (11)
numerically.

There are several general features of the dynamics away
from resonance. First, the gas oscillates at a frequency,

ω ≈ 2ω f (1 + β ), β = P̃

4ω2
f

, (13)

which is valid at O(1/as). Here β ∼ 1/as measures the devi-
ation from the conformal symmetric point, or resonance. As
one can see, the frequency of the oscillations is no longer
pinned at 2ω f due to the broken conformal symmetry. Second,
at long times the scaling parameter always approaches a finite
value:

λ2(t = ∞) ≈ 1

2

(
ω2

0

ω2
f

+ 1

)
+ β

⎛
⎝

√√√√ 2ω2
f

ω2
0 + ω2

f

− 1

⎞
⎠, (14)

which is also correct to O(1/as) and is independent of the
entropy production rate and the viscosity ζ . Therefore, in
hydrodynamics it is natural to conclude that the gas has ther-
malized in the final harmonic potential with frequency ω f .

The damping of the oscillations is exponential. As sug-
gested explicitly by Eq. (11), the thermalization time inferred
from this analysis scales as

1

�
≈ 2

ζ̃
∝ a2

s � τ, (15)

where the second scaling relation is also directly inferred by
the dynamical critical exponent z = 2. Although 1/� becomes
infinite as as becomes infinite at critical points, the intrinsic
Boltzmannian relaxation time τ is always finite and short.
Again we stress this result is only valid near resonance when
as → ∞. Therefore, the thermalization dynamics observed
here offers a rather convenient and direct way to measure
hydrodynamic coefficients, and vice versa.

V. CONCLUSIONS

The thermalization suggested by the hydrodynamic solu-
tion at finite scattering lengths implies that many-body chaos
has likely developed among the highly excited states. Even
in a perfect harmonic trap, the number of highly excited
microstates with energy E/N � N1/3 is exponentially large:
DH (E , N ) ∼ exp[3N ln(E/N1/3)], much like a box potential.
Away from the quantum-critical point, interactions in this
highly excited manifold are expected to scramble the con-
formal tower states within each tower (see Fig. 4) and likely
result in a band of states with exponentially small energy dif-
ferences. This will result in the thermalization of the quantum
gas. We expect the physical properties will not depend on the

1/as0

n

FIG. 4. Schematic of conformal tower states. Exactly at the criti-
cal point 1/as = 0 with an emergent SO(2,1) symmetry, the spectrum
consists of a set of equally spaced conformal tower states; we only
show one of the towers explicitly. For large but finite values of as, the
tower states are randomly scrambled (see main text). Dashed lines
indicate the quantum-critical regime in the density (n)–coupling-
constant (g) plane. We note that a similar picture occurs near the
noninteracting scale-invariant point as = 0.

initial quantum state, nor will the initial state be retrievable at
any large time [46].

Indeed, in a previous study [25] we have shown that a mi-
croscopic description of the dynamics in the vicinity of critical
points can be fully characterized by a universal V matrix or a
four-fermion interaction operator that is a natural extension
of the thermodynamic contact [47,48]. Following the general
random matrix approach to highly excited states, we speculate
that the V matrix will have a similar character. Namely, the
highly excited spectrum within a given conformal tower will
be scrambled according to random ensemble theories [49].
This random scrambling could result in an exponentially large
number of randomly shifted eigenfrequencies. We have in-
deed numerically observed Wigner-Dyson statistics induced
by a random four-fermion operator, or V matrix, acting on 70
many-body conformal tower states.

Such many-body chaos can lead to an effective thermaliza-
tion in an isolated quantum system. What has been observed in
the hydrodynamic analysis is fully consistent with this general
paradigm. In this regard, the emergent conformal symmetry
appears to be sufficient to prevent far-away-from-equilibrium
states from being thermalized, although the system is not
integrable.
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APPENDIX A: DERIVATION OF THE PROJECTIVE
HAMILTONIAN

In this Appendix we explicitly show that the dynamics of
harmonically confined quantum gases subjected to a quan-
tum quench of the trapping potential follow a projective
Hamiltonian. Consider a gas that is initially confined in a har-
monic potential with frequency ω0. At t = 0, the potential is
quenched to a much shallower trap with frequency ω f � ω0.

