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Abstract

In cellular federated edge learning (FEEL), multiple edge devices holding local data jointly train a
neural network by communicating learning updates with an access point without exchanging their data
samples. With very limited communication resources, it is beneficial to schedule the most informative
local learning updates. In this paper, a novel scheduling policy is proposed to exploit both diversity
in multiuser channels and diversity in the “importance” of the edge devices’ learning updates. First, a
new probabilistic scheduling framework is developed to yield unbiased update aggregation in FEEL.
The importance of a local learning update is measured by its gradient divergence. If one edge device
is scheduled in each communication round, the scheduling policy is derived in closed form to achieve
the optimal trade-off between channel quality and update importance. The probabilistic scheduling
framework is then extended to allow scheduling multiple edge devices in each communication round.
Numerical results obtained using popular models and learning datasets demonstrate that the proposed
scheduling policy can achieve faster model convergence and higher learning accuracy than conventional

scheduling policies that only exploit a single type of diversity.
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I. INTRODUCTION

As driven by the phenomenal growth in global mobile data traffic, artifical intelligence (Al)
has revolutionized almost every branch of science and technology ranging from computer vision,
natural language processing, to wireless networks [1]—[4]. The implementation of Al in wireless
networks is foreseen as an innovative breakthrough for realizing an intelligent network. To enable
rapid access to the large amount of real-time data generated by massive distributed edge devices,
a new paradigm of computing, called edge learning has emerged by migrating learning from
central clouds towards the edge of wireless networks [5]—[7]. Despite the proximity to data source
in edge learning, it still faces with a critical challenge of privacy concern when transmitting raw
data to the edge server. To overcome this deficiency, an innovative framework namely federated
edge learning (FEEL) has been proposed, which features distributed learning at edge devices and
update aggregation at the edge server [8]. By periodically reporting the local learning updates
to the edge server for global aggregation, FEEL is capable of leveraging the heterogeneous data
to attain an accurate learning model.

A major design objective in FEEL is to accelerate the training process and maintain certain
learning accuracy under communication and computation resource constraints. Due to that com-
munication suffers from impairment of wireless channels (e.g., channel fading, interference, and
noise), it is often the main bottleneck for fast FEEL [9]—[12]. This fact calls for effective schedul-
ing algorithms for fast update acquisition from highly distributed edge devices. Conventional
scheduling principles focus on data rate [13] or quality-of-service [14] whereas assume that the
transmitted data is equally important. However, this assumption is often inappropriate in FEEL
since different local learning updates are of dissimilar significance to the model convergence
[15]-[17]. This motivates researchers to design a new scheduling approach based on not only
the channel states but also how important the local updates are for learning. Towards this end,
we consider the scheduling problem in FEEL by jointly exploiting the diversity involved in both

wireless channels and local learning updates.

A. Prior Work

Communication-efficient FEEL requires the joint design of learning algorithms and commu-
nication techniques. Recent years have seen much research interests from both industry and
academia, covering key topics such as learning update compression [18[]-[20], radio resource

management [21]-[23], [25], [26]], and over-the-air computation [27]-[29]. Specifically, the



authors of [18] proposed two update compression approaches based on random sparsification
and probabilistic quantization to reduce the communication cost between edge server and edge
devices. In [19], a sparse ternary compression framework was developed to adapt to the non-
independent and identically distributed (non-IID) FEEL environment, which compresses the
upstream and downstream via sparsification, ternarization, error accumulation, and Golomb
encoding. Moreover, the deep gradient compression technology was employed in [20], where
a hierarchical threshold selection policy was proposed to speed up the gradient sparsification
process. On the other hand, the authors of [21]] developed an efficient control algorithm to achieve
the trade-off between local update and global aggregation during the learning process with limited
communication resource budget. Further, a joint user selection and resource allocation policy to-
wards minimizing the FEEL loss function was proposed in [22] by taking into account the packet
error over wireless links. In addition, [23]] presented an effective client scheduling and resource
allocation policy for FEEL over wireless links with imperfect channel state information (CSI),
and [24] proposed a joint user selection and resource allocation policy to minimize the FEEL
convergence time based on probabilistic scheduling. Besides, the trade-off between learning time
and energy consumption in FEEL was investigated in [25] and [26]], where [25] developed a
closed-form communication and computation resource allocation in a synchronous manner, and
[26]] designed an iterative algorithm for joint power control and resource allocation. In particular,
a novel technique namely over-the-air computation is adopted for update aggregation in FEEL.
Based on this, the authors of [27] considered joint device selection and beamforming design in
FEEL. Moreover, a prominent broadband analog aggregation multiple-access scheme featuring
the aggregation of analog modulated gradients was proposed in [28], where two communication-
and-learning trade-offs were highlighted as well. To facilitate implementation, [28|]] was further
extended in [29]], which designed a digital broadband over-the-air aggregation scheme to evaluate
the effect of wireless channel impairment on model convergence.

On the other hand, the local learning updates in FEEL are not equally important for model
convergence and thus are valuable to be exploited for further performance improvement [30].
Some prior works incorporated the new feature of data importance for communication design
in centralized edge learning systems, such as data retransmission [31]] and user scheduling [32].
Specifically, a pioneering importance-aware automatic-repeat-request protocol was designed to
balance the communication reliability and the data uncertainty [31]. Furthermore, the authors

also proposed an importance-aware user scheduling scheme to improve the communication



efficiency in edge learning [32]]. Inspired by this, we consider to exploit the update importance

for scheduling design in FEEL, which has not been well studied in existing works.

