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Fractionalization and anomalies in symmetry-enriched U(1) gauge theories
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We classify symmetry fractionalization and anomalies in a (3+1)d U(1) gauge theory enriched by a global
symmetry group G. We find that, in general, a symmetry-enrichment pattern is specified by four pieces of data:
ρ, a map from G to the duality symmetry group of this U(1) gauge theory which physically encodes how the
symmetry permutes the fractional excitations, ν ∈ H2

ρ[G, UT(1)], the symmetry actions on the electric charge,
p ∈ H1[G,ZT], indication of certain domain wall decoration with bosonic integer quantum Hall (BIQH) states,
and a torsor n over H3

ρ[G,Z], the symmetry actions on the magnetic monopole. However, certain choices of
(ρ, ν, p, n) are not physically realizable, i.e., they are anomalous. We find that there are two levels of anomalies.
The first level of anomalies obstruct the fractional excitations being deconfined, thus are referred to as the
deconfinement anomaly. States with these anomalies can be realized on the boundary of a (4+1)d long-range
entangled state. If a state does not suffer from a deconfinement anomaly, there can still be the second level of
anomaly, the more familiar ’t Hooft anomaly, which forbids certain types of symmetry fractionalization patterns
to be implemented in an on-site fashion. States with these anomalies can be realized on the boundary of a (4+1)d
short-range entangled state. We apply these results to some interesting physical examples.
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I. INTRODUCTION

A three dimensional ((3+1)d) U(1) quantum spin liquid
(QSL) is an exotic gapless quantum phase. Due to the long-
range entanglement inherent in this phase, it can be described
by a compact (3+1)d U(1) gauge theory at low energies.1 It
features emergent photons as the dominant low-energy excita-
tions, but fractional excitations (i.e., excitations with electric
and/or magnetic charges) are still ineluctable in the system,
even if they are gapped. This phase has been shown to be
stabilized in a number of microscopic models [1–8]. Recently,
the prospect of realizing U(1) QSLs in the “quantum spin ice”
phase of rare earth pyrochlores has stured much theoretical
and experimental work [9–15].

Microscopic realizations of a U(1) QSL often enjoy certain
global symmetries. In order to understand the physical prop-
erties of a U(1) QSL, it is important to develop a systematic
theory for the interplay between these global symmetries and
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1In this paper, we will use the terms “U(1) QSL” and “U(1) gauge
theory” interchangeably.

its more intrinsic properties due to its long-range entangle-
ment. As an example, the quantum spin ice has a time-reversal
symmetry, and the monopoles are Kramers doublets under
the time-reversal transformation, i.e., the symmetry is realized
projectively.

This understanding also provides useful information re-
garding the global phase diagram of a U(1) QSL, especially
its proximate phases and the phase transitions between them.
For instance, condensation of electric or magnetic charges can
drive the U(1) QSL to a short-range entangled phase, whose
nature (e.g., symmetry-breaking pattern) depends on the prop-
erties of the condensed charges [5]. Symmetry considerations
are crucial in determining the properties of these proximate
phases.

A given set of global symmetries can have qualitatively dis-
tinct realizations in a U(1) QSL, in the sense that U(1) QSLs
with different symmetry realizations can have symmetry-
protected distinctions (see Fig. 1). These different U(1) QSLs
are referred to as symmetry-enriched U(1) QSLs under this
symmetry.

Building on the preliminary work in Ref. [16], U(1) gauge
theories enriched by time reversal symmetry were first classi-
fied in Ref. [17]. A systematic framework for the classification
of generic symmetry-enriched U(1) gauge theories was then
proposed in Ref. [18], and this framework was applied to
obtain the classifications of some rather nontrivial examples.
In this framework, the bulk properties of a symmetry-enriched
U(1) gauge theory is characterized by statistics and the
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FIG. 1. The notion of symmetry-protected distinction between
two phases. These two phases can be smoothly connected if the
system lacks certain symmetry, but they are necessarily separated by
a phase transition in the presence of the symmetry.

symmetry properties of the elementary electric charge and
magnetic monopole of the theory, and its surface proper-
ties can be further enriched by weakly coupling it with a
symmetry-protected topological (SPT) phase. In this paper,
we will focus on the bulk properties of a symmetry-enriched
U(1) gauge theory.

To completely specify the symmetry properties of a U(1)
QSL, we need to know how symmetries act on the elemen-
tary electric charge and magnetic monopole, known as the
symmetry fractionalization patterns. The symmetry actions on
the elementary electric charge and on the magnetic monopole
are naively independent, but some of their combinations turn
out to be anomalous, i.e., a U(1) gauge theory with certain
symmetry fractionalization patterns cannot be realizable in
any (3+1)d lattice spin system if the symmetry is implemented
in an on-site manner, and it can only be realized as a bound-
ary of a (4+1)d system. Reference [18] proposed a general
physics-based method to detect such anomalies, and many
nontrivial examples were demonstrated therein.

However, despite being general, systematic and physically
intuitive, the method employed in Ref. [18] can be some-
times sophisticated to implement. It is thus desirable to have
a mathematical classification of anomalies, and a formula
that indicates whether a symmetry fractionalization pattern
is anomalous or not, and if it is anomalous, what kind of
(4+1)d system can adopt this anomalous U(1) gauge theory
as its boundary. Furthermore, it is desirable if this anomaly
formula can be formulated purely in terms of the physical
symmetry quantum numbers of the elementary electric charge
and magnetic monopole.

The main goal of this paper is to develop such a systematic
understanding of anomalies in symmetry-enriched U(1) gauge
theories. As we will see, there are in fact two layers of anoma-
lies: the first of them, the deconfinement anomaly, obstructs
the deconfinment of the fractional excitations, rendering the
notion of symmetry fractionalization ill-defined. When the
first anomaly is absent, the second anomaly indicates whether
the system has to live on the boundary of a (4+1)d nontrivial
SPT phase. This is the more familiar ’t Hooft anomaly.

The rest of the paper is organized as follows. In Sec. II,
we will give a brief review of the physics of a U(1) gauge
theory. In Sec. C, after sketching its derivation, we will present
a classification of symmetry-enriched U(1) gauge theories
and the structure of their anomalies. This analysis is based
on the conjecture that all anomaly-free symmetry-enriched
U(1) gauge theories can be viewed as partially gauged SPT
phases. In this paper, we will mostly consider U(1) gauge

theories with bosonic electric charges. We will then apply the
anomaly formula to some interesting examples in Sec. IV.
Some of these examples were discussed in Ref. [18], and our
anomaly formula can reproduce the corresponding results and
verify some conjectures made in Ref. [18]. Besides these, we
also discuss some other new intriguing examples. In partic-
ular, we discuss which U(1) QSLs can be realized if SO(3)
spin rotational symmetry and (3+1)d translation symmetry are
preserved. Namely, we find symmetry-enriched U(1) gauge
theories that can satisfy the Lieb-Schultz-Mattis (LSM) con-
straint. We also discuss a symmetry-enriched U(1) gauge
theory that is related to the intrinsically interacting fermionic
SPT phase found in Ref. [19]. Finally, we conclude in Sec. E.
Various appendices contain some technical details.

II. REVIEW of U(1) GAUGE THEORY

Generally a U(1) gauge theory (with bosonic electric
charge) is described by the following Lagrangian at low en-
ergies:

L = − 1

4e2
f μν fμν + θ

32π2
εμνλρ f μν f λρ. (1)

Here, e is the gauge coupling strength and θ is the axion
angle. Notice that, in the absence of other symmetries, θ is
4π -periodic if the charges are bosonic [20,21]. At low ener-
gies, the theory simply describes propagating photons. Above
certain energy gap, there are fractional excitations carrying
electric and magnetic charges. We denote the electric and
magnetic charge of an excitation by qe and qm, respectively.
Due to the Dirac quantization condition [22], the possible
values of qe and qm form a charge-monopole lattice. Because
of the θ -term, an excitation acquires a “polarization charge”
θ

2π
qm due to the Witten effect [23] (see Fig. 2). Therefore

the charge of a generic fractional excitation should be written
as qe = n + θ

2π
qm, where n is an integer counting the electric

charge of this excitation at θ = 0. The self-statistics of a frac-
tional excitation with electric and magnetic charges (qe, qm)
is given by (−1)(qe− θqm

2π
)qm . This formula indicates that the

statistics of the excitations is invariant when θ is changed by
4π .

In the absence of any orientation-reversing symmetries
(time reversal and/or spatial reflection), θ can be tuned contin-
uously. Without loss of generality, in this case we can always
tune θ to be 0 without encountering a phase transition. In the
presence of an orientation-reversing symmetry, θ is quantized
to be an integer multiple of 2π . In all these cases, there
is a charge-neutral monopole with a unit magnetic charge,
i.e., qm = 1. If θ = 2πN with N even (odd), the elemen-
tary charge-neutral monopole is bosonic (fermionic). We will
denote by E the elementary electric charge with (qe, qm) =
(1, 0), denote by M the elementary charge-neutral monopole
with (qe, qm) = (0, 1). The charge-monopole lattice Z × Z is
generated by E and M, and we call bound states of certain
numbers of E and M a dyon.

For θ = 0 (mod 4π ), the U(1) gauge theory has an
emergent duality symmetry group of automorphisms, i.e., per-
mutations of fractional excitations that preserve all universal
properties, such as exchange statistics. In defining automor-
phisms, we ignore energetics such as gaps of the particles.
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FIG. 2. (Top) Possible values of the electric and magnetic
charges of an excitation, (qe, qm ), form a charge-monopole lattice.
This figure shows the charge-monopole lattice at θ = 2πN , where N
is an integer. (Bottom) When θ �= 0, the positions of the fractional
excitations in the charge-monopole lattice are shifted due to the
Witten effect. More precisely, the excitation with magnetic charge
qm will get additional electric charge θqm

2π
. In the above figure, the

lengths and directions of the red arrows indicate how the positions of
the corresponding excitations change.

Permutation of charges can be specified by its action on the
two generators:

(q′
e

q′
m

)
=

(a b
c d

)(qe

qm

)
. (2)

Clearly a, b, c, d ∈ Z. In order to preserve the charge-
monopole lattice, we must demand ad − bc = ±1. One can
further show that only ad − bc = 1 preserves the geometric
Berry phase associated with braiding dyons, while ad − bc =
−1 flips the Berry phase. All integer 2 × 2 matrices with unit
determinant form the group SL(2,Z), generated by S and T:

S =
(0 −1

1 0

)
, T =

(1 1
0 1

)
(3)

However, the Tn transformation changes the statistics of par-
ticles for odd n (e.g., a bosonic charge (1,0) turns into a
fermionic dyon (n, 1)), so the group that preserves all Berry
phases is actually generated by S and T2, and we will denote
this group by D+. Tn with odd n can only be realized in a U(1)
gauge theories with fermionic charge, and we will not discuss
them in this paper.

We can also consider the permutations reversing the sign
of the Berry phase, which must correspond to orientation-
reversing transformations. All these can be obtained from D+
by multiplying the following matrix

(1 0
0 −1

)
. (4)

We will denote all such permutations by D−. Altogether, we
have found the duality symmetry group D = D+ ⊕ D−.

Although we started from the relativistic Lagrangian
Eq. (1), our discussion below will not rely on Lorentz sym-
metry in essential ways. In other words, we consider more
broadly quantum phases with emergent U(1) gauge symmetry
with gapped electric and magnetic charges, which are not
necessarily described by the relativistic Lagrangian.

III. SYMMETRY FRACTIONALIZATION AND
ANOMALIES IN U(1) GAUGE THEORY

Now we consider a U(1) gauge theory realized in a mi-
croscopic model with a global symmetry group G. We will
analyze how global symmetry transformations are realized
in the low-energy theory. For clarity, let us assume that G
is internal, and we expect the results for spatial symmetries
will be similar [24,25]. We will also consider the case where
G includes lattice translation symmetry in some occasions.
Notice that G may contain both unitary and antiunitary trans-
formations. To formally keep track of this, we define a Z2

grading s : G → Z2 = {1,−1} on G to indicate whether a
group element g corresponds to a unitary (s(g) = 1) or an-
tiunitary (s(g) = −1) transformation.

First of all, we consider how gauge-invariant operators
transform under the symmetries. In the low-energy limit of
a U(1) gauge theory, all gauge-invariant local operators can
be built up out of field strengths E and B. They may trans-
form nontrivially under a symmetry operation. For example, a
charge conjugation symmetry takes E → −E and B → −B.
Equivalently, because E and B are sourced by electric and
magnetic charges, we can also directly write down how the
types of electric and magnetic charged excitations transform.
In the example of charge conjugation, E → E† and M → M†.
Clearly such a transformation is an element in D. Therefore
we have a group homomorphism ρ from G to D (preserving
the grading s).

When ρ is given, we still do not have a complete descrip-
tion of the symmetry action. The missing information is how
symmetry acts locally on an individual fractional excitation,
which will be referred to as symmetry fractionalization. A
major goal of this work is to obtain a complete classification of
both ρ and symmetry fractionalization in physical U(1) gauge
theories. The basic principle is the following conjecture, first
formulated in Ref. [18]: All physical symmetry-enriched U(1)
gauge theories can be realized as partially gauged SPT phases.

Let us elaborate on this statement. By physical, we mean
that the U(1) gauge theory can be realized in a 3D microscopic
model with an on-site symmetry group G. The above conjec-
ture allows us to only consider SPT phases whose symmetry
group contains U(1) as a normal subgroup, which after gaug-
ing becomes the U(1) gauge symmetry. G is the remaining
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global symmetry after gauging. We note that the above princi-
ple has also been applied to study symmetry-enriched SU(N )
gauge theories [26,27].

An immediate consequence of this conjecture is that one
should be able to identify a certain dyonic excitation (and
multiples of this dyon) as the matter of the SPT phase, coupled
to a U(1) gauge field. In the charge-monopole lattice, all the
matters of this SPT phase should correspond to a line of lattice
points passing through the origin. The global symmetry must
fix this line in order for the gauging to make sense. Denote
a dyon on this line by (qe, qm), and suppose the symmetry
transformation on the charge type is given by (a b

c d), then

(a b
c d

)(qe

qm

)
= k

(qe

qm

)
, (5)

where k is a nonzero integer. To have a nonzero solution to
this equation, we must have

det
(a − k b

c d − k

)
= 0. (6)

Together with ad − bc = 1, we find a + d = k2+1
k . Since a +

d ∈ Z, the only consistent choices are k = ±1, corresponding
to a + d = ±2. In other words, such SL(2, Z) matrices have
trace ±2. It is known that they are actually all conjugate to
±Tn for n ∈ Z. Because all such transformations have an
infinite order except for n = 0, when G is a compact group
(including finite groups) we only need to consider n = 0,
i.e., the charge-conjugation subgroup. When G contains an
infinite-order element (e.g., lattice translation), the element
can act as the T transformations. If the symmetry is realized
with n = 0, we can take any of the dyons as the SPT matter.
If the symmetry is realized with n �= 0, we should take (qe, 0)
as the SPT matter.

We can also consider antiunitary transformations, which
have ad − bc = −1. Following a similar argument, we find
that if there is a fixed line in the charge-monopole lattice, the
trace must be 0, i.e., a + d = 0. One can show that all such
matrices are conjugate to either (1 0

0 −1) or (0 1
1 0). The former

case is just the usual convention that the electric (magnetic)
fields are even (odd) under time reversal. In the later case,
(1,±1) is the fermionic dyon identified as the SPT matter.
This case corresponds to a U(1) gauge theory with θ = π . We
will not consider this case further in this work.