For gases that are initially in thermal equilibrium, the initial
density matrix is diagonal in the energy eigenstates of the
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initial Hamiltonian. In order to study the post-quench dynam-
ics it is sufficient to consider the dynamics of the individual
eigenstates. Let us define[

Hs + ω2
0C

]|n, ω0〉 = E0
n |n, ω0〉, (A1)

where Hs and C are the scale-invariant Hamiltonian and the
harmonic trapping potential, respectively (see below for for-
mal definitions). We also define |n, ω0〉 as an eigenstate of
Hs + ω2

0C, with energy En, and n is a collective index for all
the quantum numbers. We now consider the motion of this
state under the post-quench Hamiltonian:

|n, ω0, t〉(t ) = e−i(Hs+ω2
f C)t |n, ω0〉. (A2)

From Eqs. (A1) and (A2) one can show that the time-
evolved eigenstate must satisfy

E0
n |n, ω0, t〉 =[

e−i(Hs+ω2
f C)t(Hs + ω2

0C
)
e+i(Hs+ω2

f C)t]
|n, ω0, t〉. (A3)

In order to evaluate Eq. (A3), we follow the approach used
in Ref. [23]; it is necessary to employ the identity,

eABe−A = B + [A, B] + 1

2!
[A, [A, B]] + · · · , (A4)

as well as the SO(2,1) algebra:

[Hs,C] = −iD, [D, Hs] = 2iHs, [D,C] = −2iC, (A5)

where Hs, C, and D are defined as

Hs =
∫

drψ†(r)

(
−∇2

2

)
ψ (r)

+ 1

2

∫
drdr′ Vs(r − r′)ψ†(r)ψ†(r′)ψ†(r′)ψ†(r),

D = −i
∫

drψ†(r)

[
r · ∇ + 3

2

]
ψ (r),

C =
∫

drψ†(r)
r2

2
ψ (r). (A6)

Above we have defined ψ (†)(r) as the second quantized
annihilation (creation) operator and Vs as a scale-invariant
two-body potential. We have also suppressed the spin indices
for simplicity.

Thanks to the SO(2,1) algebra, it is possible to obtain a
closed expression for the operator in Eq. (A3):

ei(Hs+ω2
f C)t(Hs + ω2

0C
)
e−i(Hs+ω2

f C)t

= Hs + ω2
0C + ω2

0 − ω2
f

2ω2
f

[1 − cos(2ω f t )]
(
Hs − ω2

f C
)

− ω2
0 − ω2

f

2ω f
sin(2ω f t )D. (A7)

Let us now define

λ(t ) =
√

cos(ω f t )2 + ω2
0

ω2
f

sin(ω f t )2. (A8)

Rearranging the terms in Eq. (A7) one can obtain

ei(Hs+ω2
f C)t(Hs + ω2

0C
)
e−i(Hs+ω2

f C)t

= λ2(t )
[
Hs + ω2

f C
] − λ̇(t )λ(t )D + [λ̈(t )λ(t ) + λ̇2(t )]C.

(A9)

For the discussion of the instantaneous Hamiltonian, we
note that Eq. (A7) can be cast in the form

λ2(t )

[
H̃s + ω2

0

λ4(t )
C

]
, (A10)

where

H̃s = 1

2

∫
drψ†(r)

(
−i∇ − λ̇(t )

λ(t )
r
)2

ψ (r)

+ 1

2

∫
drdr′ Vs(r − r′)ψ†(r)ψ†(r′)ψ†(r′)ψ†(r)

(A11)

is the boosted scale invariant Hamiltonian, and we have used
the identity

λ̈(t )λ3(t ) + ω2
f λ

4(t ) = ω2
0. (A12)

The effect of the boost is irrelevant to our discussions, as
we are only interested in the diagonal components of the N-
body density matrix.

Equation (A10) also implies

E0
n

λ2(t )
|n, ω0, t〉 =

[
H̃s + ω2

0

λ4(t )
C

]
|n, ω0, t〉, (A13)

which is equivalent to the projective Hamiltonian shown in
Eqs. (4) and (5), up to a boost. Therefore the eigenstate of
the initial trap will remain an eigenstate of the instantaneous
Hamiltonian, up to a position-dependent gauge factor.