B. Contributions and Organization

In this paper, we propose a novel importance- and channel-aware scheduling policy to improve
the performance of FEEL. This work is most related to the prominent FEEL works of [33]
in analyzing convergence behaviour using classical scheduling policies and [34] in combining
channel state and update norm for scheduling. However, the scheduling policy in [33] is not
specifically designed for FEEL while the convergence analysis is not provided in [34]. We go
one further step than [33]] and [34] in that we provide fundamental convergence analysis as well
as develop an innovative scheduling for FEEL. Our main result demonstrates that the scheduling
decision should elegantly balance the diversity in wireless channels and learning updates to
achieve a satisfactory learning performance.

The main contributions of this work are summarized as follows.

o We first propose a novel probabilistic scheduling framework to yield unbiased gradient
aggregation in FEEL. The one-round convergence rate is analyzed and the update importance
is measured by the gradient divergence.

« We consider a simple strategy of scheduling one device in each communication round and
devise an importance- and channel-aware scheduling policy. The corresponding convergence
rate is also provided. More precisely, the scheduling probability increases linearly with both
the data unbalanced indicator and the local gradient norm, whereas decreases sublinearly
with the exponent of —% when the local gradient upload latency is large.

o We further extend the probabilistic scheduling framework to the strategy of scheduling
multiple devices in each communication round. An efficient scheduling without replacement
algorithm is designed, followed by the closed-form expression of bandwidth allocation.
Numerical results demonstrate gains achieved by the proposed scheduling scheme over
conventional scheduling schemes.

The rest of the paper is organized as follows. Section II introduces the system model and
motivates the learning mechanism. Section III investigates the simple strategy of scheduling one
device in each communication round and formulates the probabilistic scheduling problem. The
optimal solution and the convergence analysis are provided in Section IV. Section V discusses

how to extend the probabilistic scheduling to the strategy of scheduling multiple devices in



each communication round. Section VI draws the numerical results, followed by conclusions in

Section VII.

II. SYSTEM MODEL AND LEARNING MECHANISM

A. Federated Edge Learning System Model
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Fig. 1. Federated edge learning system.

As illustrated in Fig. [, we consider an FEEL system comprising one edge server and K
decentralized single-antenna edge devices, denoted by a set £ = {1,2,..., K}. Each device
has a fraction of labeled data. Let Dy, = ((x},v;), (X3, y3), -, (x.5,y.*)) denote the local
dataset of device k, where X}, is its i-th training data sample, y! is the corresponding ground-
truth label, and ny is the number of data that device k£ owns. In view of the heterogeneous data
structure, we assume that local datasets are statistically independent across edge devices. Let
n= Zszl ng. A shared learning model, denoted by w, needs to be collaboratively trained across
all edge devices with their distributed local datasets. To leverage the rich data over edge devices
while preserving data privacy, all devices adopt the federated learning technique by iteratively
reporting their locally computed gradient for global aggregation in lieu of raw data. Due to the
gradient sparsity, the communication overhead can be significantly reduced by some gradient
compression approaches. Therefore, we focus on the gradient-averaging implementation in the

subsequent exposition. Moreover, only a small subset of devices can be chosen for every global



TABLE 1
L0SS FUNCTION FOR POPULAR LEARNING MODELS

Learning Model \ Loss Function ¢ (w, X, y)
Least-squared Support Vector | 1 max {0,1 —yw x} + 3 ||w|’, where X is a regularization parameter and
Machine (SVM) T represents the transpose operator.
. . l _ T 2
Linear Regression Ly — w x|
Neural Network % lly — f (x; W)||2, where f(x;w) = fv (- fo (f1 (x;w1);wa) -+ ;wWh)

is the learning output, N is the number of layers, and f; (x,w;) is the i-th
layer function conditioned on the weight matrix w;.

gradient aggregation because of the limitations in communication resources. To coordinate all
edge devices, a scheduler is implemented at the edge server, which performs device selection

and resource allocation.

B. Learning Model

In this work, we consider a general supervised machine learning task. We define an appropriate
sample-wise loss function ¢ (w, x, y) to quantify the prediction error between the data sample x
on learning model w and the ground-truth label y. Specifically, Table I lists the loss functions

for several popular learning models, which will be employed in the experiment.

Without loss of generality, we assume that the learning model is deployed across all edge
devices. Then, the local loss function of device k that measures the model error on its dataset

D). can be defined as

1 & o
Ly (w) = — C(w,x,y.), Vk. (D)
K (W) " ; (W, X, 4
Accordingly, the global loss function associated with all distributed local datasets is given by
1K
L = = L . 2
(w) n;nk k(W) @

The main objective of the learning task is to seek an optimal model w* that minimizes L (w).

In addition, the ground-truth global gradient at w is defined as
g=VL(w), (3)

where V represents the gradient operator.



C. Communication Model

We assume orthogonal frequency-division multiple access (OFDMA) is adopted for uplink
channel access. In this case, the system bandwidth, denoted by B, is divided into multiple
narrowband sub-channels that are allocated to all devices without interference. Define Bj as
the bandwidth allocated to device k£ so that we have Zszl B, < B. Moreover, we assume
frequency flat fading, and let -y, denote the uplink signal-to-noise ratio (SNR) of device k,
which is determined by its transmit power, uplink channel gain, and noise power. Then the

achievable uplink data rate (in bit/s) for device k can be expressed as
ri, = Brlogy (14 v), VEk. 4)

For the downlink channel, we assume the edge server occupies the entire system bandwidth
to broadcast the global model. Let v denote the minimum downlink channel SNR among the
devices, which depends on their downlink channel gains, noise power, and the transmit power

of the edge server. Then the achievable downlink data rate is given by

r = Blog, (1+ 7). 5)

D. Learning Mechanism

We now introduce the federated learning mechanism by describing the steps that the commu-
nication parties take, as illustrated in Fig. 2| The combination of the steps is referred to as a

communication round.