To conclude this discussion, if we only consider compact
symmetry groups, we may restrict the image of ρ to the Z2

charge-conjugation subgroup of D. Next we analyze symme-
try fractionalization.

A. Symmetry fractionalization

Based on the above discussion, in a U(1) gauge theory a
general compact symmetry group G comes with a Z2-grading
ρ : G → Z2 = {1,−1}. ρ(g) = −1 means g acts as charge
conjugation:

g : E → −E, B → −B. (7)

Besides the charge-conjugation grading, there is also the
Z2 grading s to distinguish unitary and antiunitary transfor-
mations. We will take the convention that the electric and

magnetic fields transform as

g : E → ρ(g)E, B → ρ(g)s(g)B. (8)

So the transformation belongs to Ds(g). Equivalently, the
charges transform as

qe → gqe = ρ(g)qe, qm → gqm = ρ(g)s(g)qm. (9)

Once we specify how charges are permuted by symmetries,
we examine how symmetry locally transforms an individual
charge. Consider the action of the global symmetry operator
Rg for g ∈ G on a physical state |�〉 with multiple fractional
excitations a1, a2, . . . , an, which are spatially well-separated.
The symmetry operator may transform the field lines induced
by the charges, as given in Eq. (8). In addition, Rg may
also induce localized unitary transformations on each of the
charges. We argue that

Rg ≈
∏

j

U
(a j )
g ρ̂g. (10)

Here we separate local unitary transformations U
(a j )
g from the

nonlocal transformation ρ̂g that acts globally on gauge theory.
This equation should be understood as an (approximate) oper-
ator identity when operators localized in the neighborhood of
charge excitations are concerned.

Comparing the global symmetry action RgRh and Rgh
yields

RgRh = Rg

n∏
j=1

U
(a j )
h ρ̂h = Rg

n∏
j=1

U
(a j )
h R−1

g Rgρ̂h

= Rg

n∏
j=1

U
(a j )
h R−1

g

n∏
k=1

U (ak )
g ρ̂gρ̂h

=
n∏

j=1

gU
(a j )
h U

(a j )
g ρ̂gρ̂h,

where gU
(a j )
h = RgU

(a j )
h R−1

g has its nontrivial action localized
within the vicinity of a j , and we have used the fact that ρ̂gρ̂h =
ρ̂gh and the fact that operators whose nontrivial actions are
localized in different regions commute with each other.

Comparing this with Rgh = ∏
j U

(a j )
gh ρ̂gh, we must have

gU
(a j )
h U

(a j )
g = ηa j (g, h)U (a j )

gh (11)

and
n∏

j=1

ηa j (g, h) = 1. (12)

In particular, η−a(g, h) = ηa(g, h)−1.
Now we consider the associativity:

ghU (a)
k

gU (a)
h U (a)

g = ηa(g, h)ghU (a)
k U (a)

gh

= ηa(gh, k)ηa(g, h)U (a)
ghk,

ghU (a)
k

gU (a)
h U (a)

g = η
s(g)
ga (h, k)gU (a)

hk U (a)
g

= ηa(g, hk)ηs(g)
ga (h, k)U (a)

ghk. (13)
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So we have the associativity constraint

ηa(g, hk)ηs(g)
ga (h, k) = ηa(gh, k)ηa(g, h). (14)

There is some redundancy in ηa(g, h) due to the freedom to
redefine U (a)

g by multiplying a phase ζa(g) to it. In order to not
affect Rg, they need to satisfy

∏
j ζa j (g) = 1. This redefinition

of local operators changes the phases ηa(g, h) in the following
way:

ηa(g, h) → ζa(g)ζ s(g)
ga (h)

ζa(gh)
ηa(g, h). (15)

Now let us specialize to a = E and M. For a = E,
ηgE(h, k) = η

ρ(g)
E (h, k), therefore

ηE(g, hk)ηρ(g)s(g)
E (h, k) = ηE(gh, k)ηE(g, h). (16)

ηE defines a 2-cocycle in Z2
ρ·s[G, U(1)], where the E subscript

indicates that G acts on U(1) as identity/complex conjugation
if ρ · s = 1 or −1. The redundancy in Eq. (15) means that the
equivalence classes of ηE are given by the second cohomology
group H2

ρ·s[G, U(1)], which in the literature is also denoted
as H2

ρ[G, UT(1)], where the subscript T indicates that the
action of time reversal is given by s. A brief review of these
mathematical concepts is provided in Appendix A.

Similarly, we can show that ηM is classified by
H2

ρ[G, U(1)], where the ρ subscript indicates that G acts on
U(1) as identity/complex conjugation if ρ = 1 or −1. So
different symmetry fractionalization classes can be labeled by
two 2-cocycles [ν] ∈ H2

ρ·s[G, U(1)] and [ωM] ∈ H2
ρ[G, U(1)].

In Ref. [18], [ν] and [ωM] are dubbed the electric and magnetic
projective representations of the symmetry group G, respec-
tively.

Notice that in the absence of any orientation-reversing
symmetry, the properties of the monopole can be changed by
smoothly varying θ . To understand the effect of the θ -term,
let us start with θ = 0, where in our convention M is a bo-
son with a certain projective quantum number [ωM]. To get
to the case with a nonzero θ , we can imagine continuously
tuning the value of θ , so that the positions of the fractional
excitations in the charge-monopole lattice are shifted due to
the Witten effect (see Fig. 2). To have a charge-neutral ele-
mentary monopole, we need to tune the value of θ to be an
integral multiple of 2π , say, 2πN with N an integer. Then the
projective quantum number of the charge-neutral elementary
monopole with this value of θ is determined by the excitation
with (qe, qm) = (−N, 1) at θ = 0, which is [ωM · ν−N ] (this
is well-defined since for an orientation-preserving symmetry
both ν and ωM are classified by H2

ρ[G, U(1)]). In particular,
when θ is varied by 4π , the statistics of the monopole is in-
variant, but its symmetry fractionalization pattern gets shifted
by [ν−2]. So in this case [ωM] is well-defined only up to [ν2].

In the presence of an orientation-reserving symmetry, θ is
quantized to be a multiple of 2π . In this case, we can still
define the symmetry fractionalization class of charge-neutral
monopoles (not just up to [ν2]).

This discussion can be generalized to other duality trans-
formations, e.g. the S transformation, as long as they are
compactible with the symmetry action on charge types. Two
symmetry fractionalization classes related by these duality

transformations should correspond to the same symmetry-
enriched phase. For example, if G is unitary and acts as
identity or charge conjugation, the S transformation com-
mutes with the symmetry action, so in this case the electric
and magnetic projective representations can be interchanged
without changing the phase.

Therefore, following general considerations, we have
found that a symmetric U(1) gauge theory is equipped with
four pieces of data: symmetries permuting charge types, given
by ρ, and projective symmetry transformations, parametrized
by ν ∈ H2

ρ·s[G, U(1)], the value of θ , and ωM ∈ H2
ρ[G, U(1)].

However, it is not clear that every (ρ, [ν], θ, [ωM]) can be
realized physically in (3+1)d as a partially gauged SPT phase.
In fact, it is sometimes even problematic to discuss the classi-
fication of projective quantum numbers if action of ρ contains
e.g. T 2 elements. Below we address this issue.

B. Ungauging

We would like to construct a U(1) gauge theory from
gauging a bosonic SPT phase. First, we must identify the
matter particles, or “gauge charges.” Suppose that the matter
is generated by a particular dyon (qe, qm). Without loss of
generality, we may assume gcd(qe, qm) = 1. We will further
assume that (−1)qeqm = 1, so the dyon is bosonic. Then we
perform a duality transformation so that this dyon becomes
the E charge (1,0). More explicitly, the duality transformation
takes the following form:

U =
( x y
−qm qe

)
, (17)

with xqe + yqm = 1. It is straightforward to check that

U (
qe

qm
) = (

1
0). The “monopole” (0,1) is actually the image of

(−y, x) under this duality transformation. Notice that since
x, y are not uniquely determined, there are infinitely many
choices of the “monopole,” which are related to each other
via T transformations. From now on, we will assume that
such a duality transformation has been done, so that the
matter is generated by the bosonic E charge, and there is a
charge-neutral elementary monopole M. In the absence of any
orientation-reversing symmetry, M will always be taken as a
boson, because this can be achieved by smoothly tuning θ

to be 0. On the other hand, in the presence of a orientation-
reversing symmetry, the value of θ cannot be smoothly varied
and the statistics of M is a robust universal feature of this
symmetry-enriched phase.

We now determine the structure of the symmetry group of
the matter. In the U(1) gauge theory, the E charge can trans-
form projectively under G, with a factor set ν that specifies
the corresponding projective representation. Correspondingly,
in the SPT phase the fundamental charge-1 boson carries the
same projective representation of G. Mathematically, it means
that the actual symmetry group G of the SPT phase is an
extension of G by U(1) (while the symmetry group of the U(1)
gauge theory is of course just G). For notational convenience
we use U(1) and its isomorphic group R/2πZ interchange-
ably, i.e., eiθ ∈ U(1) is identified as θ ∈ [0, 2π ). Let us now
define G. Denote the unitary transformation associated with
g ∈ G by Rg, and let Rθ = eiQθ be a U(1) rotation. We have
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the following relation:

RgRθR−1
g = Rs(g)ρ(g)θ . (18)

Because charged bosons transform as projective representa-
tions of G, we have

RgRh = eiν(g,h)QRgh. (19)

These two relations Eqs. (18) and (19) completely determine
the group structure of G. In the following it will be more
convenient to use additive notations for group multiplication,
and label elements of G as ag where a ∈ R/2πZ and g ∈ G.
The multiplication in G is then given by

ag × bh = [a + gb + ν(g, h)]gh. (20)

with gx = ρ(g)s(g)x.
It is now well-understood that the classification of bosonic

SPT phases in d = 1, 2 and 3 spatial dimensions is given by
group cohomology Hd+2[G,ZT] [28], plus additional “be-
yond cohomology” phases when antiunitary symmetries are
present in 3D given by H1[G,ZT] [20,29,30]. For compact
(or finite) G, we have Hd+2[G,ZT] 	 Hd+1[G, UT(1)]. The
“beyond cohomology” part is not relevant for our purpose,
because H1[G,ZT] 	 H1

s [G,Z] and describes SPT phases
protected by G alone. Below we present an explicit description
of H4[G, UT(1)].

1. Projective quantum numbers of monopoles

Before discussing the general classification, we first ex-
plain how the symmetry properties of the magnetic monopole
is encoded in this formalism.

Let us start from the simplest case where G is unitary and
ρ = 11, [ν] = [0]. In this case, G = U(1) × G. The Künneth
formula then implies

H4[U(1) × G, U(1)] = H4[G, U(1)] × H3[G,Z]

= H4[G, U(1)] × H2[G, U(1)]. (21)

The last equality assumes a compact/finite G. Physically,
H4[G, U(1)] describes SPT phases protected by G alone and
thus is not of interest. The other factor, H2[G, U(1)], de-
scribes projective representations of G and it is very natural
to identify it with the fractionalization class [ωM] of mag-
netic monopoles. In fact, we can find the following explicit
parametrization of 4-cocycle in H4[G, U(1)]:

ω(ag, bh, ck, dl) = μ(g, h, k, l)eian(g,h,k). (22)

Here μ must be a 4-cocycle of G, and n is a 3-cocycle in
H3[G,Z] 	 H2[G, U(1)].

We will show that the 3-cocycle n indeed encode the
symmetry fractionalization pattern on the monopole, i.e., it is
equivalent to ωM. To do so, let us first turn on the U(1) gauge
field. In the group-cohomology models with a unitary sym-
metry group, a 4-cocycle in fact determines the space-time
partition function on a general 4-manifold [31], equipped with
background gauge fields.2 Since the SPT phase is gapped and

2When the symmetry group is finite, such a partition function can
be rigorously represented as a finite state sum on a triangulated

we are only interested in the topological part of the response
theory, we can assume that the gauge fields are flat. Denote
the partition function of the SPT phase on a closed space-
time manifold M equipped with the background U(1) gauge
field, represented by a R-valued 1-cochain A, and G gauge
field g, by Z (M; A, g) = exp (iStop[M; A, g]). The expression
of Stop[M; A, g] is determined by Eq. (22), and it is given
explicitly in Eq. (24). If A is promoted to be a dynamical
gauge field, then the partition function in the presence of a
background G gauge field is

Z (M; g) =
∫

DA eiStop[M;A,g]+iS[M;A], (23)

where S[M; A] includes both the Maxwell term and the θ -
term Sθ [A], which contains no coupling between A and g. All
coupling between A and g is in the topological term:

Stop[M; A, g] =
∫

M
A ∪ n. (24)

Here, n(g) is the Z-valued 3-cocycle on M which is the pull-
back of n ∈ H3[G,Z] by the map g : M → BG corresponding
to the gauge field g. This is essentially equivalent to Eq. (22).
Notice in writing the above action, we have dropped terms that
only depend on g (and M). These terms physically describe
attaching a G-SPT to the U(1) gauge theory, and they will not
be considered in this paper.

Now using the correspondence between H3[G,Z] and
H2[G,R/Z], we write n = 1

2π
βω with ω ∈ Z2[G,R/Z]

where β is the Bockstein homomorphism. Using integration
by parts, we find

Stop[M; A, g] = 1

2π

∫
M

F ∪ ω(g). (25)

Here, F = δA is the field strength. Formally this action is
analogous to the well-known F ∧ F topological theta term,
and it will potentially give the monopole nontrivial projective
quantum number under G.

To fully unearth the physical consequence of Stop[M; A, g],
we put the theory on M = S2 × M2, with S2 containing only
spatial components and M2 a general space-time 2-manifold,
and put a 2π U(1) flux through S2 (i.e., S2 encloses a unit
monopole). We then take a limit where the linear size of M2 is
much greater than that of the S2. Now this partition function
describes the quantum amplitude of a process in which a
monopole moves in the reduced spacetime M2. This quantum
amplitude receives contributions from both Stop[M; A, g] and
the θ -term. The contribution from the θ -term is analyzed
above in Sec. III A: the θ -term can change the projective
quantum number of the monopole by − θ

2π
[ν]. The contri-

bution from Stop becomes 1
2π

∫
M F ∪ ω = ∫

M2
ω. This means

that the worldline of the monopole is further associated with
an additional contribution to the quantum amplitude,

∫
M2

ω,
which is precisely the M2 partition function of a (1+1)d G-SPT
state whose boundary realizes the projective representation

manifold. Although in our case the symmetry group contains U(1)
and more work is needed to rigorously write down the partition
function, we will dispense mathematical rigor for now and proceed
formally.
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specified by the factor set [ω]. That is to say, the magnetic
flux line is further decorated with this (1+1)d G-SPT state,
and its end point, the magnetic monopole, gets one more
piece of contribution to its projective representation of G,
which is specified by the factor set [ω]. So when both the
θ -term and the Scoupling are taken into account, the projective
quantum number of the charge-neutral monopole is given by
[ω] − N[ν] for θ = 2πN . In the present case, [ν] = 0 and
[ωM] is just identified as [ω].

C. Structure of H4[G, UT(1)]

Now we explain the main result of this work, the structure
of the cohomology group H4[G, UT(1)]. Details of the proofs
of our statements can be found in Appendix B.