As mentioned previously, for a quantum thermal gas ini-
tially in equilibrium at temperature T0, the density matrix can
be written as a canonical ensemble of energy eigenstates with
the Boltzmann weighting:

ρ(0) =
∑

n

e− En
T0 |n, ω0〉〈n, ω0|, (A14)

where the Boltzmann’s constant has been set to 1. Using
Eq. (A13), one can show that the time-evolved density matrix
still has the following equilibrium form:

ρ(t ) =
∑

n

e−E0
n /T0 e−i(Hs+ω2

f C)t |n, ω0〉〈n, ω0|e−i(Hs+ω2
f C)t

=
∑

n

exp

[
− E0

n

λ2(t )

λ2(t )

T0

]
|n, ω0, t〉〈n, ω0, t |, (A15)

which still possesses the equilibrium form, with a time-
dependent projective temperature, T (t ). Casting this result
into the position representation will give the desired re-
sult. The density matrix satisfies Eq. (6) with λ(t ) given by
Eq. (10).
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APPENDIX B: HYDRODYNAMICS OF THE
MOMENT OF INERTIA

In this Appendix we use the hydrodynamic equations of
motion to obtain Eq. (11). Equation (11) describes the motion
of a nearly unitary Fermi gas after a quantum quench in the
trap frequency:

�(t ) =
{
ω0, t < 0,

ω f , 0 < t .
(B1)

We begin by defining the hydrodynamic average of the
moment of inertia as

〈r2〉(t ) =
∫

dr
N

r2n(r, t ), (B2)

where N is the total number of particles in the system and
n(r, t ) is the density. In hydrodynamics, the dynamics of the
density n(r, t ) and the velocity field v is determined by the
following conservation law and equations of motion [28]:

∂t n + ∂i(nvi ) = 0,

mn(∂t + v j · ∇ j )vi = −∂iP − n�2(t )ri

+
∑

j

∂ j (ησi, j + ζσ ′δi, j ), (B3)

where we have suppressed the dependence of the position and
time coordinates in all of the thermodynamic quantities. In
Eq. (B3), m is the atomic mass, P is the pressure, and η and ζ

are the shear and bulk viscosities, respectively. We have also
defined the shear stress tensors as

σi, j = 1
2 (∂iv j + ∂ jvi ) − 1

3σ ′δi, j, σ
′ = ∇ · v. (B4)

From Eqs. (B2) and (B3) one can show

m

2

d2〈r2〉(t )

dt2
= 2

[
3

2

∫
dr
N

P + m

2
〈v2〉

]

− �2(t )〈r2〉(t ) − 3
∫

dr
N

ζ (r, t )∇ · v. (B5)

In Eq. (B5), the hydrodynamic average of the kinetic energy
〈v2〉 is defined similarly to Eq. (B2). In the limit when �(t ) =
0, this set of equations was previously introduced in Ref. [22]
to study hydrodynamics of expanding Fermi gases.

In order to simplify Eq. (B5) we use the fact that energy is
conserved for t > 0:

0 = d

dt
〈H〉(t ),

0 = d

dt

[∫
dr
N

E (t ) + m

2
〈v2〉(t ) + �2(t )

2
〈r2〉(t )

]
, (B6)

where E is the energy density. Next we relate the energy
density to the pressure by noting that, for a scale-invariant
system, E = 3/2P. However, the breaking of scale invariance
naturally introduces a shift in the pressure, P, such that

E = 3
2 (P − P). (B7)

The identification of the pressure then lets us obtain the
following result for t > 0:

1

2

d2〈r2〉(t )

dt2
= 2〈H〉(0+) − 2ω2

f 〈r2〉(t )

−
∫

dr
N

ζ (r, t )∇ · v + 3
∫

dr
N

P(t ). (B8)

It is possible to relate 〈H〉(0+) to the initial conditions. For
t < 0 the system is in thermal equilibrium, i.e., v = 0. After
examining Eq. (B5) for t < 0, one can show that

2〈H〉(0−) = 2ω2
0〈r2〉(0−) − 3

∫
dr
N

P(0). (B9)

Equation (B9) allows one to determine the size and energy
of the gas right after the trapping potential is quenched:

〈r2〉(0+) = 〈r2〉(0−),

〈H〉(0+) = 〈H〉(0−) + 1
2

(
ω2

f − ω2
0

)〈r2〉(0). (B10)

Equations (B9) and (B10) result in the full description of
the moment of inertia for t > 0:

m
d〈r2〉(t )

dt2
= 2

(
ω2

0 + ω2
f

)〈r2〉(0) − 4ω2
f 〈r2〉(t )

+ 6
∫

dr
N

[P(t ) − P(0)]

− 6
∫

dr
N

ζ (r, t )∇ · v. (B11)

For nearly scale-invariant systems, it natural to assume that
the solution of Eq. (B11) still has a scaling form. Consider the
following scaling ansatz:

n(r, t ) = 1

λ3(t )
n

(
r

λ(t )
, 0

)
, v = λ̇(t )

λ(t )
r, T (t ) = T0

λ2(t )
,

(B12)

where λ(0) = 1 and λ̇(0) = 0. Using this ansatz one obtains
an expression for the time-dependent scaling parameter:

d2λ2(t )

dt2
= 2

(
ω2

0 + ω2
f

) − 4ω2
f λ

2(t )

+ 6

m〈r2〉(0)

∫
dr
N

[P(t ) − P(0)]

− 9

m〈r2〉(0)

∫
dr
N

ζ (r, t )
1

λ2(t )

dλ2(t )

dt
. (B13)

In Eq. (B13), we note that the shift in the pressure P(t ) is
proportional to 1/as, and the bulk viscosity ζ (r, t ) is propor-
tional to 1/a2

s . If one were to take the scale-invariant limit,
1/as → 0, the equation of motion Eq. (B13) gives the confor-
mal solution, Eq. (10).

From several explicit calculations of the change in the
pressure and the bulk viscosity near resonance [40–43] and
the scaling ansatz in Eq. (B12), it is possible to show that the
time-dependent bulk viscosity has the following approximate
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scaling form:∫
dr
N

P(t ) ≈ 1

λ(t )

∫
dr
N

P(0),

∫
dr
N

ζ (r, t ) ≈ λ2(t )
∫

dr
N

ζ (r, 0). (B14)

This leads us to the final equation for the moment of inertia:

d2λ2(t )

dt2
≈ 2

(
ω2

0 + ω2
f

) − 4ω2
f λ

2(t )

+ 6

m〈r2〉(0)

∫
dr
N

P(0)

(
1

λ(t )
− 1

)

− 9

m〈r2〉(0)

∫
dr
N

ζ (r, 0)
dλ2(t )

dt
, (B15)

which is equivalent to Eq. (11).

APPENDIX C: HEISENBERG EQUATION OF MOTION
FOR THE MOMENT OF INERTIA

In this Appendix we show the solution to the Heisenberg
equation of motion for the moment of inertia for the case
of a scale-invariant gas placed inside a harmonic potential of
frequency ω f .

The motion is governed by the Hamiltonian Hs + ω2
f C,

where the definitions of C and the scale invariant Hamiltonian

Hs are shown in Eq. (A6). We note that C is related to the
moment of inertia 〈r2〉 by a constant prefactor: 〈C〉 = 〈r2〉/2.
For simplicity we refer to C in this Appendix as the moment of
inertia. From the SO(2,1) symmetry, Eq. (A5), one can obtain
the following differential equation for C:

d2〈C〉(t )

dt2
+ 4ω2

f 〈C〉(t ) = 2〈Hs + ω2
f C〉(0). (C1)

In obtaining Eq. (C1) we have used the fact that energy is
conserved.

Assuming the gas is initially stationary, i.e., d〈C〉(t )/dt =
0, the solution to Eq. (C1) is

〈C〉(t ) = 〈Hs + ω2
f C〉(0)

2ω2
f

+
(

〈C〉(0) − 〈Hs + ω2
f C〉(0)

2ω2
f

)
cos(2ω f t ). (C2)

As one can see the solution exhibits undamped oscillations
at exactly 2ω f . Similarly, the initial conditions only set the
total energy, which is then conserved. As a result the reversible
motion of the moment of inertia is independent of the initial
conditions. This conclusion is consistent with the conformal
symmetry arguments and the hydrodynamic equations of mo-
tion presented in Appendix B.
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