o Step 1 (Global Model Broadcast): The edge server broadcasts the current learning model
w' to all devices.

o Step 2 (Local Gradient Calculation): Device k computes its local gradient as
g, = VL, (Wt) . 6)

o Step 3 (Importance Indicator Report): As an option to be explained later, device & computes
an importance indicator I (g} ) and reports the result to the edge server.

o Step 4 (Device Selection and Resource Allocation): Based on the devices’ reports, the edge
server selects a subset of devices, denoted by S*, determines the bandwidth allocation, and

then solicits updates from the selected devices via some control channels.
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Fig. 2. Communication protocol for importance- and channel-aware federated edge learning.

e Step 5 (Local Gradient Upload): The selected devices upload their concrete local gradients

to the edge server in the uplink multiaccess channelﬂ
o Step 6 (Global Model Update): After receiving all local gradients from the selected devices,
the edge server computes the global gradient as
D kest Tk
®)

Subsequently, the global model is updated to

t+1 t t .t
=W —7Ngs

w

where 7' > 0 is the learning rate in the ¢-th communication round.

Starting from ¢ = 1, the edge server and edge devices iterate the preceding steps until conver-

gence.
"To facilitate theoretical analysis, we assume that the selected devices are always able to compute and upload their local

gradients in the training duration.



III. SCHEDULING ONE DEVICE IN EACH ROUND: SYSTEM DESIGN

In this section, we consider a simple strategy of scheduling one device in each communication
round. We first propose a new design principle and then develop a probabilistic scheduling
framework. Thereafter, we devise a concrete gradient importance indicator. Based on these,
we formulate the scheduling problem for the trade-off between multiuser channel and update

diversity.

A. Principle of Importance- and Channel-Aware Scheduling

As discussed earlier, the main objective of the FEEL system is to minimize the training time
for attaining a desired learning accuracy. According to the federated learning mechanism, we
can observe that the training time is determined by two factors, i.e., the one-round latency
and the model variation in each round. Both factors are affected by the scheduling decision,
making device scheduling a key problem. Specifically, the former mainly depends on the channel
fading due to that the communication latency dominates the computation latency [7]. The latter
is primarily decided by the selected local gradients based on the update equation (). Since
both factors are important, they should be balanced for joint scheduling design, leading to two
types of multiuser diversity to be exploited in such a system. One is the independent fading
in multiuser channels, namely multiuser channel diversity, while the other is the heterogeneous
importance levels across multiuser local gradients, namely multiuser update diversity. Targeting
active gradient acquisition in FEEL, we should simultaneously exploit the multiuser diversity
in wireless channels and local gradients, called channel-and-update diversity to improve the

learning performance.

B. Probabilistic Scheduling

In the classical federated averaging protocol, all devices are equally likely to participate in
each communication round regardless of variability in the amount of data they possess. In such
a way, the aggregated global gradient is generally biased [35]. To address this issue, we now

propose a new probabilistic scheduling framework.

Definition 1 (Probabilistic scheduling). In the ¢-th communication round, the edge server se-
lects a random device X' € {1,2,--- , K} for gradient uploading according to a scheduling

distribution P* = (pi,ph, - ,p%) , where pi, = P(X"' = k) is the probability that device k



can be selected. Upon receipt of the gradient update g, the edge server computes the global
gradient as
/\t n Xz

9

In this framework, probability p! can be interpreted as the level of importance that device k
can contribute to the global model convergence. We shall note that before global model update,
the selected local gradient g’ needs to be scaled by a coefficient fx at the edge server. This
coefficient well quantifies the unbalanced property in global data dTiLstribution and thus makes

the global gradient g' unbiased.

Lemma 1 (Unbiasedness). The expectation of the global gradient defined in (9) is equal to the

ground-truth global gradient.

Proof: Using and (3), the ground-truth global gradient in the ¢-th communication round is

given by

oL (w')
t__
&= owt
K

1 8Lk (Wt)
~n an Owt
k=1
1w
== ng. (10)
n
k=1

On the other hand, by taking expectation of g’ over the scheduling distribution P?, we have

{g'} = Zpt nkt gk
1 t
= — N8y

=g Y

where is due to (10). Therefore, we can conclude that E {g'} = g, i.e., g’ is an unbiased
estimate of the ground-truth global gradient.

The probabilistic scheduling yields unbiased gradient for all distributions as long as every
device has a nonzero probability to update the server, including the typical uniform random

scheduling in classical FL. However, different distributions lead to different performance in



general.

C. Gradient Importance Measurement

To develop a concrete metric to evaluate the importance of each local gradient, we first
analyze the contribution that each local gradient can provide for global model convergence. For

the purpose of analysis, we make the following assumption to the global loss function.

Assumption 1 (Lipschitz gradient continuity). The gradient VL (w) of the global loss function
L (w) is Lipschitz continuous with a positive modulus ¢, or equivalently, for any u and v, it
satisfies

IVL (u) = VL (v)[| < £]ju—v]], (12)
where ||-|| represents the L, norm operator.

Then, we give the convergence result of the probabilistic scheduling, as presented in the

following lemma. The detailed proof is provided in Appendix A.

Lemma 2 (One-round convergence rate). When Assumptions 1 holds and let w* denote the
optimal global learning model. Then, the convergence rate of each communication round is

given by
t+1 * t * t L, t]|2
E{L(w") - L(w")} < E{L (w') — L(w")} -1 (1—5&7) e
+st ) E{JlE -2}

Lemma 2 reveals that the expected gap between the global loss value and the optimal one is

13)

bounded by the aggregate of three terms. The first term on the right-hand side of denotes the
expected gap of the previous round. The second term is proportional to the squared norm of the
ground-truth global gradient g'. The third term is proportional to the variance of the aggregated
global gradient E {||§t - gt||2}. The first two terms are independent of the scheduling decision
such that they can be viewed as two constants. The variance of the aggregated global gradient
depends on the scheduling design and thus needs to be optimized. Note that the ground-truth
global gradient reflects the steepest direction for the global loss decline. Therefore, the smaller
the variance of aggregated global gradient is, the faster the global loss decreases.