Recall that G is an extension of G by U(1), with a 2-cocycle
[ν]. A cohomology class in H4[G, UT(1)] is specified by three
layers of data: (1) a 1-cocycle [p] from H1

s [G,Z], where the
coefficient Z is in fact H3[U(1), U(1)]. In other words, p ∈
Z satisfies p(g) + s(g)p(h) = p(gh). Importantly, [p] and [ν]
need to satisfy an obstruction-vanishing condition. Define

γ (g, h, k) = 2s(gh)[ν(g, h)]2π p(k). (26)

Here, [x]2π represents the fractional part of x with respect
to 2π , i.e., [x]2π = x mod 2π and [x]2π ∈ [0, 2π ). One can
easily show that γ is a 3-cocycle in Z3

ρ[G,R/2πZ]. There
must exist n ∈ C3

ρ[G,Z] such that δρn = �, where � =
1

2π
βργ ∈ Z4

ρ [G,Z]. Namely, γ needs to be a trivial cocycle in
H3

ρ[G,R/2πZ] for this obtruction to vanish. We will call [γ ]
the H3 deconfinement obstruction (or symmetry localization
obstruction) class, for reasons that will become clear later. We
remark that this obstruction class is purely determined by ρ

(how the symmetry permutes fractional excitations), [ν] (the
symmetry actions on the electric charge E), and [p], whose
meaning will be explained below. In contrast, the symmetry
actions on the magnetic monopoles are not in charge of this
obstruction, as will be clear later.

(2) When the deconfinement obstruction vanishes, we can
solve δρn = �, and different solutions of n are parametrized
by a torsor over H3

ρ[G,Z]. When ν = 0, the obstruction class
is canonically zero, and we have shown that n describes
projective representation carried by magnetic monopoles in
Sec. III B 1. Based on the mathematical structure, we conjec-
ture that the same interpretation holds more generally, namely,
the H3

ρ[G,Z] torsor classifies symmetry fractionalization on
monopole excitations.

(3) Finally, an obstruction 5-cocycle [O] ∈ H5
s [G, U(1)]

must vanish. Otherwise, the U(1) gauge theory that would
arise from gauging this SPT phase must be realized on the
boundary of a (4+1)d SPT phase defined by [O]. When
[O] is trivial, we may modify the 4-cocycle by an element
from H4

s [G, U(1)], corresponding to stacking a G-SPT phase.
Notice that this does not necessarily lead to a new symmetry-
enriched U(1) gauge theory [17,18]. The full expression for
[O] is rather complicated and is given in Eq. (B31) of Ap-
pendix B. Below we will consider in detail specific cases
where the formula simplifies significantly.

To better understand the classification, we consider a few
simplified cases.

Case 1. If G is unitary and compact (finite), then
H1[G,Z] = Z1, so we can set p = 0, which implies that the
obstruction class � vanishes identically. In this case, the 4-
cocycle has the following simple representation:

ω(ag, bh, ck, dl) = ω(g, h, k, l)eian(h,k,l). (27)

As before, ω(g, h, k, l) is a 4-cocycle in H4
s [G, U(1)], and n

can be taken as a 3-cocycle in H3
ρ[G,Z].

As before, the 3-cocycle n encodes the information of the
symmetry fractionalization class on the monopole. Using [n]
and [ν] ∈ H2

ρ·s[G, U(1)], which characterizes the symmetry
fractionalization class on the charge, we have the following
expression for the obstruction 5-cocycle:

O(g, h, k, l, m) = e−is(gh)ghν(g,h)n(k,l,m). (28)

We claim that a U(1) gauge theory with symmetry fractional-
ization pattern given by ρ, [ν] ∈ H2

ρ·s[G,R/2πZ] and [n] ∈
H3

ρ[G,Z] is realizable if and only if [O] belongs to the trivial
class in H5

s [G, U(1)]. If [O] belongs to a nontrivial class in
H5

s [G, U(1)], then this U(1) gauge theory is anomalous, and
can only be realized on the boundary of a (4+1)d G-SPT
characterized by the 5-cocycle [O]. We will provide further
arguments for this statement in Sec. III E.

Case 2. For a general finite/compact group G that contains
antiunitary elements, we have H1

s [G,Z] = Z2. It is not diffi-
cult to show that p must take the following form:

p(g) = k · 1 − s(g)

2
(29)

with k an integer. Even (odd) k represents the trivial (non-
trivial) class of H1

s [G,Z]. Let us further assume [ν] = 0 for
simplicity, and consider the following 4-cocycle:

ω(ag, bh, ck, dl) = ω
s(gh)
k,l (gha, hb)ωs(ghk)

l (ghka, hkb, kc).
(30)

Here, ωg(a, b, c) is given by

ωg(a, b, c) = e
i

2π
p(g)a([b]2π +[c]2π−[b+c]2π ). (31)

We note that [ωg] ∈ H3[U(1), U(1)] describes a bosonic in-
teger quantum Hall (BIQH) state of Hall conductance σxy =
2p(g). The expression for ωk,l(a, b) can be found in Appendix
B. Eq. (30) is not the most general form of 4-cocycle in this
case, but the following explanation holds more generally.

We claim that this 4-cocycle with p(g) given by Eq. (29)
corresponds to θ = 2πk. To see it, consider the slant product
of ω(ag, bh, ck, dl) over g (see Appendix A for a brief intro-
duction of slant products):

(igω)(a, b, c) = ωg(a, b, c). (32)

It is well-known that the slant product corresponds to di-
mensional reduction of the system onto a domain wall [32].
Eq. (32) means that the quantum state on a domain wall
labeled by g can be described by the data ωg(a, b, c). From
Eq. (29), we see that when s(g) = 1, p(g) = 0, the slant
product gives 1 and this domain wall is a trivial state. On the
other hand, when s(g) = −1, p(g) = k, and the domain wall
is a bosonic integer quantum hall state with σxy = 2k (in units
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of e2/h).3 This exactly matches the properties of a state with
θ = 2πk [20,33,34]. So, intuitively, the 4-cocycle can be in-
terpreted as decorating (2+1)d BIQH states onto time-reversal
domain walls, classified by H3[U(1), U(1)] = Z. We should
emphasize that this relation between p(g) and θ only holds
for antiunitary symmetry g. If g is unitary, in general there is
no such relation between [p] and the θ -term. Also, notice that
Eq. (29) only holds for compact/finite symmetry groups, and
it does not hold for symmetries like lattice translations, which
will be discussed next.

Case 3. For lattice translation symmetry along the z direc-
tion, Z, we have H1[Z,Z] = Z, and p can take any integral
value. We call z the element that translates the system by
one lattice spacing along the z direction. Again consider the
4-cocycle given by Eq. (30), and now the meaning of the
slant product Eq. (32) is that on each plane perpendicular
to the z direction, we have a BIQH with σxy = 2p(z) [35].
Therefore p is a more general concept than the θ value, and it
indicates certain domain wall decoration with BIQH states.
In this case of translation symmetry, in the corresponding
U(1) gauge theory the action of translation is T2 [36]. To see
this, consider a magnetic monopole in the system. When the
monopole is translated by one unit along z, say from below
z = 0 to right above z = 0, the magnetic flux through the
plane z = 0 changes by −2π . The quantum Hall response
then creates charge-(−2p) on the z = 0 plane. As a result, the
under Tz the monopole transforms as

M → ME†2p
. (33)

That is, this translation transformation is in fact T2p(z). We
notice that the theory obtained by gauging the U(1) symmetry
of an infinite stack of BIQH states has unconventional low-
energy dynamics, as the photon dispersion is no longer linear
[36]. Therefore it can not be described using the relativistic
Lagrangian (1).4

D. H3 obstruction class

Having discussed the meaning of n and p, we now further
elaborate on the H3 obstruction class.

First of all, if G is a finite group or a compact Lie group,
the general form of p is given by Eq. (29). When G is unitary,
s(g) = 1 and p(g) = 0 for all g, so the H3 obstruction class
vanishes.

Now consider a general s(g), i.e., the symmetry group may
contain antiunitary elements. It turns out that even for a gen-
eral s(g), the H3 obstruction also vanishes identically. To see
it, define u(g, h) = −s(gh)[ν(g, h)]2π . It is straightforward to
show that δρu = γ mod 2πZ, so � = 1

2π
βργ vanishes.

3Notice when a coboundary transformation on ω(ag, bh, ck, dl ) is
performed, (igω)(a, b, c) can change by e

i
π a([b]2π +[c]2π −[b+c]2π ), the

3-cocycle that describes a BIQH state with σxy = 4. This precisely
reflects the fact that the states with θ = 4π and with θ = 0 are in the
same phase in the absence of any symmetry other than U and time
reversal.

4T2 transformation is not an explicit symmetry of the relativistic
theory (1).

Let us demonstrate why this is the case physically by con-
sidering an example with G = H × ZT

2 , where H is unitary
and finite. We denote the group element of H as h, and ZT

2 =
{1, T}. Let us also suppose that ν entirely comes from H . We
choose p as in Eq. (29) with k > 0. We will also set ρ ≡ 11
in this example. Notice so far we have only specified the data
responsible for the H3 obstruction class, and our discussion
is independent of the possible presence of the H5 obstruction
class.

A G-SPT phase can always be obtained by first breaking
the U(1) symmetry and making the system a superfluid, and
then proliferating the vortex lines of this superfluid. In order
for such a gapped state to exist, a vortex line to be prolifer-
ated must be fully gapped without any degeneracy or gapless
modes.

Since p(T) = k, a BIQH state is decorated onto a time-
reversal domain wall. Suppose we thread a 2π flux through the
domain wall. Due to the σxy = 2k quantum Hall response, the
flux threading creates a charge-2k excitation, which carries a
G projective representation labeled by 2kν. In other words, on
a 2π flux line a T domain wall binds a “zero mode” protected
by the G symmetry (in this example, H) when 2kν is nontriv-
ial. Naively, this poses an obstruction to proliferating vortex
lines to yield a gapped symmetric state, as the proliferation
seems to break the G symmetry.

However, we are allowed to decorate the vortex lines to be
proliferated with gapped 1D states. In this example, we can
just decorate the vortex lines with a 1D H-SPT phase with
a factor set kν. Due the time-reversal symmetry domain wall,
the two sides on the vortex lines have 1D SPT states labeled by
kν and −kν, with a −2kν projective representation sitting on
the domain wall and neutralizing the projective representation
arising from the Hall response. Now everything is gapped, and
it is possible to proliferate the vortex lines to get a symmetric
gapped state, if the H5 obstruction class further vanishes. In
fact, as long as no symmetry acts as T transformations, the
corresponding (3+1)d symmetry-enriched U(1) gauge theory
can at most suffer from an H5 obstruction, and it can always
be realized on the boundary of a (4+1)d invertible state [18]
(see Appendix C therein), which can be constructed via a
generalization of the layer construction in Ref. [16].

Now we give an example where the H3 obstruction class is
actually nontrivial. We choose the symmetry group to be G =
H × Z. Notice this is not a compact/connected Lie/finite
group. Denote the generator of Z by z. Consider an example
with p(z) = k. To see whether the H3 obstruction class is
nontrivial in this case, we compute the slant product izγ |H =
2kν. As long as 2kν is nontrivial, the H3 obstruction class is
nontrivial.

To have a concrete example, suppose H = PSU(N ) with
N > 2 (or its finite subgroup ZN × ZN ). If we take ν to
be the fundamental representation of SU(N ) (the generating
element in H2[PSU(N ), U(1)] = ZN ), then in order for the
H3 obstruction class to vanish, we need

k =
{N/2, N is even

N, N is odd . (34)

We can interpret the Z as lattice translation. As explained
in the previous section, such a G-SPT phase can be viewed as
a stack of 2D BIQH phases with Hall conductance σxy = 2k.
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However, since the matter boson carries the fundamental rep-
resentation of SU(N ), the Hall conductance is constrained to
be a multiple of N (2N) when N is even (odd) (see Appendix
C for derivation). This is exactly the condition that the H3

obstruction class γ vanishes.
If k takes any other integer value, then the H3 obstruction

class is nontrivial, which means the state with those other
values of k are not valid G-SPTs. Let us understand what
is wrong with those states. Suppose such a state could be
realized, then we can gauge the U(1) symmetry to obtain a
U(1) gauge theory. After gauging, whenever a 2π magnetic
flux line goes through a plane of such a BIQH state, charge-2k
will be left on the plane due to the nonzero Hall conductance.
This charge-2k object carries projective representation 2kν of
the PSU(N ) symmetry, thus resulting in symmetry-protected
degeneracy (gapless modes) on this magnetic flux line. Note
that in this case we cannot cancel the degeneracy by attaching
(1+1)d PSU(N ) SPT state on the 2π magnetic flux line. In
a U(1) gauge theory, the 2π magnetic flux lines need to be
“condensed” for the monopoles to be deconfined. However,
the presence of the gapless modes makes these flux lines
visible, and, as a result, the monopoles cannot be viewed as
deconfined excitations, which contradicts our assumption that
this state can be gauged to yield a U(1) gauge theory. For this
reason, we refer to the H3 obstruction as the deconfinement
obstruction. Because now the monopoles are not deconfined
excitations, it does not make sense to talk about localizing
symmetry actions on them, and such an obstruction can also
be called a symmetry localization obstruction.

So what sort of (4+1)d bulk can support such an (3+1)d
SPT phase on the boundary? To answer this, let us first ask
what sort of (3+1)d bulk can support on its boundary a BIQH
with σxy violating the constraint given in Eq. (34). In Ap-
pendix C, we show that a (3+1)d bulk with the following
θ -term in the response can produce the desired response on
its (2+1)d surface:

S[M4; A] = 2πσxy

8π2

∫
M4

F ∪ F. (35)

Strictly speaking, the U(1) gauge field A needs to satisfy
additional conditions to reflect the fact that charges carry
projective representations of PSU(N), see Appendix C and
Sec. III E for for details. This type of (2+1)d states are referred
to as anomalous invertible states [37]. Namely, this invertible
state can only exist on the boundary of a higher-dimensional
trivial bulk. If we try to gauge the U(1) symmetry in the
anomalous invertible state, the dynamical gauge field resulting
from gauging also has to be extended into the bulk.

Now we come back to the 3D stack of the 2D anomalous
BIQH states, and ask on the boundary of what kind of (4+1)d
bulk this (3+1)d stack can be realized. Apparently, the (4+1)d
bulk that supports the anomalous (3+1)d invertible phase must
also contain topological terms. Suppose the (4+1)d space-time
manifold is M5. Formally, if we introduce a Z gauge field z ∈
H1[M5,Z], the bulk response is given by

S[M5; A, z] = 2πσxy

8π2

∫
M5

F ∪ F ∪ z. (36)

If we place the (4+1)d theory on S2 × M3, and let
∫

S2 F =
2π , the partition function then yields the following theory
living on a “flux surface” (or the worldsheet of a “monopole”
loop in four spatial dimensions):

σxy

∫
M3

F ∪ z. (37)

As we explain below, because electric charges carry projective
representations, we need to identify F = 2π

N w(B), where B is
the background PSU(N ) bundle, and w(B) ∈ H2[M3,ZN ] is
the characteristic class that describes the obstruction of lifting
a PSU(N ) bundle to SU(N) bundle. So the action is essentially
2πσxy

N

∫
w(B) ∪ z, which describes the Lieb-Schultz-Mattis

anomaly of a (1+1)d PSU(N )-symmetric spin chain, where
each site transforms as the projective representation labeled
by σxy [38], as expected from the physical argument pre-
sented earlier as the flux surface terminates on a flux line
on the (3+1)d boundary. Indeed, these PSU(N )-symmetric
spin chains live on the boundary of (2+1)d SPTs classified
by H3[G, U(1)], which is also the classification of the H3

anomalies here.
From this example, we see that a natural way to resolve a

nonvanishing H3 deconfinement obstruction is to require that
both the background G gauge field and the dynamical U(1)
gauge field be extended to the higher-dimensional bulk, and
is therefore quite different from the usual ’t Hooft anomaly.
This is similar to the symmetry-localization obstruction found
in (2+1)d symmetry-enriched topological phases [39–42].

E. ’t Hooft anomaly formula

Before finishing this section, we will sketch an informal
derivation of the ’t Hooft anomaly formula in the special case
where ρ(g) = s(g) = 1 for all g ∈ G, which also explains the
physical meaning of the object given by Eq. (28). We will limit
ourselves to the case p = 0.

Suggested by the explicit parametrization, we postulate
that the topological response theory of the to-be-gauged SPT
takes a form similar to Eq. (24):

S[M4; A, g] =
∫

M4

A ∪ n. (38)

While we still use the notation A, g to represent the G back-
ground gauge field, we must keep in mind that G is generally
not a direct product of U(1) and G. In particular it means that
one has to modify the flat connection condition to

δA = ν(g). (39)

Here ν is the pull-back of the group 2-cocycle ν ∈
H2[G,R/2πZ] to the G bundle.

The response has to be gauge-invariant. Under a G gauge
transformation, ν(g) is shifted by δ f1 where f1 is a 1-cochain,
and n is shifted by δ f2. We do not need to know the spe-
cific forms of f1 and f2. In order to preserve the flatness of
the gauge field, A must be shifted to A + f1. Therefore the
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topological response theory changes by∫
M4

( f1 ∪ n + A ∪ δ f2 + f1 ∪ δ f2)

=
∫

M4

( f1 ∪ n + ν ∪ f2 + f1 ∪ δ f2). (40)

Here we used δ(A ∪ f2) = δA ∪ f2 − A ∪ δ f2. Thus the theory
is not gauge-invariant. But the variation is now seen to only
depend on the G gauge field. This suggests that we fix the
problem by including a 5D bulk M5 whose boundary is M4,
with the following action:

S[M5; g] = −
∫

M5

ν ∪ n. (41)

Here, g is an extension of the G gauge field to M5. Notice this
(4+1)d response theory is essentially Eq. (28).

Let us check that the variation of S5 under a G gauge
transformation does give Eq. (40):

−
∫

M5

[(ν + δ f1) ∪ (n + δ f2) − ν ∪ n]

= −
∫

M5

(δ f1 ∪ n + ν ∪ δ f2 + δ f1 ∪ δ f2)

= −
∫

M5

δ( f1 ∪ n + f1 ∪ δ f2 + ν ∪ f2)

= −
∫

M4

( f1 ∪ n + f1 ∪ δ f2 + ν ∪ f2). (42)

Thus this term exactly cancels Eq. (40).
Therefore the whole theory (5D bulk and 4D boundary)

is gauge-invariant. Since the 5D bulk response only depends
on the G gauge field, it describes a G-SPT phase. This result
means that the U(1) gauge theory obtained by gauging the G-
SPT described by the 4D action (38) can live on the boundary
of a 5D G-SPT phase described by Eq. (41).

IV. APPLICATIONS

In this section. we will apply the anomaly formula to
various examples. In all these examples, the deconfinement
obstruction class always vanishes.

A. G = Z2

Let us first consider U(1) gauge theories enriched by a
unitary Z2 symmetry. The extension of Z2 by U(1) is given
by

H2
ρ[Z2, U(1)] =

{Z1 ρ = 11
Z2 ρ = −11 . (43)

Physically, ρ = −11 means that the Z2 symmetry acts as a
charge conjugation, and ρ = 11 means that it does not act as a
charge conjugation.

For the case with ρ = 11, because H2
ρ[Z2, U(1)] = Z1,

there is no nontrivial symmetry fractionalization pattern, and
there is only one possible U(1) gauge theory with no fraction-
alization on E or M. This state is denoted by EbMb in Ref. [18].

Below we will study the ρ = −11 case. A representative
2-cocycle is

η(g, g) = (−1)λ (44)

with λ = 0, 1. In the notions of Ref. [18], the cases with
(λE, λM) = (0, 0), (λE, λM) = (1, 0) or (λE, λM) = (0, 1),
and (λE, λM) = (1, 1) are denoted as (EbMb)−, (EbZMb)− and
(EbZMbZ )−, respectively.

Let us compute the obstruction 5-cocycle. From η ≡ eiω,
we find the only nonzero component of n:

n(g, g, g) = ω(g, g) − gω(g, g) = 2ω(g, g) = λ. (45)

Then using the formula Eq. (28), we have

O (g, g, g, g, g) = (−1)λEλM . (46)

This is a nontrivial 5-cocycle if and only if λE = λM = 1. So
(EbMb)− and (EbZMb)− are anomaly-free, while (EbZMbZ )−
is anomalous and must be realized on the boundary of a (4+1)d
group-cohomology Z2 SPT phase. Indeed, there is a (4+1)d
group-cohomology Z2 SPT phase, and our result implies that
(EbZMbZ )− can be its boundary state. These results agree with
Ref. [18].

We notice that in (4+1)d there is a “beyond-cohomology”
Z2 SPT phase [43]. The boundary of this phase is charac-
terized by a mixed Z2-gravity anomaly. We now argue that
the boundary can not be a Z2-symmetry-enriched U(1) gauge
theory. First of all, we may restrict to U(1) gauge theories with
both electric and magnetic charges bosonic (the other possi-
bility, the so-called all-fermion electrodynamics, has global
gravitational anomaly). Since the symmetry is Z2, it either
acts trivially or as charge conjugation on charge types, as
these are the only order-two elements in the duality group.
Under these conditions, all possible Z2-symmetry-enriched
U(1) gauge theories have been exhausted here, therefore we
conclude that this “beyond-cohomology” SPT phase cannot
have a U(1) gauge theory as symmetry-preserving boundary
termination.

B. G = SO(3)

Let us now consider an example of an anomalous U(1)
QSL with SO(3) spin rotational symmetry. Reference [18]
shows that the state Eb 1

2
Mb 1

2
, where both E and M are bosons

that carry spin-1/2, is anomalous.
Now we apply our obstruction formula to re-derive this

result. It suffices to show that this state is still anomalous when
the SO(3) symmetry is broken down to its Z2 × Z2 subgroup,
consisting of three π rotations around x, y, and z axes. This is
the minimal subgroup of SO(3) where the spin-1/2 projective
representation still makes sense, since H2[Z2 × Z2, U(1)] =
Z2. In the anomalous theory, both E and M carry the nontriv-
ial projective representation of Z2 × Z2. Ref. [18] suggested
that this state is still anomalous, and we indeed find that the
obstruction class is nontrivial, thus verifying this statement.
The details will be postponed to Sec. IV E.

C. G = Z2 × ZT
2

Next we consider the symmetry group G = Z2 × ZT
2 . This

symmetry is relevant for experimental QSL candidates made
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of non-Kramers quantum spins. Reference [18] found 75 sym-
metry fractionalization patterns for U(1) gauge theories with
this symmetry, where 38 of them are anomaly-free and the
other 37 are anomalous. We will apply our anomaly formula
to rederive the anomalies of the 37 anomalous states, and we
will also confirm a conjecture made in Ref. [18] about the
anomaly classes.

Let us denote G = {1, Z, T, ZT} where Z is the generator
of the Z2 subgroup and T the generator of the ZT

2 subgroup.
They satisfy Z2 = T2 = 1, ZT = TZ . The homomorphism ρ

is determined by ρ(Z ). We can then systematically classify
fractionalization classes (see Appendix D for details).

Let us consider how to distinguish cohomology classes in
H5[G, U(1)]. Applying Künneth formula, we find

H5
[
Z2 × ZT

2 , U(1)
] = H5

[
Z2,H0

[
ZT

2 , U(1)
]]

⊕ H3
[
Z2,H2

[
ZT

2 , U(1)
]]

⊕ H1
[
Z2,H4

[
ZT

2 , U(1)
]]

. (47)

Given a 5-cocycle O, we can decompose the cohomology
class in the following way:

[O] = r1[O1] + r2[O2] + r3[O3], (48)

where r1,2,3 ∈ {0, 1}, and O1 is the generating class
of H5[Z2,H0[ZT

2 , U(1)]] = H5[Z2, U(1)1], O2 for
H3[Z2,H2[ZT

2 , U(1)]], and O3 for H1[Z2,H4[ZT
2 , U(1)]].

O1 corresponds to (4+1)d SPT phases protected by Z2

alone, which is precisely the state whose boundary can be
(EbZMbZ )− (see Sec. IV A). Below we will focus on the
remaining Z2

2 part.
We now discuss how to determine ri, i = 2, 3, from O.

We consider r3 first, which turns out to be simpler to define.
We use a cohomology operation called slant product, which
for each group element g defines a group homomorphism
ig : Hd [G, U(1)] → Hd−1[G, U(1)] (see Appendix A 3 for a
review). We define (−1)r3 = (iZO)(T, T, T, T).

To find r2, we need a generalization of slant product,
2-slant product, which are defined now for multiple group
elements, see Appendix A 3. We define

(−1)r2 = (iT,TO)(Z, Z, Z ). (49)

Using the definition of 2-slant product in Appendix A 3, one
can check that both r2 and r3 are invariants for the cohomol-
ogy class (i.e., invariant under coboundary transformations).

We compute the obstruction classes when both ν and ωM
are nontrivial (when either of them is trivial the obstruc-
tion class vanishes automatically). The result is tabulated in
Table I.

Reference [18] indeed found that all the six states we
consider here are anomalous. In fact, after exhausting all pos-
sible symmetry fractionalization patterns of this symmetry,
Ref. [18] found in total 37 anomalous Z2 × ZT

2 symmetric
U(1) gauge theories. Furthermore, the arguments therein (see
Sec. VII C of Ref. [18]) imply that, to show the anoma-
lies of all these 37 states, it actually suffices to show that
(EbZMbZ )−, (EbT MbT ′ )− and EbT T ′Mb− are anomalous, which
we have shown here. Therefore we have reproduced the results
in Ref. [18] on anomalous Z2 × ZT

2 symmetric U(1) gauge
theories.

TABLE I. Anomaly classes for a couple of U(1) gauge theories
with Z2 × ZT

2 symmetry.

ρ(Z ) ν(g, h) ωM(g, h) Anomaly class Notation in Ref. [18]

1 (−)g2h2 (−)g1h2 (0,0,1) EbT T ′Mb−
(−)g1h1 (−)g1h2 (0,1,0) EbT ′Mb−

−1 (−)g1h1 (−)g1h1 (1,0,0) (EbZMbT ′Z )−
(−)g1h1 (−)g2h2 (0,1,0) (EbZMbT ′ )−
(−)g2h2 (−)g1h1 (0,1,0) (EbT MbT ′Z )−
(−)g2h2 (−)g2h2 (0,0,1) (EbT MbT ′ )−

Reference [18] also conjectured a classification of the
anomaly classes of these 37 anomalous states, within each
class the anomaly of the states are the same. Our results also
confirm this conjecture. More precisely, there are six anomaly
classes (see Ref. [18] for the properties of these states):

1. (EbZMbZ )−, (EbT ZMbT ′Z )−, (E f T MbZ )−, (EbZM f T ′ )−,
(E f T MbT ′Z )−, (EbT ZM f T ′ )−, (E f T M f T ′ )θ−Z .

2. (EbT ZMbZ )−, (E f MbZ )−, (EbT ZM f )−.
3. (EbZMbT ′Z )−, (EbZM f )−, (E f MbT ′Z )−.
4. (EbZMbT ′ )−, (E f T ZMbT ′ )−, (E f T ZMbT ′Z )−,

(EbT MbT ′Z )−, (EbT M f Z )−, (EbZM f Z )−, EbT M f −, E f T ′Mb−,
EbT Mb−.

5. (EbT MbZ )−, (EbT M f T ′Z )−, (EbT ZM f T ′Z )−,
(EbT ZMbT ′ )−, (E f ZMbT ′ )−, (E f ZMbZ )−, EbT ′Mb−, EbT ′M f −,
E f T Mb−.

6. (EbT MbT ′ )−, (E f MbT ′ )−, (EbT M f )−, EbT T ′Mb−,
EbT T ′M f −, E f Mb−.

D. Lieb-Schultz-Mattis-Hastings-Oshikawa anomaly

We now apply our results to systems in which Lieb-Schulz-
Mattis-Hastings-Oshikawa (LSMHO) type theorems [44–46]
hold. For concreteness, consider a translation-invariant lat-
tice with spin-1/2 per unit cell, whose symmetry group is
SO(3)×Z3. The LSMHO theorem states that such a system
does not allow a nondegenerate ground state preserving all
symmetries on a torus. Such a constraint can be understood as
the manifestation of a particular ’t Hooft anomaly, if we view
this lattice system as the boundary of a (4+1)d crystalline SPT
“bulk” that consists of a stack of Haldane chains in the fourth
dimension [35,47–49]. We will refer to this anomaly as the
LSM anomaly. Our goal is to understand the implication of
such an anomaly in a U(1) gauge theory.

Let us first explicitly write down the “bulk” theory for the
LSM anomaly. While the protecting symmetry involves lattice
translations, we will nevertheless treat them formally as an
internal symmetry and imagine coupling the bulk to gauge
fields of the translation symmetries Z3, denoted by x, y, z for
translations in the three orthogonal directions. We also turn on
a background SO(3) gauge field B. The bulk response theory
takes the following form [49]:

SLSM[M5; B, x, y, z] = π

∫
M5

x ∪ y ∪ z ∪ w2(B). (50)

Here, w2(B) ∈ H2[M5,Z2] is the Stieffel-Whitney class of the
SO(3) bundle B.

Let us see how this anomaly can be resolved by a U(1)
gauge theory. Notice that ρ(g) = 11 for g ∈ SO(3) because
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SO(3) is connected. For translations, let us for simplicity
assume that Tx,y,z act on the charges in the same way, denoted
by ρ1:

ρ
(
T nx

x T
ny

y T nz
z

) = ρ
nx+ny+nz

1 . (51)

This is natural if the cubic rotation symmetry is preserved.
As shown in Sec. III, there are three possibilities of how
translation is associated with the duality transformation of a
U(1) gauge theory: the translation acts as the identity, the
charge conjugation, or the T transformation.

First we present an argument to rule out ρ1 = 11. We
calculate the fractionalization classes using the Künneth de-
composition:

H2[SO(3) × Z3, U(1)] = Z2 × U(1)3. (52)

The first factor of the above equation indicates that charges
can transform as spin-1/2’s under SO(3). The U(1)3 factor
represents magnetic translation algebra in xy, yz or zx planes.
However, we should notice that each of these U(1) phase
factors is a continuously tunable phase factor, and therefore
should not form distinct fractionalization classes. This is sim-
ilar to theta terms in topological response.5 We conclude that
when ρ1 = 11 the fractionalization class of the translation
symmetry is completely trivial, and thus can not happen in
the presence of LSM anomaly, and, as a result, the translation
must be mapped to a nontrivial element in the duality group.