The result in Lemma 2 provides a significant connection between gradient variance and model

convergence rate. Inspired by this, we can take the difference between the scaled local gradient



and the ground-truth global gradient, called gradient divergence as a reasonable importance

measurement, as described in the following definition.

Definition 2 (Gradient divergence). Conditioned on the probabilistic scheduling framework, the
importance indicator of each local gradient is defined as

2
n
gt —glll , Vk (14)

It =
k npl.

The gradient divergence reflects the deviation between each local gradient and the ground-
truth global gradient. The smaller the local gradient divergence is, the more it can contribute to

model convergence.

D. One-Round Latency Analysis

As mentioned earlier, the learning performance (training time) is determined not only by the
gradient importance, but also by the one-round latency, making it an essential point to analyze.
According to the previous federated learning mechanism, we can give the dominant kinds of

latency in one communication round.

o Global Model Broadcast Latency: Let S denote the total number of learning parameters and
q denote the quantitative bit number for each parameter. Then, the data size of the global

model can be evaluated as ¢ x S and the global model broadcast latency is given by

TB,L‘ _ ﬁ
= o

_ )
B Blog, (1 + 'Yt)‘

(15)

e Local Gradient Calculation Latency: Define C' as the number of floating-point operations
used for performing the backpropagation algorithm with one data sample. Moreover, let f;
denote the computational capability (in floating-point operations per second) of device k.

Accordingly, the local gradient calculation latency of device k can be expressed as

C
7o = B2 vk (16)

Ji
e Local Gradient Upload Latency: Due to the fact that each parameter has a counterpart
gradient, the total number of elements in each local gradient equals S as well. For conve-

nience, we also use ¢ bits to quantize each gradient element. Besides, the selected device



can occupy the entire system bandwidth since we schedule one device in each round. Given

that device £ is scheduled, its local gradient upload latency can be expressed as

Ut qS
k
_ a5
B Blog, (1 + 712)7

V. (17)

Assuming that the edge server is computationally powerful, we ignore the time for device
scheduling and global model update. Moreover, the edge server cannot start scheduling until
it completes the channel state estimation and gradient importance evaluation for all devices.

Towards this end, the one-round latency for scheduling device k is given by

T} =T + max {Tf’t} + T k. (18)
1€

E. Problem Formulation

Thus far, the multiuser channel and update diversity have been evaluated by the one-round
latency and the gradient divergence, respectively. Targeting training acceleration, it is desirable
to schedule the device with the best channel state as well as the smallest gradient divergence.
However, this case rarely occurs in practice, resulting in a trade-off between gradient divergence
and one-round latency. Define p € [0, 1] as the weight coefficient that balances the gradient
divergence and the one-round latency. E] Then, the objective function can be defined as

K 2
g
E{pl+(1—p)Tk} = g Pk (PHWgZ—gt
k=1 k

+ (1 - p)Tg) : (19)

Accordingly, the multiuser channel and update diversity trade-off problem can be formulated

towards minimizing (I9), as

K 2
P rﬁimifz;e > ok (p H%gz —g'|| +(1- p)Té) , (20a)
PiyPi k=1 k
K
subject to Y " pf, = 1, (20b)
k=1
pp >0, Vk € K. (20c)

’The selection of p depends on the specific values of gradient divergence and one-round latency. A simple way is to choose
a value of p to make the weighted gradient divergence and the weighted one-round latency in the same order.



IV. SCHEDULING OPTIMIZATION AND CONVERGENCE ANALYSIS

In this section, we first develop the optimal scheduling policy to Problem #7;. Based on this,

we will provide the convergence performance of the FEEL system.

A. Optimal Scheduling Policy

The main challenge in solving Problem # is that the ground-truth global gradient cannot be
obtained by neither the edge server nor edge devices, making the gradient divergence hard to

calculate in practice. To make progress, we first rewrite the first term in the objective function

(19) as
E{pli} =) o (p )

-3 [£ (%) ] - e

where (21)) is due to the unbiasedness property of the aggregated global gradient. In particular,

k
— 8k — 8

n t
npk,

2
)

21

the ground-truth global gradient, the global model broadcast latency, and the local gradient
calculation latency are independent of the scheduling decision so that they can be excluded from

the optimization problem. Accordingly, Problem &7 can be equivalently transformed into

K

L p (N2 2 ,

7 minimize S5 (2) ]+ 0 - it 2
1P K k=1

subject to  (20b) and (20d).

To solve Problem #,, we first establish the following lemma, which is proved in Appendix

B.

Lemma 3. Given a general optimization problem with positive coefficients ay, bx, and ¢ as

follows
Ko
Py minimize Y ay— + by, (23a)
(w1 wi)
K
subject to Y ey = d, (23b)
k=1

zp >0, Vk € K. (23c)



The optimal solution can be expressed as

. _ Ak
xy = 1/—bk v Vk. (24)

where \* is the optimal value satisfying Zszl crxy = d.

With comprehensive comparison, we can observe that the structures of problems &7, and &5
are identical such that the result in (24) is applicable in solving #,. Towards this end, we can

obtain the optimal scheduling policy, as characterized in the following theorem.

Theorem 1 (Importance- and channel-aware scheduling). Considering the strategy of schedul-
ing one device in each communication round, the optimal probability that the edge server selects

device k to report its local gradient is given by

L N ¢ P
Dg n Hng \/<1 )T]g’t )\t*’ ) (25)

where \** is the optimal value of the Lagrangian multiplier that guarantees Zszl pi¥ =1 and

can be obtained by the one-dimensional searching algorithm.

Theorem 1 reveals that the optimal scheduling decision is mainly determined by three factors:
the data unbalanced indicator “*, the local gradient norm ||gy ||, and the local gradient upload
latency T,E !, More precisely, for given value of \**, the scheduling probability increases lin-

early with both the data unbalanced indicator and the local gradient norm, whereas decreases

sublinearly with the exponent of —% when the local gradient upload latency is large. The data
unbalanced indicator reflects the data size proportion of each local dataset in the global dataset.
Therefore, a larger data unbalanced indicator implies that the local gradient contains more data
information such that it can contribute more to the model convergence. On the other hand, it
is desirable to schedule the device with a larger gradient norm as it includes more non-zero
elements and can further promote the model update. Moreover, the result suggests us to assign
a small probability to the device with bad channel state. Also, scheduling a device with bad
channel state will incur straggler issue, which should be avoided in the scheduling design.
From Theorem 1, we can observe that the importance level of each local gradient is well
characterized by two scalars: its gradient norm and local dataset size. Moreover, both scalars
can be easily derived at local devices while transmitting them to the scheduler will not incur

excessive delay. This result drives us to use the product of these two scalars as the gradient



importance measurement. On the other hand, the scheduler is able to evaluate each local gradient
upload latency via dynamical channel state estimation. Towards this end, both channel and update

diversity can be jointly exploited for practical scheduling design.

B. Convergence Analysis

We now investigate the convergence behaviour of the learning algorithm under the proposed
scheduling solution. To facilitate analysis, we further make the following assumption to the

global loss function.

Assumption 2 (Strong convexity). The global loss function L (w) is strongly convex with a

positive parameter p such that for any u and v, it follows
I T H 2
(u)>L(v)+VL(v) (u—v)—|—§||u—v|| : (26)

This standard assumption is satisfied by many popular learning models, such as the least-
squared SVM and the linear regression in Table I. In Section VI, we will conduct experiments
to demonstrate that our analytical results also work well for some popular loss functions which
do not satisfy this assumption. Then, by applying the result of Theorem 1 into Lemma 2, we can
derive the convergence upper bound of each communication round, as shown in the following

theorem. The detailed proof is presented in Appendix C.

Theorem 2 (Convergence upper bound). Conditioned on the scheduling policy in Theorem 1,

the convergence upper bound in the ¢-th communication round can be given by

B2 (x) - )} < [[ (-2 B {L () - L)

< P K ; 1—p Y 4 \ix
i A0 S S
i=1 k=1

27)

p

where A’ = [ i—iv1 (L—=2u?) is a weight coefficient.

Theorem 2 indicates that the expected gap between the global loss value and the optimal
one is bounded by the aggregate of two terms: one is the expected gap in the initial round and

the other is the cumulate impact of the proposed scheduling policy on model convergence. The

former will converge to zero as t increases when the learning rate satisfies 0 < 1" < ﬁ, Vi.



Meanwhile, the weight coefficient A* will also decrease, making the latter approach to zero as
well. Therefore, the learning model will finally converge to the optimum under the proposed
scheduling policy.

The convergence upper bound in Theorem 2 holds for any learning rate that satisfies 0 < 7' <
i Vi. To explicitly characterize the convergence performance, we diminish the learning rate as
the training proceeds such that the convergence rate of the learning algorithm can be given as

follows. The detailed proof is provided in Appendix D.

Corollary 1 (Learning convergence rate). Let 7' denote the number of communication rounds,
1

and n' = % denote the learning rate for given y > o and v > 0. Then the convergence
v H

rate of the learning algorithm is given by

T * C
E{L(w)—L(w)}§T+V7 (28)
where ¢ = max{ﬂ 1+ v)E{L(w') — L(W*)}} and G = max ||g’|| is the largest
- 2(2ux — 1)’ B 5 &

gradient norm across the communication rounds.

According to Corollary 1, we can conclude that the increment of total communication rounds

leads to the convergence of the learning algorithm. Moreover, the convergence rate is asymptot-

ically O (%)

V. SCHEDULING MULTIPLE DEVICES IN EACH ROUND

In this section, we investigate the strategy of scheduling multiple devices in each communica-
tion round. We first develop a low-complexity algorithm for scheduling design and then propose

an optimal bandwidth allocation for practical implementation.

A. Scheduling Design

The probabilistic scheduling framework is still applicable in the strategy of scheduling multiple
devices in each communication round by combining the sampling without replacement approach
[36]]. Let M denote the number of devices that need to be scheduled in each round. Then the

probabilistic scheduling framework can be defined as follows.

Definition 3 (Probabilistic scheduling without replacement). In the ¢-th communication round,

the edge server selects a random device sequence V' = (Y{,Y), .-+ Y{,) without replacement



according to the scheduling distribution P* = (p},pL,--- ,p%), where Y\ € {1,2,--- | K} is
a random variable representing the index of the m-th scheduled device. Upon receipt of the
gradient updates g!,, , the edge server computes the global gradient as
M
~t 1 ’rLyt ¢

= — : 29
gy Mn th — 8y (29)

m

t

where ¢}, = 12m—mlt is the probability of scheduling device Y;! conditioned on the selected
device sequence (Y{,--- V! ).

Lemma 4 (Unbiasedness). The expectation of the global gradient defined in (29) is equal to the
ground-truth global gradient.

Proof: The proof can be conducted by proving the unbiasedness of each selected local gradient.