Next let us consider ρ1 being the charge conjugation. In
this case, we find

H2
ρ[Z3, U(1)] = Z2. (53)

So there is only one nontrivial translation symmetry frac-
tionalization pattern. An invariant that characterizes the
fractionalization class is

η(Tx, Ty)

η(Ty, Tx )

η(Ty, Tz )

η(Tz, Ty)

η(Tz, Tx )

η(Tx, Tz )
= ±1. (54)

To resolve the LSM anomaly, clearly one of E and M has to
carry spin-1/2, because the “background matter fields” carry
spin-1/2. Without loss of generality, let E carry spin-1/2.
It is natural to expect that M needs to carry the nontrivial
translation symmetry fractionalization. We show in Appendix
E that this symmetry fractionalization pattern indeed realizes
the LSM anomaly correctly. In contrast, the LSM anomaly
cannot be realized if none of E and M carries spin-1/2, or none
of them carries the nontrivial translation fractionalization pat-
tern. The general condition for a U(1) QSL to satisfy the LSM
constraint due to these symmetries is given by Eq. (E9).

Let us list the possible symmetry-enriched U(1) QSLs that
can be realized in a lattice with spin-1/2 per unit cell. As
before, we denote the one with spin-1/2 as E, the spinon. Then
M must carry integer spin, otherwise the state suffers from the
SO(3) anomaly. There are only two types of U(1) QSLs that
satisfy the LSM constraint: (Eb 1

2
Mbtrn)− and (Eb 1

2 trnMbtrn)−,
where ‘()−’ means that the translation symmetry acts as
charge conjugation, b1

2 means a spin-1/2 boson, and btrn

5Mathematically, this is the distinction between deformation
classes and not just isomorphism classes.

means a boson with nontrivial translation fractionalization. In
Appendix F, we show that both of them can indeed be realized
by explicit parton constructions.

On the other hand, if the lattice has an integer
spin per unit cell, then the possible symmetric U(1)
QSLs are (EbMb)−, (Eb 1

2
Mb)−, (Eb 1

2 trnMb)−, (EbtrnMb)− and
(EbtrnMbtrn)−.

Lastly, we consider the possibility that ρ1 is realized as Tn

for some nonzero integer n. Leaving a general classification
of this case for future work, here we will briefly describe
an example where one of the translations, say Tz, is mapped
to T2. To this end, we use a fermionic parton construction
to write the spin operator in terms of Abrikosov fermions:
Si = 1

2 f †
i σ fi, with the local gauge constraint f †

i fi = 1 im-
posed. We then put the fermions into the a mean-field state
described by a noninteracting Hamiltonian. The original spin
system is recovered by coupling the fermions to U(1) gauge
field. For our purpose, we choose the following mean-field
band structure: for all fermions on a given xy plane, we make
f↑ and f↓ both have the same Chern band with Chern num-
ber C = 1. Together they form a C = 2 band, which is the
minimal required by the SU(2) spin symmetry (see Appendix
C). In this case, the translations do not change the fermionic
gauge charge. Following a similar discussion in Sec. III C, it
is easy to see that Tz implements the T2 transformation.

It is also possible to have a U(1) QSL where all three trans-
lations act as T2. To construct such a state, one just needs to
take three copies of the above state and make them rotationally
symmetric, and turn on hybridization between the charges in
these three U(1) gauge theories. The resulting theory is an
SO(3) and translation symmetric U(1) gauge theory with an
odd number of spin-1/2’s per unit cell, in which translations
in all three directions act as T2.

E. Fermionic insulators

As the final application of our results, we study an
example of interacting fermionic topological insulator
protected by a unitary symmetry G [19,50]. For simplicity, we
assume fermions transforming linearly under the symmetry
group G, and ρ(g) = 11 for g ∈ G. After gauging the U(1)
symmetry, one obtains a U(1) gauge theory with fermionic
gauge charges. A topologically nontrivial insulator can have
magnetic monopoles carrying projective representation under
G, provided that there is no ’t Hooft anomaly in the gauged
theory.

To compute the anomaly, we first apply a T transformation
so that the electric charge is bosonic. In other words, we
may view the fermionic topological insulator as the result
of “ungauging” the (1,1) dyon in a U(1) gauge theory with
bosonic electric charge. Since ρ is trivial, both ν and ωM are
elements of H2[G, U(1)]. Because we assume that the fermion
(1,1) transforms linearly, it follows that ν = ω−1

M .
In the following, we specify to an example with G = ZN1 ×

ZN2 . Projective representations of G are classified according
to H2[ZN1 × ZN2 , U(1)] = ZN12 , where N12 is the greatest
common divider of N1 and N2. We have the following explicit
expressions for the 2-cocycles:

ω(a, b) = 2π p

N12
a1b2, p = 0, 1, . . . , N12 − 1. (55)
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Now let us analyze the obstruction class. Kunneth formula
gives H5[ZN1 × ZN2 , U(1)] = ZN1 × ZN2 × Z2

N12
. It is clear

that we just need to consider the Z2
N12

part. Reference [19]
found a complete set of invariants, ei�1 , ei�2 , ei�12 , ei�21 , for
cohomology classes. We review the definitions in Appendix
A. A straightforward calculation yields

�12 = −π p2 N12(N12 − 1)N2

N2
12

,

�21 = −π p2 N12(N12 − 1)N1

N2
12

. (56)

Here, N12 is the greatest common divisor of N1 and N2, and
N12 is the least common multiplier. The obstruction class is
trivial if and only if ei�12 = ei�21 = 1.

For N1 = N2 = N , both of them reduce to π p2(N − 1). The
obstruction class is ei�12 = (−1)p(N−1), which is trivial for all
odd N . For N = 2, p = 1 the obstruction class is nontrivial,
which is the claim in Sec. IV B. We conclude that there ex-
ists topologically nontrivial fermionic insulators protected by
ZN × ZN symmetry for odd N .

Consider another family of examples, with N1 = 2n1 , N2 =
2n2 . Without loss of generality we assume n1 � n2. The invari-
ants are evaluated to

�12 = π p222(n2−n1 )(2n2 − 1),

�21 = π p22n2−n1 (2n2 − 1). (57)

As long as n2 > n1, the obstruction class always vanishes.
The simplest example is N1 = 2, N2 = 4. In this fermionic
SPT phase, a magnetic monopole carries a projective repre-
sentation of Z2 × Z4. We notice that this state is the same
as the intrinsically interacting fermionic SPT phase found in
Ref. [19], which was obtained there essentially by using the
group supercohomology construction. It is worth mentioning
that Ref. [19] only assumes the Z2 fermion parity conserva-
tion, which means that the U(1) charge conservation is not
essential for the existence of this phase.

V. SUMMARY AND DISCUSSION

In this work, we have classified symmetry fractionalization
and anomalies in a symmetry-enriched (3+1)d U(1) gauge
theory with bosonic electric charges and a global symmetry
group G, based on the conjecture that a G-symmetric U(1)
gauge theory can be viewed as a partially gauged SPT. We find
that, in general, a symmetry-enrichment pattern is specified by
four pieces of data: ρ, a map from G to the SL(2, Z) duality
group which physically encodes how the symmetry permutes
the fractional excitations, ν ∈ H2

ρ·s[G, U(1)], the symmetry
actions on the electric charge, p ∈ H1

s [G,Z], indication of
certain domain wall decoration with bosonic integer quantum
Hall states, and a torsor n over H3

ρ[G,Z], the symmetry ac-
tions on the magnetic monopole.

However, certain choices of (ρ, ν, p, n) are not physically
realizable, i.e., they are anomalous. We find that there are two
levels of anomalies. The first level of anomalies obstruct the
fractional excitations being deconfined, thus are referred to
as the deconfinement anomaly. States with these anomalies

can be realized on the boundary of a (4+1)d long-range en-
tangled state. The deconfinement anomalies are classified by
H3

ρ[G, U(1)]. If a state does not suffer from a deconfinement
anomaly, there can be still the second level of anomaly, the
more familiar ’t Hooft anomaly, which forbids certain types of
symmetry fractionalization patterns. States with these anoma-
lies can be realized on the boundary of a (4+1)d short-range
entangled state. These ’t Hooft anomalies are classified by
H5

s [G,U (1)].
We have applied these results to some interesting physical

examples. Besides being able to reproduce and extend the
previous results in Ref. [18], we also utilized our anomaly for-
mula to study the LSM-type constraints on a U(1) QSL, and
some interesting interacting fermionic topological insulators.

Below we briefly discuss some future directions.
One class of U(1) QSLs left out from our classification

are those with θ = π in the presence of antiunitary symme-
tries, and more generally U(1) gauge theories with fermionic
electric charge. To extend our approach to these cases, it is
necessary to have a complete understanding of interacting
fermionic insulators.

We have briefly mentioned the possibility that certain
unitary infinite-order symmetries, such as translations, can
be realized as modular transformations, corresponding to a
nonzero [p] ∈ H1[G,Z]. We have demonstrated the possible
H3 deconfinement obstruction class in these states. A more
complete study of such phases, as well as their potential rela-
tion with the fractonic phases, will be left for future work.

Our classification principle only allows global unitary sym-
metries to act as the identity, charge conjugation or modular
transformations in the duality group. An interesting open
question is: to what extent a global symmetry acting as the
S-duality transformation, for example, is anomalous, and what
is the nature of the anomaly if there is any? We note that there
have been a few works on U(1) gauge theories with a global
symmetry realized as the S-duality [51–53]. In some cases, the
U(1) gauge theory is actually the “all-fermion” one, which is
the boundary of a (4+1)d invertible topological phase [31,54].
We will leave this for future investigations.

Many of our results can be generalized to a ZN gauge the-
ory in a straightforward manner. In particular, the parametriza-
tion of 4-cocycles can be applied to the ZN case without much
modifications. Physically, however, the magnetic excitations
are now extended looplike objects. It will be important to
develop a physical understanding of symmetry fractionaliza-
tion on looplike excitations, which will be addressed in future
publications.

Note added. Recently, a preprint on closely related topic
appeared on arXiv [55]. We are also aware of a related work
by Xu Yang and Ying Ran [56].
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APPENDIX A: SOME USEFUL MATHEMATICAL
RESULTS ON GROUP COHOMOLOGY

In this Appendix, we collect a few mathematical results
used in this work.

1. Review of group cohomology

In this section, we provide a brief review of group coho-
mology for finite groups. Given a finite group G, let M be
an Abelian group equipped with a G action ρ : G × M → M,
which is compatible with group multiplication. In particular,
for any g ∈ G and a, b ∈ M, we have

ρg(ab) = ρg(a)ρg(b). (A1)

(We leave the group multiplication symbols implicit.) Such an
Abelian group M with a G action ρ is called a G-module.

Let ω(g1, . . . , gn) ∈ M be a function of n group elements
g j ∈ G for j = 1, . . . , n. Such a function is called an n-
cochain, and the set of all n-cochains is denoted as Cn[G, M].
They naturally form a group under multiplication,

(ω · ω′)(g1, . . . , gn) = ω(g1, . . . , gn)ω′(g1, . . . , gn), (A2)

and the identity element is the trivial cochain ω(g1, . . . , gn) =
1.

We now define the “coboundary” map δ : Cn[G, M] →
Cn+1[G, M] acting on cochains to be

δω(g1, . . . , gn+1)

= ρg1 [ω(g2, . . . , gn+1)]

×
n∏

j=1

ω(−1) j
(g1, . . . , g j−1, g jg j+1, g j+2, . . . , gn+1)

× ω(−1)n+1
(g1, . . . , gn). (A3)

One can directly verify that δ2ω = 1 for any ω ∈ Cn[G, M],
where 1 is the trivial cochain in Cn+2[G, M].

With the coboundary map, we next define ω ∈ Cn[G, M] to
be an n-cocycle if it satisfies the condition δω = 1. We denote
the set of all n-cocycles by

Zn
ρ [G, M] = { ω ∈ Cn[G, M] | δω = 1 }. (A4)

We also define ω ∈ Cn[G, M] to be an n-coboundary if it
satisfies the condition ω = δμ for some (n − 1)-cochain μ ∈
Cn−1[G, M]. We denote the set of all n-coboundaries by
Bn

ρ (G, M ). Namely,

Bn
ρ (G, M ) = { ω ∈ Cn[G, M] | ∃μ ∈ Cn−1[G, M] : ω = δμ }.

(A5)

Clearly, Bn
ρ[G, M] ⊂ Zn

ρ [G, M] ⊂ Cn[G, M]. In fact, Cn,
Zn, and Bn are all groups and the co-boundary maps are
homomorphisms. It is easy to see that Bn

ρ[G, M] is a normal
subgroup of Zn

ρ [G, M]. Since δ is a boundary map, we think of
the n-coboundaries as being trivial n-cocycles, and it is natural
to consider the quotient group

Hn
ρ[G, M] = Zn

ρ [G, M]

Bn
ρ[G, M]

, (A6)

which is called the n-th group cohomology. In other words,
Hn

ρ[G, M] collects the equivalence classes of n-cocycles that
only differ by n-coboundaries.

The algebraic definition we give for group cohomology is
most convenient for discrete groups. For continuous group,
formally the same definition applies but one has to impose
proper continuity conditions on the cocycle functions.

2. Hn[G, U(1)] and Hn+1[G,Z]

The equivalence of the two cohomology groups follow
from the short exact sequence 0 → Z → R → U(1) → 0,
and the fact that Hn[G,R] = Z1 for compact/finite groups.
Below we write down the explicit mapping between cocycles.

Given a n-cocycle [ω] ∈ Hn[G, U(1)], we define ω = eiω̂

where ω̂ ∈ R. δω = 1 translates to δω̂ ∈ 2πZ, where δ for
ω̂ is defined additively. We can now define a (n + 1)-cocycle
ν ∈ Zn+1[G,Z] as

ν = 1

2π
δω̂. (A7)

If we shift ν by a coboundary δμ where μ ∈ Cn[G,Z], it
simply amounts to shifting ω̂ → ω̂ + 2πμ, which does not
affect the value of ω.

On the other hand, if we change ω by a coboundary, or
equivalently ω̂ → ω̂ + δε̂ where ε̂ ∈ Cn−1[G,R/2πZ], we
find that the corresponding ν remains the same since δ2ε̂ = 0.

Eq. (A7) is a special case of the Bockstein homomorphism,
and commonly written as 1

2π
βω for [ω] ∈ Hn[G,R/2πZ]

(without explicitly specifying the lift from R/2πZ to R).

3. Slant products

A k-slant product maps a n-cochain ωn to a (n − k)-cochain
ωn−k . If ωn is a n-cocycle, generally ωn−k is not a cocycle ex-
cept for k = 1. However, if igωn is a (n − 1)-coboundary, then
ig,hωn is a (n − 2)-cocycle. For more details, see Ref. [57].
Notice that 1-slant product is often just called slant product.