Assume that we have selected m — 1 devices, denoted by a sequence (k{, skt ) Then the

» Ym—1

scheduling probabilities for these devices become zero in the m-th selection step. Accordingly,

the conditional scheduling distribution for selecting the next device is given by

0, if ke (k, - k,),

t
QG = : . (30)
g %, otherwise.
1— Zj:l pk;

Consequently, the edge server randomly selects a device Y,! and computes the scaled local

gradient by
Nyt

gy = ey A (€2

Y

Taking expectation of g, over the conditional scheduling distribution, we have

th } th "k g
1
= Z gy,
k=1

=g (32)

Therefore, each selected local gradient is unbiased, making their average defined in an

unbiased estimate of the ground-truth global gradient. This completes the proof.



Based on the preceding discussion, we now present an efficient scheduling algorithm, as
described in Algorithm 1. To facilitate practical implementation, we first assume that the entire
bandwidth is available to each device and then sequentially select one device from the candidate
device set in each iteration until reaching the required number of devices. Although it sacrifices
the optimality but will significantly reduce the computational complexity. Specifically, the total
number of iterations is M. Moreover, let € denote the maximum tolerance for the one-dimensional
search for \**. Then, the computational complexity of Algorithm 1 is O (log % + M ), which can

be easily implemented in practical systems.

Algorithm 1: Importance- and Channel-Aware Scheduling at Edge Server

Input: Uplink SNR ~/, local gradient norm ||g! ||, local dataset size ny, scheduled device
number M.
Output: Scheduling device sequence ).
1 Initialize Y* =0, Q' =0, m = 1.

2 Compute the optimal scheduling distribution P™* = (pi*, pb*, - - - , pf) according to (25),
involving the one-dimensional search for \™*.

3 Let Q! «+ Pt*,

4 repeat

5 | Randomly select a device k' based on Q.

6 | VY4 {k].

7 Update Q" according to (30)).

8 m < m + 1.

9 until m > M;

B. Bandwidth Allocation

Given a typical device sequence V' = (ki ki ---  Kk%,) for gradient aggregation, another
concern related is the corresponding bandwidth allocation towards minimizing the one-round
latency. Let B!, denote the bandwidth allocated to the device k!, in the ¢-th communication

round. Then, the local gradient upload latency can be expressed as

qS

t

U7t j—
I, =

qS

- , VKL € V. (33)
By, log, (1 + ”y,i%l)

On the other hand, the global model broadcast latency and the local gradient calculation latency

are both independent of the bandwidth allocation. Thus, the bandwidth allocation should be
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optimized towards minimizing the overall gradient upload latency, as

S, . minimize mag(im%ze ¢3 , (34a)
(B ) S | By logs (1414,)
1 M m m
subject to Y B, < B, (34b)
kt, eyt
B,i;n >0, Vk! e ). (34¢)

It is easy to observe that &, is convex such that it can be solved by the KKT conditions

[38]. For ease of notation, define R! log, <1 + 7t > as the instantaneous uplink data rate

t =
m

ty ty
kl k2

of device k! with unit bandwidth. Let <Bt* B - 7312%/[) denote the optimal solution to
Z,. Then, by parametric algorithm and simple mathematical calculation, we can find that the
optimal bandwidth allocation is achieved when the local gradient upload latency for each device
is equalized. Therefore, the optimal bandwidth allocation can be presented in the following

theorem.

Theorem 3 (Bandwidth allocation). Given the device sequence ' = (k% kL, --- | k%,) to report

their local gradients in the ¢-th communication round, the optimal bandwidth allocation is given

by

B (& 1)
Bl = —— — | , VK. €. (35)
o ()

The result in Theorem 3 is rather intuitive that more bandwidth should be allocated to the
devices with worse channel states to achieve the smallest one-round latency. By this means, the
communication latency of each scheduled device can be equalized and thus facilitate the update

synchronization needed for gradient aggregation.

VI. NUMERICAL RESULTS

In this section, we conduct experiments to validate the theoretical analysis and test the
performance of the proposed algorithms. All codes are implemented in python 3.6 and are

run on a Linux server equipped with four NVIDIA GeForce GTX 1080 Ti GPUs.

A. Experiment Settings

The default experiment settings are given as follows unless specified otherwise. We consider

a small-cell network with one edge server and K = 30 edge devices. The cell radius is 500 m.
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The edge server is located at the center of the network and each device is uniformly distributed
within the coverage. The path loss between each device and the edge server is generated by
128.1+437.6log;y(d) (in dB) according to the LTE standard [37], where d is the device-to-server
distance in kilometer. The channel noise power density is —174 dBm/Hz. The transmit powers
of each device and the edge server are set as 24 dBm and 46 dBm, respectively. The system
bandwidth is B = 1 MHz. The average quantitative bit number for each gradient and parameter
element is ¢ = 16 bits.

For exposition, we consider the learning task of training classifiers. Two prevalent learning
models of least-squared SVM and convolutional neural network (CNN) are employed for imple-
mentation Y| To better simulate the mobile data distribution in FEEL, we consider the non-IID data
partitioning way as follows. For the SVM model, we choose two typical classes of “airplane” and
“automobile” in the well-known dataset CIFAR-10 for classification, where each device owns
330 data samples in one class. For the CNN model, we use the popular MNIST dataset that
consists of 10 categories ranging from digit “0” to “9” and a total of 60,000 labeled training data
samples. We first sort all data samples by their digit labels, divide them into 60 shards of size
1,000, and then assign each device with two shards. By this means, each device obtains the data
samples with only two types of digits, making the data distribution over devices a pathological
non-IID manner. Moreover, the learning step-sizes for the SVM model and CNN model are set
as nsym = 0.0001 and nenw = 0.005, respectively.

To demonstrate the effectiveness of the proposed scheduling policy, two baseline policies
namely channel-aware scheduling and importance-aware scheduling are also implemented in
the following experiments. Specifically, the coefficient is p = 0 in the former such that the
scheduling decision depends merely on the channel state. Meanwhile, the coefficient is p = 1

in the latter such that the scheduling decision is solely decided by the update importance.

B. Scheduling One Device in Each Round

1) Performance Comparison in SVM: Fig. [3(a)] depicts the learning performance of the pro-
posed scheduling policy as compared with the two baseline policies using the SVM model. From

this figure, we can observe that at the initial stage, the proposed policy with p =5 x 107¢ can

3The CNN has 6 layers including two 5 x 5 convolution layers with ReLu activation (the first layer with 32 channels and
the second layer with 64 channels), each followed with a 2 X 2 max pooling layer, a fully connected layer with 512 units and
ReLu activation, and a softmax output layer.
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Fig. 3.

achieve comparable convergence speed as that of the channel-aware scheduling but converges
faster than the importance-aware scheduling. It is because that the learning updates of different
devices play a similar role in model convergence at the beginning of the training process,
making channel state the dominant factor for learning performance improvement. Nevertheless,
the proposed policy can outperform the channel-aware scheduling as the training proceeds.

The underlaying reason is that the gain by exploiting channel diversity is saturated such that
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Performance comparison among different scheduling policies in the strategy of scheduling one device in each
communication round.
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the improvement primarily comes from the update diversity. In particular, the channel-aware
scheduling suffers from a visible performance degradation after achieving an accuracy peak. As
we can imagine, part of devices with poor communication channels cannot participate in the
training process when scheduling decision merely depends on the channel state. This inevitably
incurs the data deficiency and will result in overfitting issue. On the other hand, the proposed
policy always outperforms the importance-aware scheduling policy since it well balances the
channel state and update importance in the training duration. Last, we can find that the weight
coefficient p has a great impact on model convergence. In specific, an overlarge p may lead to a
marginal performance gain in that the proposed policy is hardly to exploit the channel diversity
across edge devices. This suggests that the coefficient should be carefully picked to balance the
channel state and update importance and thereby improving the learning performance.

2) Performance Comparison in CNN: Fig. illustrates the performance comparison among
the three scheduling policies using the CNN model. The weight coefficient for the proposed
scheduling policy is set as p = 5 x 1072, Similar trends as in the SVM model are observed,
and the proposed policy is found to consistently surpass the baseline policies, which confirms
the robustness and stability of the theoretical results against the model structure. More precisely,
when the target accuracy is 0.8, the required training time is 60 minutes for the importance- and
channel-aware scheduling while the importance-aware scheduling takes 123 minutes to achieve
the same accuracy. Therefore, the proposed policy can save more than half time to achieve
the target accuracy comparing against the importance-aware scheduling. The performance gain
becomes more remarkable if the target accuracy is 0.9. In contrast, the channel-aware scheduling
is incapable of achieving the target accuracy due to the lack of data information from the devices
with poor channel conditions. In particular, the performance gap between the channel-aware
scheduling and importance- and channel-aware scheduling is more evident than that in the SVM
model. It attributes to the fact that the update diversity in the multiclass classification scenario
is larger than that in the binary classification scenario. These observations further demonstrate
the superiority of the proposed scheduling policy to deal with the non-I1ID data in distributed
FEEL system.

C. Scheduling Multiple Devices in Each Round

1) Performance Comparison: The learning performance of the three scheduling policies are

evaluated in the strategy of scheduling multiple devices in each communication round. Both
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Fig. 4. Performance comparison among different scheduling policies in the strategy of scheduling multiple devices in each

communication round.

the models of SVM and CNN are experimented. For SVM, we assume that M = 10 devices
can be scheduled in each round and the coefficient is set as p = 5 x 107%. For CNN, we

assume that M = 3 devices can be scheduled in each round and the coefficient is set as p =

1 x 1073, The results are displayed in Figs. and [4(b)| respectively. It can be observed from
all plots that the proposed policy achieves the fastest convergence speed along with the highest

learning accuracy throughout the entire training duration. This result is rather intuitive since
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the channel-aware scheduling overlooks the update importance whereas the importance-aware
scheduling is unconscious of the channel condition. It also confirms the applicability of the
proposed sequential scheduling without replacement algorithm, even though it cannot guarantee
the optimal device scheduling. On the other hand, the performance improvement in this strategy
is more conspicuous than that in the strategy of scheduling one device in each communication
round, which substantiates the theoretical gain brought by the intelligent trade-off between quality

and quantity in update aggregation.
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2) Scheduled Device Number: Given the alternative strategies of scheduling one and multiple
devices in each communication round, a relevant concern is the proper selection between them.
For exposition, we take the SVM model as an example and analyze the impact of the commu-
nication resource on model convergence. The curves of learning accuracy versus the training
time with different scheduled device numbers are presented in Figs. and for small
bandwidth B = 1 MHz and large bandwidth B = 20 MHz, respectively. In Fig. [5(a)l we can
observe that the scheme of scheduling one device in each round can achieve faster convergence
speed than other schemes without sacrificing the learning accuracy. In contrast, the scheme of
scheduling 10 devices in each round is superior to other schemes in terms of convergence speed
when the system bandwidth is 20 MHz. This result has a profound and refreshing implication
that the device number selection criterion should adapt to the wireless environment. Upon a
certain guarantee on communication resource, scheduling multiple devices in each round can
reduce the global gradient variance and thus accelerate the training process. This is also aligned
with the previous discussions that the communication efficiency is the primary concern in current

FEEL systems.