Now we give the general definition of 1-slant product, often
just known as the slant product. Let us consider M being a G-
module with trivial action, and g ∈ G be an arbitrary element.
We define the 1-slant product ig : Cn[G, M] → Cn−1[G, M]:

igω(g1, . . . , gn−1)

=
n−1∏
j=0

ω(g1, . . . , g j, g, g j+1, . . . , gn−1)(−1)n−1+ j
. (A8)

It can be shown that δ(igω) = ig(δω). Therefore ig is in fact a
group homomorphism:

ig : Hn[G, M] → Hn−1[G, M]. (A9)
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For example, for a 5-cochain ω5, the 1-slant product is defined as

iaω5(g, h, k, l) = ω5(a, g, h, k, l)ω5(g, h, a, k, l)ω5(g, h, k, l, a)

ω5(g, a, h, k, l)ω5(g, h, k, a, l)
. (A10)

The 2-slant product is given by

(ig,hω5)(a, b, c) = ω5(a, b, g, c, h)ω5(a, g, b, h, c)ω5(g, a, h, b, c)ω5(g, a, b, c, h)

ω5(a, b, c, g, h)ω5(a, b, g, h, c)ω5(a, g, h, b, c)ω5(g, h, a, b, c)ω5(a, g, b, c, h)ω5(g, a, b, h, c)
(A11)

and 3-slant product is given by

(ia,b,cω5)(g, h) = [(ig,hω5)(a, b, c)]−1. (A12)

4. Invariants for H5[ZN1 × ZN2, U(1)]

Let ei be the generator of the ZNi subgroup. Define the following invariants:

ei�i =
Ni∏

m,n=1

ieiν(ei, mei, ei, nei ), (A13)

and, for i �= j,

ei�i j =
Ni j∏

m=1

Ni∏
n=1

ie j ,me j ν(ei, nei, ei )ie j ν(ei, nei, ei, mei ). (A14)

Reference [19] showed that these are a complete set of invariants for cohomology classes in H5[ZN1 × ZN2 , U(1)].

APPENDIX B: PARAMETRIZATION OF 4-COCYCLES AND CLASSIFICATION OF ANOMALIES

In this Appendix, we present the detailed derivation of the structure of the cohomology group H4[G, U(1)] given in Sec. III C.
To be self-contained, we first repeat the reasoning leading to the results here. The bulk properties of a symmetry-enriched

U(1) gauge theory is specified by the symmetry fractionalization patterns of the global symmetry G on the electric and magnetic
charges. However, not all symmetry fractionalization patterns can be physically realized, and our goal is to obtain a set of
sufficient and necessary conditions under which a symmetry fractionalization pattern is anomaly-free.

To do so, we will utilize that the symmetry-enriched U(1) gauge theory with global symmetry G can be viewed as a gauged
bosonic SPT phase protected by a symmetry G, a U(1) extension of G. Such an group extension G is specified by a 2-cocycle
in [ν] ∈ H2

ρ·s[G, U(1)], and it physically encodes the symmetry fractionalization pattern of the electric charge of this symmetry-
enriched U(1) gauge theory. As shown in Sec. III B, the relevant bosonic SPT phases can all be obtained from group cohomology,
and each of them is specified by a 4-cocycle in H4

ρ,s[G,U (1)]. Below, from this 4-cocycle, we will extract the data of the
projective representation of the dual magnetic charge under G. We will also formulate a set of sufficient and necessary conditions
for the symmetry fractionalization patterns to be anomaly-free.

A 4-cocycle in H4
ρ,s[G, U(1)] can be represented by a U(1)-valued function of four elements in group G. Using a, b, c, d, · · · ∈

R/2πZ to denote elements in U(1), and g, h, k, l, · · · ∈ G to denote elements in G. An element in G can be denoted by ag, which
means this element can be viewed as a composite of a and g. A 4-cocycle can be written as ω(ag, bh, ck, dl) ∈ U(1), which
satisfies the following 4-cocycle equation:

ωs(g)(bh, ck, dl, em)ω(ag, bh × ck, dl, em)ω(ag, bh, ck, dl × em)

ω(ag, bh, ck, dl)ω(ag × bh, ck, dl, em)ω(ag, bh, ck × dl, em)
= 1, (B1)

where the group multiplication law is

ag × bh = [a +g b + ν(g, h)]gh (B2)

with gb = ρ(g) · s(g) · b, and the two Z2 gradings are defined as

s(g) =
{1, g is unitary
−1, otherwise, ρ(g) =

{−1, g contains charge conjugation,

1, otherwise, (B3)

and ν(g, h) ∈ H2
ρ,s[G,R/2πZ].

A 4-cocycle has a gauge freedom, which states that ω(ag, bh, ck, dl) is physically equivalent to

ω(ag, bh, ck, dl) · us(g)(bh, ck, dl)u(ag, bh × ck, dl)u(ag, bh, ck )

u(ag × bh, ck, dl)u(ag, bh, ck × dl)
, (B4)

where u(ag, bh, ck ) is U(1)-valued.
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Below we will first derive a general parametrization of the 4-cocycles ω(ag, bh, ck, dl), and find the anomaly-free conditions.

1. Parameterize the 4-cocycles

For generality of the calculations, throughout this section, we use A = U(1) to denote the gauge group.
The 4-cocycles contain much redundant information due to gauge freedom. To have a useful form of the 4-cocycles, we can

use the gauge freedom to fix some of them. In particular, we will fix all of the following 4-cocycles to be 1:

1 = ω(a, b, c, d ) = ω(0, ag, bh, ck ) = ω(ag, 0, bh, ck ) = ω(ag, bh, 0, ck ) = ω(ag, bh, ck, 0)

= ω(0g, b, c, d ) = ω(a, 0g, b, c) = ω(a, b, 0g, c)

= ω(a, 0g, 0h, b) = ω(0g, a, 0h, b) = ω(0g, a, b, ch) = ω(ag, 0h, b, c) = ω(a, b, 0g, 0h)

= ω(0g, 0h, 0k, a) = ω(0g, 0h, b, ck ) = ω(0g, a, 0h, bk ) = ω(ag, 0h, b, ck ). (B5)

Notice that ω(a, b, c, d ) = 1 can always be done because H4[A, U(1)] = Z1, which is true for A = ZN as well. For a general
Abelian gauge theory, this condition means that it is untwisted.

We will then express a general 4-cocycle ω(ag, bh, ck, dl) in terms of the following objects:

ωg,h,k(a) ≡ ω(a, 0g, 0h, 0k ),

ωg,h(a, b) ≡ ω(a, b, 0g, 0h),

ωg(a, b, c) ≡ ω(a, b, c, 0g ).

(B6)

After a rather tedious calculation, by applying the 4-cocycle equations Eq. (B1) for various group elements, one can show
that after the above gauge fixing the 4-cocycle can be written as

ω(ag, bh, ck, dl) = ω(0g, 0h, 0k, 0l)ω
s(g)
h,k,l(

ga)ωs(gh)
k,l (gha, hb)ωs(gh)

k,l

(ghν(g, h), h(ga + b)
) · α(ag, bh, ck, dl) (B7)

with

α(ag, bh, ck, dl) = ω
s(ghk)
l (ghk(a + ν(g, hk)),hk (b + ν(h, k)),k c)

ω
s(gh)
k (ghν(g, h),gh a,h b)

· ω
s(ghk)
l (ghka,hk ν(h, k),hk b)

ω
s(ghk)
l (hkν(h, k),ghk a,hk b)

·ω
s(ghk)
l (ghkν(g, hk),hk ν(h, k),hk (ga + b))

ω
s(ghk)
l (ghkν(g, hk),ghk a,hk (b + ν(h, k)))

· ω
s(gh)
kl (ghν(g, h),gh a,h b)

ω
s(ghk)
l (ghkν(gh, k),ghk ν(g, h),hk (ga + b))

. (B8)

The data defined in Eq. (B6) satisfy a number of consistency relations following from the cocycle condition. We now explain
these relations, which also help uncover their physical interpretations.

(1) For a fixed g, ωg(a, b, c) is a 3-cocycle on A. Namely,

ωg(b, c, d )ωg(a, bc, d )ωg(a, b, c)

ωg(ab, c, d )ωg(a, b, cd )
= 1. (B9)

(2) The cohomology classes [ωg] satisfy [ωg] · [ωs(g)
h ] = [ωgh]. More precisely,

ωg(a, b, c)ωs(g)
h (ga, gb, gc)

ωgh(a, b, c)
= (δωg,h)(a, b, c). (B10)

Here

(δω)(a, b, c) = ω(a, bc)ω(b, c)

ω(a, b)ω(ab, c)
. (B11)

(3)

ωg,h(a, b)ωgh,k(a, b)

ω
s(g)
h,k (ga, gb)ωg,hk(a, b)

ωg,h,k(ab)

ωg,h,k(a)ωg,h,k(b)
=

(
ωk(gha, ghν(g, h), ghb)

ωk(ghν(g, h), gha, ghb)ωk(gha, ghb, ghν(g, h))

)s(gh)

, (B12)

ωg,h,k(a)ωg,hk,l(a)ωs(g)
h,k,l(

ga)

ωgh,k,l(a)ωg,h,kl(a)

=
(

ωk,l(gha, ghν(g, h))

ωk,l(ghν(g, h), gha)

)s(gh)

×
(

ωl(ghka, ghkν(g, hk), hkν(h, k))ωl(ghkν(g, hk), hkν(h, k), ghka)ωl(ghkν(gh, k), ghka, ghkν(g, h))

ωl(ghkν(g, hk), ghka, hkν(h, k))ωl(ghkν(gh, k), ghkν(g, h), ghka)ωl(ghka, ghkν(gh, k), ghkν(g, h)

)−s(ghk)

. (B13)
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The first two conditions imply that ωg defines a cohomology class in H1
s [G,H3[A, U(1)]] = H1

s [G,Z]. We will fix

ωg(a, b, c) = ω(a, b, c)p(g), (B14)

where ω(a, b, c) is a generating 3-cocycle of H3[A, U(1)]. p(g) ∈ Z satisfies p(g) + s(g)p(h) = p(gh). Without loss of gener-
ality, we choose

ω(a, b, c) = exp
(

ia · [b]2π + [c]2π − [b + c]2π

2π

)
, (B15)

where [a]2π ∈ [0, 2π ) and a = [a]2π (mod 2π ).
Notice if G is unitary and compact/finite, we can always set p(g) = 0 because H1[G,Z] = Z1. On the other hand, if G

contains time reversal symmetry, then H1
s [G,Z] = Z2.

For technical reasons we introduce a 2-cochain yg(a, b) of A such that

ω(ga, gb, gc) = ω(a, b, c)(δyg )(a, b, c). (B16)

An explicit choice for yg(a, b) is given by

yg(a, b) = exp
[ i

2π

(ga[gb]2π − a[b]2π

)]
. (B17)

Also, note that, because H2[A, U(1)] = Z1, we can write the slant product of ω as a coboundary:

(icω)(a, b) = μc(a)μc(b)

μc(a + b)
. (B18)

Explicitly, we have

μa(b) = e
i

2π
[a]2π [b]2π . (B19)

Solving Eq. (B10) yields

ωg,h(a, b) = y−s(g)p(h)
g (a, b). (B20)

We proceed to solve Eq. (B12). Define

ω̃g,h,k(a) = ωg,h,k(a)μ(a, ν(g, h))−s(gh)p(k)

(
ygh(a, ν(g, h))

ygh(ν(g, h), a)

)s(gh)p(k)

. (B21)

Equation (B12) can be written as

ω̃g,h,k(a)ω̃g,h,k(b) = ω̃g,h,k(ab), (B22)

which means we can write

ω̃g,h,k(a) = eian(g,h,k), (B23)

where n(g, h, k) ∈ Z. Then Eq. (B13) becomes

eia(δρn)(g,h,k,l) =
[

μa(ν(gh, k))μa(ν(g, h))

μa(ν(g, hk))μa(gν(h, k))

μν(gh,k)(a)μν(g,h)(a)

μν(g,hk)(a)μgν(h,k)(a)
· μ(a, gν(h, k))

μ(ga, ν(h, k))

yg(gν(h, k), a)

yg(a, gν(h, k))

]s(ghk)p(l)

. (B24)

Using the explicit expressions for y and μ given above, we obtain the following condition:

(δρn)(g, h, k, l) = 1

2π
2s(ghk)p(l)

(
[ν(g, h)] + [ν(gh, h)] − [ν(g, hk)] − g[ν(h, k)]

)
. (B25)

Note that this equality must hold exactly as both sides are integers. To obtain this result we have used the fact that g acting on A is
either the identity or the conjugation, which applies to all cases studied in this paper. Define γ (g, h, k) = 2s(gh)[ν(g, h)]p(k),
the above equation takes the form

δρn = 1

2π
δργ . (B26)

This means γ must be a trivial 3-cocycle in H3[G,R/2πZ], otherwise there is no way to construct a 4-cocycle out of the
corresponding [ν] and [p]. We will refer to [γ ] as a H3 obstruction class.

Suppose the H3 obstruction class vanishes, then one can find solutions for n from Eq. (B26). Two solutions n and n′ must
satisfy δρ (n − n′) = 0, i.e., they differ by an integer-valued 3-cocycle of G. Therefore, in this case, n is classified by a torsor
over H3[G,Z]. As argued in the main text, this n encodes the symmetry actions on the magnetic monopole, and it is related
to ωM by n = 1

2π
δω̂M + n0, with ωM = eiω̂M and n0 an integral 3-cochain satisfying δρn0 = �, which is used as a “reference”

043043-17



NING, ZOU, AND CHENG PHYSICAL REVIEW RESEARCH 2, 043043 (2020)

solution. In other words, starting from a particular solution n0, we can construct a new one n0 + 1
2π

δω̂M, in which the projective
representation of the monopole is modified by ωM compared to the reference state.

Notice as long as G is unitary, or G contains time reversal with θ = 0, α(ag, bh, ck, dl) = 1 and the 4-cocycle has a simple
form

ω(ag, bh, ck, dl) = ω(0g, 0h, 0k, 0l)ω
s(g)
h,k,l(

ga). (B27)

Also, notice that when ν = 0, these conditions significantly simplify.

ω(ag, bh, ck, dl) = ω(g, h, k, l)ωs(g)
h,k,l(

ga)ωs(gh)
k,l (gha, hb)ωs(ghk)

l (ghka, hkb, kc). (B28)

Equation (B12) says that, for fixed g, h, k, ωg,h,k(a) forms a character over A, and Eq. (B13) means that ωg,h,k(a) is a 3-cocycle
of G for a fixed a. In this case we recover the result of the Künneth formula.

2. ’t Hooft anomaly formula

The consistency conditions given in the previous section are not complete. A further condition comes from checking the
4-cocycle conditions for elements 0g, 0h, 0k, 0l, 0m:

ωs(g)(0h, 0k, 0l, 0m)ω(0g, [ν(h, k)]hk, 0l, 0m)ω(0g, 0h, 0k, [ν(l, m)]lm)

ω(0g, 0h, 0k, 0l)ω([ν(g, h)]gh, 0k, 0l, 0m)ω(0g, 0h, [ν(k, l)]kl, 0m)
= 1. (B29)

A straightforward computation yields the following:

ωs(g)(h, k, l, m)ω(g, hk, l, m)ω(g, h, k, lm)

ω(g, h, k, l)ω(gh, k, l, m)ω(g, h, kl, m)
· O(g, h, k, l, m) = 1, (B30)

where the obstruction class O is defined as

O(g, h, k, l, m) = ω
−s(gh)
k,l,m (ghν(g, h))Õ(g, h, k, l, m) (B31)

and

Õ(g, h, k, l, m) =
(

ωl,m(ghkν(gh, k), ghkν(g, h))

ωl,m(ghkν(g, hk), hkν(h, k))

)−s(ghk)(
ωm(ghklν(gh, kl), klν(k, l), ghklν(g, h))

ωm(ghklν(gh, kl), ghklν(g, h), klν(k, l))

× ωm(ghklν(ghk, l), ghklν(g, hk), hklν(h, k))

ωm(ghklν(ghk, l), ghklν(gh, k), ghklν(g, h))

ωm(ghklν(g, hkl), hklν(h, kl), klν(k, l))

ωm(ghklν(g, hkl), hklν(hk, l), hklν(h, k))

)−s(ghkl)

. (B32)

In other words, for a legitimate G-SPT phase, [O] must vanish in H5
s [G, U(1)].