VII. CONCLUSION

In this paper, we have proposed a new importance- and channel-aware scheduling policy
for update aggregation in FEEL. We have developed a probabilistic scheduling framework to
guarantee the unbiasedness of the aggregated global gradient as well as to speed up convergence.
An optimal scheduling policy has been designed to incorporate the channel state and update
importance for decision making. We have also provided the concrete convergence analysis.
Moreover, the probabilistic scheduling framework has been extended to the strategy of schedul-
ing multiple devices in each communication round and some practical implementation issues
have been highlighted as well. Comprehensive experiments using real datasets substantiate the

performance gain of the proposed scheduling policy as compared with the benchmark policies.

APPENDIX A

PROOF OF LEMMA 2

First, we define an auxiliary function as

G(w)=-w'w—L(w). (36)
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By taking the second-order partial derivative of G (w) on w, we have

2 2 a
0°G (w) e 0°L(w) (Z) 0.
ow? ow?

(37)

where (a) is due to . Therefore, G (w) is convex on w, leading to the following sufficient
condition as

G(u)>GV)+VG V) (u-v), (38)
which is equivalent to
L (u) §L(v)—I—VL(v)T(u—V)—Fg||u—v||2. (39)
On the other hand, the global model update at the edge server follows
with = wl — pigt. (40)
Let u = w'™ and v = w' such that u — v = —n'g’. Applying it into (39), we have
LW < L)+ () (-8 + 5 [-nE @)
Taking expectation in both sides of (1)), it follows that
E{L(w*)} <E{L(W)} o (&) E{&) + 5 ) E{ 2}
SE{L(W)) o (&) E{E) + 5 () [(E (&) + v {g)]
UL (w)h o (1 g ) I+ 507 (@, @)

where V{g'} = E {H@t — gtHQ} is the variance of the global gradient and (b) is because g’ is
an unbiased estimate of the ground-truth global gradient. Then subtracting E {L (w*)} in both

sides of (42)), we can obtain the one-round convergence rate in Lemma 2.
APPENDIX B
PROOF OF LEMMA 3

The objective function (23a)) is convex because L and z are both convex on (0, +-00). Moreover,

the constraints (23b) and (23c) are linear. Thus, &7; is convex and can be solved by the
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KarushKuhnTucker (KKT) conditions [38]]. The partial Lagrange function is defined as

K K
1
L = E ak$—k+bk$k+>\(g ckxk—d>, 43)
k=1

k=1
where A > 0 is the Lagrange multiplier associated with the constraint (23b)). Let {x}, x5, -+ , %}
denote the optimal solution to &?3. Then applying KKT conditions leads to the following

necessary and sufficient conditions

& >0, z; =0
8*:—%+bk+A*ck= - TR, (44)
O (x7) =0, 23>0

K
>y —d=0. (45)
k=1

By solving these equations, we can obtain the solution in Lemma 3.

APPENDIX C

PROOF OF THEOREM 2

To prove Theorem 2, we first establish the following lemma.

Lemma 5. The squared norm of the ground-truth global gradient in the ¢-th communication

round satisfies

lg'll" > 21 (L (w') = L(w")). (46)
Proof: Since the global loss function is strongly convex with the parameter f, it follows
L(w') > L(w') + ()" (w = w') + 5w —w|. @7
Minimizing both sides of (7)) with respect to w'*!, we have

min L (wt“) > min [L (wt) + (gt)T (th — wt) + g HWt—H — Wt||2] . (48)

wt+1 witl

The minimization of the left-hand side of is achieved when w'*! = w* while the right-hand

side of l@l is minimized when w'™! = w! — igt [39]. Thus, it leads to

) (49)

which is equivalent to the desired result in (46)).
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Based on Lemma 5, we can prove Theorem 2 as follows. Combining (46)) with the one-round

convergence rate in (#2), we can derive that
E{L (W)~ L(w)}
SE{L(W) ~ L(w)} — 2 B{(L (w) - Lw)}+ 5 (1) E] &)
= (2 L () L) ¢ : (nt)QE{H?HZ}
L0 g B ) - Lo Y (R oo

where A® = HE:Z 1 (1 =2pun7). Then applying the optimal scheduling policy into E {||/g\z\|2},

we can obtain the desired result in Theorem 2, which ends the proof.

APPENDIX D

PROOF OF COROLLARY 1

We will prove Corollary 1 by induction. First, according to (50), the following inequality

holds in each communication round, as
14 .
E{L(w*") = L(w)} < (1—2un) E{L (W) = L(w")} + 3 ()’ E {||gtH2} 6D

1
For the diminishing learning rate n' = % where Y > — and v > 0, we have

e« For t = 1, it satisfies

¢ _ ¢
t+vh=1 14v
© (1+v)E{L(w") — L(w")}
- 1+v
=E{L(w')—L(w")}, (52)

where (c) is derived from the definition of (. Therefore, the desired result holds when ¢ = 1.

o Assume that the desired result holds for some t = N > 1, ie., E {L (WN) — L (w*)} <
C
N+v

Define G = max ||g’|| as the upper bound of the global gradient norm. Then when
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(1]

(2]

(3]

(4]

(]

(6]

(71

(8]

t =N + 1, it follows

E{L (w"™") — L(w")}

< (12" E{L (w") ~ L(w)} + 5 () E{ 2"}

2
X ¢ ¢ X 2
<[1-2 — | ==
_( MN+V)N+V+2<N—|—V>G
1
CIN H v =1) + S0G** = (2px = 1)¢
N (N +v)?
1 (G2
N -1 —0G*N? — Quy — 1) —— 2
- (N +v)°
((N+v—-1)
(N + 1/)2
¢
< — 53
" N+1+4+v (53)
Hence, the desired result holds for ¢t = N + 1 if it holds for ¢ = N. Towards this end, we
can conclude that E {L (w”) — L (w*)} < T—CF holds for VT' € Z*, which completes
v
the proof.
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