It is a rather nontrivial fact that O defined in Eq. (B31) is a 5-cocycle. We present the proof for this result in two cases: (1)
when p = 0, which is always the case if G is unitary and compact/finite, or if G contains antiunitary elements but the axion
angle θ = 0. (2) when G commutes with U(1), i.e., ρ(g) ≡ s(g) for all g ∈ G.

The proof in case (1) involves a direct computation of δsO. In this case, O is basically a cup product ν ∪ n, as discussed in
the main text. Explicitly,

O(g, h, k, l, m) = ω
−s(gh)
k,l,m (ghν(g, h)) = e−is(gh)ghν(g,h)n(k,l,m). (B33)

Now we sketch the proof. We define ñ(g, h, k) = s(ghk)n(g, h, k). The H3 obstruction-free condition reads

(δρn)(g, h, k, l) = − 1

2π
2s(ghk)(δ[ν])(g, h, k)p(l). (B34)

Let O = eiÔ. We split the obstruction class into two parts:

Ô = Ô1 + Ô2. (B35)

Here

Ô1(g, h, k, l, m) = s(gh)ghν(g, h)n(k, l, m), (B36)

and Ô2 contains the rest of the expression, which vanishes if p = 0.
A direct computation finds

(δsÔ1)(g, h, k, l, m, n) = − 1

2π
2ρ(gh)s(klm)ν(g, h)(δρ·s[ν])(k, l, m)p(n). (B37)

So this shows that when p = 0, δsÔ ≡ 0. This concludes the proof for case (1). Notice that so far we have not made any further
assumptions about ρ and s.
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Next we compute δsÔ2, now under the assumption that (ρ · s)(g) = 1. Explicitly we have

Ô2(g, h, k, l, m) = s(ghkl)[ν(ghk, l)(δ[ν])(g, h, k) + ν(g, hkl)(δ[ν])(h, k, l) + [ν(g, h)][ν(k, l)]]p(m). (B38)

Through a straightforward but lengthy computation, we obtain

δsÔ2 = 1

2π
2s(ghklm)[ν(g, h)]δ[ν](k, l, m)p(n). (B39)

Therefore δsO = δs(Ô1 + Ô2) = 0. This concludes the proof for case (2). So O is a 5-cocycle if p = 0 or if G commutes with
U(1).

In summary, in order for a given symmetry fractionalization pattern characterized by the triple (ρ, ν, n) to be anomaly-free,
both Eq. (B26) and Eq. (B30) must hold. We believe these two equations also form a sufficient condition for the triple (ρ, ν, n)
to be anomaly-free.

APPENDIX C: HALL CONDUCTIVITY OF A (2+1)d U(N)
SYMMETRIC INVERTIBLE STATES

In this Appendix, we discuss the constraint from the U(N)
symmetry on the Hall conductivity of a (2+1)d bosonic in-
vertible states (at the end we also briefly discuss the similar
constraint on fermionic invertible states). We will see that if
the boson is in the (bi-)fundamental representation of U(N)
[i.e., all charge-1 bosons also carry the fundamental represen-
tation of SU(N)], then the minimal nonzero Hall conductivity
of an invertible state is N (2N) in units of e2/h, if N is even
(odd). The simplest way to see this is to consider gauging
the U(1) symmetry and examine the 2π instanton operator.
This instanton operator should be (1) bosonic and (2) carry a
linear representation of PSU(N). Condition (1) means that σxy

is even, and condition (2) means that σxy is an integer multiple
of N . Therefore the minimal nonzero σxy is N (2N), if N is
even (odd). This result of course agrees with Refs. [33,58],
where the special cases with N = 1, 2 have been discussed.

To show this result more formally, we generalize the argu-
ment in Ref. [59], which was applied to the special cases with
N = 1, 2 therein. The Hall conductivity can be determined
by the response theory of this bosonic invertible state to an
external U(N) gauge field, a = a + ã1 with a an SU(N) gauge
field and ã the U(1) gauge field. The generic (topological)
response can be captured by the Chern-Simons Lagrangian:

L = k1

4π
ãdã + k2

4π
Tr

(
ada + 2

3
a3

)
= k2

4π
Tr

(
ada + 2

3
a3

)
+ k1 − Nk2

4πN2
(Tra)d (Tra). (C1)

Notice σxy = k1 in units of e2/h. Below we determine the
possible values of k1.

In order for this Lagrangian to describe a valid response of
a bosonic invertible state, we can consider the case where a =
diag(a11, 0, 0, . . . , 0). Then the above Lagrangian becomes

L = k1 + N (N − 1)k2

4πN2
a11da11. (C2)

For this to be a valid bosonic response, there must exist an
integer m, such that

k1 + N (N − 1)k2 = 2mN2. (C3)

Clearly k1 is a multiple of N , so we can write it as k1 = N · n,
with n an integer. Now our goal becomes to find the possible

values of n, which satisfies

n + (N − 1)k2 = 2mN. (C4)

The right-hand side is even, so must be the left-hand side.
If N is odd, then n must be even for the left-hand side to be

even. The smallest nonzero even number is 2, and n = 2 can
be achieved by having k2 = 2 and m = 1. So if N is odd, the
minimal nonzero Hall conductivity is σxy = 2N . If N is even,
then it is possible to achieve n = 1 by having k2 = N + 1 and
m = N/2. So the minimal nonzero Hall conductivity is σxy =
N if N is even.

Suppose one wants to have a bosonic system with a
nonzero σxy smaller than N (2N) for even (odd) N , besides
making the bosons form a fractional quantum Hall state, one
can also consider making the bosons living on the boundary of
a (3+1)d system with a bulk θ -term for the U(1) gauge field:

θ

8π2
F̃ ∧ F̃ (C5)

with θ = 2πσxy and F̃ the U(1) gauge field strength that is ex-
tended into the (3+1)d bulk. In the absence of any other global
symmetries, this (3+1)d bulk is a generic invertible state (i.e.,
it can be smoothly connected to a product state without en-
countering a phase transition). Nevertheless, its boundary is an
invertible state that cannot be realized in purely (2+1)d. Such
a boundary state is also referred to as an anomalous invertible
state [37].

For completeness, we also discuss the minimal Hall con-
ductivity for a U(N) symmetric fermionic invertible state. In
this case, the constraint equation Eq. (C3) is replaced by

k1 + N (N − 1)k2 = mN2. (C6)

Here, k1 = N can always be achieved by having k2 = m = 1.
That is to say, the minimal nonzero Hall conductivity for a
U(N) symmetric fermionic invertible state is σxy = N for any
N . Physically, this state can be realized by a U(N) symmet-
ric version of the Haldane model [i.e., in the field-theoretic
terminology, a pair of gapped Dirac fermions in the (bi-
)fundamental representation of U(N ) symmetry] [60]. Just
as the bosonic case, at the expense of putting it on the surface
of a (3+1)d bulk with a θ -term, here one can also have anoma-
lous fermionic invertible states where σxy is smaller than N .
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APPENDIX D: DERIVATION OF Z2 × ZT
2 ANOMALY

Here we present details of the classification of anomalous
U(1) spin liquids enriched by Z2 × ZT

2 symmetry.

1. Künneth formula and slant product

It is known that H5[Z2 × ZT
2 , U(1)] = Z3

2, which means
that there are three root bosonic SPT states in (4+1)d with
Z2 × ZT

2 symmetry. This can be understood by the Künneth
formula for group cohomology:

H5
[
Z2 × ZT

2 , U(1)
] = H5

[
Z2,H0

[
ZT

2 , U(1)
]]

⊕ H3
[
Z2,H2

[
ZT

2 , U(1)
]]

⊕ H1
[
Z2,H4

[
ZT

2 , U(1)
]]

= Z2 ⊕ Z2 ⊕ Z2.

In the following, we write down representative cocy-
cles for O(g, h, k, l, m). We will denote the group Z2 × ZT

2
additively, i.e., g = (g1, g2) where g1,2 = {0, 1}. Z ≡ (1, 0)
generates Z2 and T ≡ (0, 1) generates ZT

2 .
The first Z2 from H5[Z2,H0[ZT

2 , U(1)]] corresponds to a
root state protected solely by the Z2 subgroup of the symmetry
group. A representative cocycle for this class is

O1(g, h, k, l, m) = (−1)g1h1k1l1m1 . (D1)

This expression is equivalent to the topological partition func-
tion exp (iπ

∫
a5), where a is a 1-cocycle representing the

Z2 gauge field. This state is precisely the one discussed in
Sec. IV A, whose boundary can be (EbZMbZ )−.

The second Z2, from H1[Z2,H4[ZT
2 , U(1)]], is generated

by the following cocycle:

O2(g, h, k, l, m) = (−1)g1h2k2l2m2 . (D2)

This expression is equivalent to the partition function
exp (iπ

∫
a ∪ w4

1 ), where w1 is the first Stieffel-Whitney class
of the tangent bundle.

Similarly, the last Z2 factor is generated by

O3(g, h, k, l, m) = (−1)g1h1k1l2m2 . (D3)

The corresponding partition function is exp (iπ
∫

a3 ∪ w2
1 ).

To simplify our calculation, notice that [a3 ∪ w2
1] = [w2

1 ∪ a3]
([·] means the cohomology class). So an equivalent expression
for O3 is given by

O3(g, h, k, l, m) = (−1)g2h2k1l1m1 . (D4)

We now prove that [O1,2,3] are indeed distinct cohomology
classes. Clearly, [O1] is different from [O2,3], because the
former is nontrivial even in the absence of the ZT

2 symmetry,
while the latter requires the ZT

2 to be nontrivial.
Next, we consider O2. Using 0-slant product, we find

(iZO2)(h, k, l, m) = (−1)h2k2l2m2 . (D5)

Thus the restriction iZO2|ZT
2

belongs to the nontrivial co-

homology class in H4[ZT
2 , U(1)] (i.e., (iZO2)(T, T, T, T) =

−1). Physically, this means that the Z2 domain wall of the
corresponding (4+1)d SPT state hosts a (3+1)d time reversal
SPT state eT mT . In passing, we note that decorating another
(3+1)d time reversal SPT state e f m f onto the Z2 domain wall

results in a (4+1)d Z2 SPT that is beyond group cohomology
[43].

Now we consider O3. Using the representation of O3

in Eq. (D4), one finds iZO3 = 1. Thus [O3] �= [O2]. We
still need to show that [O3] is nontrivial. To this end, let
us consider 2-slant product iT,TO3. It is easy to see that
(iTO3)(h, k, l, m) = 1, so iT,TO3 is a 3-cocycle of Z2 × ZT

2 .
We find

(iT,TO3)(k, l, m) = (−1)k1l1m1 , (D6)

which is a nontrivial 3-cocycle of the Z2 subgroup. Thus O3

indeed belongs to a nontrivial cohomology class.
A general 5-cocycle O can be decomposed as

[O] = [O1]
1−r1

2 · [O2]
1−r2

2 · [O3]
1−r3

2 , r1,2,3 = ±1. (D7)

Here

r1 = O(Z, Z, Z, Z, Z ),

r2 = (iZO)(T, T, T, T),

r3 = (iT,TO)(Z, Z, Z ). (D8)

It can be readily checked that all three are invariants of coho-
mology classes.

2. Fractionalization classes

In this section, we classify projective representations of
Z2 × ZT

2 . Note that the projective representations of elec-
tric charge are classified by the second cohomology class
H2

ρ·s[G, U(1)], while those of the magnetic charge are clas-
sified by H2

ρ[G, U(1)]. The subscript ρ · s or ρ denote the
group action on the U(1) coefficient. Below we would discuss
different cases in details.

(1) ρ(Z ) = 11: projective representations of an electric
charge is classified by H2

s [Z2 × ZT
2 , U(1)] = Z2

2, whose gen-
erators can be represented by

ν(g, h) = (−1)g1h1 or (−1)g2h2 . (D9)

For dual magnetic charges, the projective representations are
classified by H2[Z2 × Z2, U(1)] = Z2 [namely, the coeffi-
cient U(1) is a module with trivial action]. The genertor is
represented by

ωM(g, h) = (−1)g1h2 . (D10)

(2) ρ(Z ) = −11: the projective representions of electric
charges are classified by H2[ZT

2 × ZT
2 , U(1)] = Z2

2 whose
generators can be represented

ν(g, h) = (−1)g1h1 or (−1)g2h2 . (D11)

While for magnetic monopoles, the projective representations
are classified by H2[ZT

2 × Z2, U(1)] = Z2
2, generated by

ωM(g, h) = (−1)g1h1 or (−1)g2h2 . (D12)

Using these explicit parametrizations of ν and ωM, the
expression for O in Eq. (B33), the definitions of the slant
products, and Eq. (D7), it is straightforward to obtain the
results in Table I.
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APPENDIX E: DERIVATION OF LSM ANOMALY

We present more details of the discussion on the LSM
anomaly. We will in fact consider a more general unitary
on-site symmetry group H , assuming that H acts trivially on
the charge types. Now the full symmetry group is G = H ×
Z3. We further assume that H2

ρ[G, U(1)] = H2
ρ[H, U(1)] ×

H2
ρ[Z3, U(1)], which allows us to write a generic 2-cocycle

ν ∈ H2
ρ[G, U(1)] in the form of ν = (ν1, ν2), where ν1 ∈

H2
ρ[H, U(1)] and ν2 ∈ H2

ρ[Z3, U(1)], i.e., the symmetry frac-
tionalization pattern of G can be decomposed into that of H
and that of Z3.

Parallel to the discussion in Sec. IV D, we will only con-
sider the case where translation acts as charge conjugation. In
this case, H2

ρ[Z3, U(1)] = Z2, which means there is only one
nontrivial translation fractionalization pattern. The 2-cocycle
of this nontrivial translation fractionalization pattern can be
written as

η(a, b) = (−1)bx (ay+az )+by (ax+ay ), (E1)

where a = T ax
x T

ay
y T az

z , with Tx,y,z the generator of translation
along the x, y, z directions, and ax,y,z ∈ Z (similar for b). It is
straightforward to check that this is indeed a 2-cocycle, and
the invariant is nontrivial

η(Tx, Ty)

η(Ty, Tx )

η(Ty, Tz )

η(Tz, Ty)

η(Tz, Tx )

η(Tx, Tz )
= −1 (E2)

Below we analyze whether a symmetry-enriched U(1)
QSL satisfies the LSM constriant, i.e., we will check what
projective representation of H each unit cell carries. To do
so, we can calculate

νxyz ≡ iTz iTy iTxO, (E3)

where O is the obstruction 5-cocycle of this symmetric U(1)
gauge theory. Then νxyz|H , the restriction of νxyz to H , repre-
sents the representation of H in each unit cell.

The following observation will simplify the calculation of
νxyz|H . With the symmetry G, a generic U(1) gauge theory
can be written as (Eb(ν1,ν2 )Mb(μ1,μ2 ) )−, where the − outside the
bracket reminds us that the translations act as charge conjuga-
tion, and the subscript b(ν1, ν2) means that this excitation is
a boson with symmetry fractionalization pattern ν = (ν1, ν2).
The anomaly of (Eb(ν1,ν2 )Mb(μ1,μ2 ) )− can be decomposed into
the anomalies of some other states:

(Eb(ν1,ν2 )Mb(μ1,μ2 ) )−
= (Eb(ν1,ν2 )Mb(0,μ2 ) )− ⊕ (Eb(ν1,ν2 )Mb(μ1,0))−
= (Eb(ν1,0)Mb(0,μ2 ) )− ⊕ (Eb(0,ν2 )Mb(0,μ2 ) )−

⊕(Eb(ν1,0)Mb(μ1,0))− ⊕ (Eb(0,ν2 )Mb(μ1,0))−, (E4)

where A ⊕ B means adding the anomalies of A and B, or more
physically, stacking A and B and switching on the hybridiza-
tion of their certain excitations. The above decomposition
means that, in order to obtain νxyz|H for (Eb(ν1,ν2 )Mb(μ1,μ2 ) )−,
we just need to obtain the νxyz|H ’s of the four simpler states
and then add them together.

It is quite straightforward to see that νxyz|H = 0 for
both (Eb(0,ν2 )Mb(0,μ2 ) )− and (Eb(ν1,0)Mb(μ1,0))−. So our task
becomes to determine νxyz|H for (Eb(ν1,0)Mb(0,μ2 ) )− and

(Eb(0,ν2 )Mb(μ1,0))−. Also notice the state (Eb(0,ν2 )Mb(μ1,0))− is
really identical to the state (Eb(−μ1,0)Mb(0,ν2 ) )−, because the
latter is related to the former by a relabelling: E → M† and
M → E. Now (Eb(ν1,0)Mb(0,μ2 ) )− and (Eb(−μ1,0)Mb(0,ν2 ) )− have
the same form of symmetry fractionalization pattern, so it
suffices to calculate νxyz|H for one of them. We will calculate
νxyz|H for (Eb(ν1,0)Mb(0,μ2 ) )−.

The obstruction 5-cocycle O for (Eb(ν1,0)Mb(0,μ2 ) )− is given
by Eq. (B33). If any of ν1 and μ2 is trivial, O = 1 is trivial,
and νxyz|H = 0. On the other hand, if ν1 is nontrivial and μ2 =
η, we can get the 3-cocycle representation of μ2:

n2(a, b, c) = (δμ̂2)(a, b, c)

= 1
2 (1−(−1)ax+ay+az )[cx(by + bz ) + cy(bx + by)],

(E5)

where μ2(a, b) = η(a, b) = e2π iμ̂2(a,b). Plugging the nontivial
ν1 and n2 into Eq. (B33) yields O, and a straightforward
but lengthy calculation yields that νxyz|H = −ν1. Taken these
cases together, we can write, for (Eb(ν1,0)Mb(0,μ2 ) )−

νxyz|H = λμ2 − 1

2
· ν1, (E6)

where λχ is the cohomological invariant of a translation frac-
tionalization class χ :

λχ ≡ χ (Tx, Ty)

χ (Ty, Tx )

χ (Ty, Tz )

χ (Tz, Ty)

χ (Tz, Tx )

χ (Tx, Tz )
. (E7)

The above results also indicate that, for
(Eb(−μ1,0)Mb(0,ν2 ) )−, we have

νxyz|H = 1 − λν2

2
· μ1. (E8)

Taking all the above results together yields νxyz|H for
(Eb(ν1,ν2 )Mb(μ1,μ2 ) )−:

νxyz|H = λμ2 − 1

2
· ν1 + 1 − λν2

2
· μ1. (E9)

This result means that, suppose each unit cell has a rep-
resentation of H specified by the factor set νxyz|H , the LSM
constraint enforces that the symmetry-enriched U(1) gauge
theory can be (Eb(ν1,ν2 )Mb(μ1,μ2 ) )−, if Eq. (E9) is satisfied. No-
tice that the state (Eb(ν1,ν2 )Mb(μ1,μ2 ) )− may suffer from other
anomalies that is not of the LSM-type, and these anomalies
need to be examined separately.

Now let us apply this result to the case with H = SO(3).
By enumerating all possible fractionalization patterns, we
have the following list of 7 possible symmetric U(1) QSLs:
(EbMb)−, (Eb 1

2
Mb)−, (EbtrnMb)−, (Eb 1

2 trnMb)−, (Eb 1
2
Mbtrn )−,

(EbtrnMbtrn )−, and (Eb 1
2 trnMbtrn )−. Notice we have already

removed states where both E and M are spin-1/2 bosons,
because they are anomalous (see Sec. IV B and Ref. [18]). Our
analysis of the LSM anomaly indicates that only (Eb 1

2
Mbtrn )−

and (Eb 1
2 trnMbtrn )− can possibly be realized on a lattice with

an odd number of spin-1/2’s per unit cell, and the other five
states can only be realized on a lattice with an even number of
spin-1/2’s per unit cell. The explicit parton constructions in
Appendix F imply that all these states can indeed be realized
in their corresponding types of lattice systems, i.e., there is no
more anomaly.
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APPENDIX F: PARTON CONSTRUCTIONS OF
(Eb 1

2
Mbtrn )− AND (E f 1

2
Mbtrn )−

In this Appendix, we carry out explicit parton constructions
of (Eb 1

2
Mbtrn )− and (E f 1

2
Mbtrn )−, where the subscript f 1

2 indi-
cates a fermionic spin-1/2 excitation. These states are U(1)
QSLs with SO(3) spin rotational symmetry and translation
symmetry. Notice in the present symmetry setting the state
(E f 1

2
Mbtrn )− is equivalent to (Eb 1

2 trnMbtrn )−, so it is sufficient
to realize the former to show that the latter is also realizable.
From our consideration based on the quantum anomalies,
they can emerge only if the microscopic lattice system has
a half-odd-integer spin in each unit cell. The converse is also
true, i.e., if a U(1) QSL emerges from a lattice system with a
half-odd-integer spin per unit cell and the system preserves
the SO(3) and translation symmetries, the symmetry frac-
tionalization patterns of these symmetries must be that the
resulting symmetry-enriched U(1) QSL is either (Eb 1

2
Mbtrn )−

or (E f 1
2
Mbtrn )−. The purpose of this section is to show that

these two states can indeed emerge.

1. Parton construction of (Eb 1
2
Mbtrn )−

We begin with (Eb 1
2
Mbtrn )−, and we will take the electric

charge E as the parton. We will consider a cubic lattice with a
spin-1/2 on each site, and we will write the spin operators in
terms of Schwinger bosons:

Si = 1
2 b†

i σbi (F1)

where i labels the site, σ is the standard Pauli matrices, and
bi = (bi1, bi2)T labels a canonical boson that transforms in the
fundamental representation of SU(2). To faithfully represent
the original spin system, a gauge constraint needs to be im-
posed:

b†
i bi = 1 (F2)

These Schwinger bosons will be regarded as the electric
charges. The task of having a parton construction of Eb 1

2
Mbtrn

becomes to put these Schwinger bosons into a gapped state
that preserve the symmetries and gauge constraint.

To do so, we follow Refs. [61,62]. First, we divide the cubic
lattice into the A and B sublattices in the usual way, and on
sublattice B we introduce operators b̄i:

b̄i1 ≡ bi2, b̄i2 ≡ −bi1 (F3)

In the following, operators on sublattice A will still be ex-
pressed in terms of b’s, while operators on sublattice B will
always be expressed in terms of b̄’s. Notice now the gauge
constraint on sublattice A is still given by Eq. (F2), and on
sublattice B it becomes

b̄†
i b̄i = 1 (F4)

Next, consider putting the Schwinger bosons into a state
described by the following (mean-field) Hamiltonian:

H = λ
∑
i∈A

(b†
i bi − 1) + λ

∑
i∈B

(b̄†
i b̄i − 1)

−
∑
i∈A,η̂

(
QbT

i b̄i+η̂ + H.c.
)
, (F5)

where η̂ labels the vectors connecting a pair of adjacent sites
that are on sublattices A and B, respectively. The parameter
λ is responsible for imposing the gauge constraint Eq. (F2) at
the level of expectation value, and the parameter Q is a cou-
pling strength that is determined by interactions between the
Schwinger bosons and can be tuned by tuning the microscopic
parameters of the original lattice system.

Now, let us examine the symmetries of this model. It is
straightforward to see that the SO(3) symmetry is preserved,
and both b and b̄ carry spin-1/2. The translation symmetry
along η̂ is also preserved, and it acts as

bi → b̄i+η̂, b̄i → bi+η̂. (F6)

Although there is a term bT
i b̄i+η̂ in the Hamiltonian, due to the

bipartite nature of the system there is still a U(1) symmetry
where b and b̄ carry opposite charges:

bi → eiθ bi, b̄i → e−iθ b̄i. (F7)

From here we also see that the action of translation symmetry
has the effect of charge-conjugation on the U(1) charges, but
it belongs to the trivial class in H2

ρ[Z3; U(1)] with ρ = −1
on generators of translations. From these we conclude that the
Schwinger bosons here have the same projective symmetry
properties as that of the electric charges in (Eb 1

2
Mbtrn )−.

Finally, we only need to demonstrate that the Hamiltonian
(F2) can be gapped while maintaining the gauge constraints
(F2) and (F4) at the level of expectation values. To do so, we
first write down the momentum-space representation of the
Hamiltonian (F5):

H = λ
∑

k

(b†
kbk + b̄†

kbk − 2)

−Q
∑

k

(
bT

k b̄−kγk + H.c.
)

(F8)

with γk = ∑
η̂ exp(−ik · η̂) (which for a cubic lattice is γk =

2(cos kx + cos ky + cos kz ) if the lattice constants are all taken
to be unity). Next, we apply the standard Bogoliubov transfor-
mation:

b(k) = ηk cosh θk − η∗
−k sinh θk,

b̄(k) = η−k cosh θk − η∗
k sinh θk, (F9)

where ηk’s are canonical bosons with commutators, e.g.,
[ηkα, η∗

qβ] = δkqδαβ , where α and β are spin indices. In terms
of η’s, the Hamiltonian (F8) becomes (up to constant terms)

H =
∑

k

η
†
kηk[2λ(cosh2 θk + sinh2 θk)

+ 4Qγk sinh θk cosh θk]

+
∑

k

{ηkη−k[−2λ sinh θk cosh θk

− Qγk(cosh2 θk + sinh2 θk)] + H.c.}. (F10)

By requiring that

tanh 2θk = −Qγk

λ
, (F11)
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the above Hamiltonian simplifies to

H =
∑

k

Ekη
†
kηk (F12)

with the dispersion of the Bogoliubov quasiparticles given by

Ek = 2
√

λ2 − Q2γ 2
k . (F13)

The condition of being gapped is

� ≡ 2
√

λ2 − Q2γ 2
0 > 0 (F14)

and the gauge constraints become∑
k

sinh2 θk = 1

2
NU.C., (F15)

where NU.C. is the number of unit cells in the system, and the
factor of 1/2 is due to the two spins. By tuning γ and Q, both
(F14) and (F15) can be satisfied.

Therefore the Schwinger bosons with the desired sym-
metry properties can be put into a gapped state. When the
U(1) symmetry is gauged, the system becomes a U(1) QSL.
Ref. [5] shows that the translation symmetry action on the
monopole (which is a boson) of this U(1) QSL belongs to
the nontrivial class in H2

ρ (Z3, U(1)] with ρ = −1. We also
know when both the electric charge and magnetic monopoles
are bosons and the charge carries spin-1/2 under the SO(3)
symmetry, the magnetic monopole must carry integer spin.
Therefore the gauged symmetry-enriched U(1) QSL is pre-
cisely (Eb 1

2
Mbtrn )−.

2. Parton construction of (E f 1
2
Mbtrn )−

Next we turn to (E f 1
2
Mbtrn )−, and we will again take the

electric charge E as the parton. The construction is very simi-
lar to that of (Eb 1

2
Mbtrn )−, but now we will consider Abrikosov

fermions on a cubic lattice with a spin-1/2 per site. More
precisely, we write the spin operators in terms of Abrikosov
fermions:

Si = 1
2 f †

i σ fi (F16)

with fi = ( fi1, fi2)T fermionic operators transforming in the
fundamental representation of SU(2). Again, a gauge con-
straint needs to be imposed in order to represent the system
faithfully:

f †
i fi = 1. (F17)

These Abrikosov fermions will be regarded as the electric
charges. To construct E f 1

2
Mbtrn, we need to show that these

fermions can be put into a gapped state with all the relevant
symmetries and gauge constraint.

Again, we will express the operators on sublattice B with a
new set of operators:

f̄i1 = fi2, f̄i2 = − fi1 (F18)

In terms of f̄ ’s, the gauge constraint on sublattice B is given
by

f̄ †
i f̄i = 1 (F19)

while on sublattice A it is still given by (F17).

Now consider putting the Abrikosov fermions into a state
described by the following Hamiltonian:

H = λ
∑
i∈A

( f †
i fi − 1) + λ

∑
i∈B

( f̄ †
i f̄i − 1)

−
∑
i∈A,η̂

(
Q f T

i f̄i+η̂ + H.c.
)

(F20)

The symmetries of this Hamiltonian include SU(2) where the
fermions carry spin-1/2, translation that acts as

fi → f̄i+η̂, f̄i → − fi+η̂, (F21)

and U(1) that acts as

fi → eiθ fi, f̄i → −e−iθ f̄i. (F22)

Again, we can see the fermionic partons carry the same pro-
jective symmetry quantum numbers as that of the electric
charge of E f 1

2
Mbtrn. Below we only need to show that these

fermions can be in a gapped state with the symmetries and
gauge constraints preserved.

The momentum-space representation of the Hamiltonian
(F20) is

H = λ
∑

k

( f †
k fk + f̄ †

k fk − 2) − Q
∑

k

(
f T
k f̄−kγk + H.c.

)
.

(F23)

This Hamiltonian can again be solved by the standard Bogoli-
ubov transformation:

f (k) = d (1)
k cos θk − d (2)

k sin θk,

f̄ (−k)∗ = d (1)
k sin θk + d (2)

k cos θk (F24)

with cos 2θk = λ√
λ2+Q2γ 2

k

. In terms of the d’s, the Hamiltonian

(F23) becomes

H =
∑

k

Ek
(
d (1)†

k d (1)
k − d (2)†

k d (2)
k

)
(F25)

with the dispersion of the Bogoliubov quasiparticles given by

Ek =
√

λ2 + Q2γ 2
k , (F26)

which is always gapped. The gauge constraint now becomes∑
k

sin2 θk = 1

2
NU.C., (F27)

which can be satisfied by tuning λ and Q.
So we conclude that these Abrikosov fermions can be

gapped while preserving the relevant symmetries and gauge
constraints. Notice when both λ and Q are nonzero, the gauge
structure of this parton mean field is U(1) [63]. When the U(1)
symmetry is gauged, we again get a U(1) QSL. The results
of Ref. [5] imply that the monopoles in the resulting U(1)
QSL have translation actions belonging to the nontrivial class
of H2

ρ[Z3; U(1)] with ρ = −1. Furthermore, this monopole
should not carry spin-1/2 under SO(3) due to the absence
of a nontrivial surface state of these fermions. Therefore the
gauged state is precisely (E f 1

2
Mbtrn )−.
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