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Abstract
We review the operations research/management science literature on data-driven

methods in retail operations. This line of work has grown rapidly in recent years,

thanks to the availability of high-quality data, improvements in computing hard-

ware, and parallel developments in machine learning methodologies. We survey

state-of-the-art studies in three core aspects of retail operations—assortment opti-

mization, order fulfillment, and inventory management. We then conclude the paper

by pointing out some interesting future research possibilities for our community.
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1 INTRODUCTION

Modern operations management (OM) has become a major

academic discipline and one of the most important business

functions in corporations. Over the past decades, the aca-

demic OM literature has co-evolved closely with practice,

shifting its focus from the early topics of production systems

(e.g., the assembly line, factory physics) to broader sup-

ply chain concepts (e.g., Just-in-Time), to operations strategy

(e.g., outsourcing, offshoring), to revenue management, to

managing operations risks and disruptions. In the last decade,

the most important development in business has arguably

been digitalization. As more and more firms ponder how dig-

ital technology and big data may transform their operations

strategies, so have OM researchers begun to investigate opera-

tions problems from a digital, data-driven lens. In this article,

we shall focus on developments in OM research in retail, one

of the key industries undergoing digital disruption.

As an illustration of how the focus of OM may be evolving

over time, consider nomenclature trends in supply chain man-

agement, a primary study area of OM. Figure 1 shows the rel-

ative Google search frequencies of three key phrases related

to supply chain management over the past 10 years (com-

piled from Google Trends). For decades, OM researchers and

practitioners have been employing operations research (OR)

techniques in optimizing their operations. In the supply chain

context, a large part of this methodology is synonymous with

the phrase supply chain optimization. With digitalization,

data analytics has quickly become a core element of OM.

Figure 1 shows that the popularity of supply chain analytics
has rapidly grown, and surpassed supply chain optimization
(the search frequency for which has stayed relatively flat) in

around 2014 to 2015. While it can be rightfully argued that

supply chain analytics is a broader concept that subsumes

supply chain optimization as a subset, this observation still

suggests that many (especially practitioners) now embrace

data-driven (analytics) approaches as the present of OM.

As a future-proof strategy, the business world has been

investing heavily in key technologies such as artificial intel-

ligence (AI). Figure 1 shows that interest in supply chain
AI has grown from practically zero a decade ago to about

half the level of supply chain optimization today. This is an

interesting observation regarding the future of OM. Many

academics (the authors included) have had the negative expe-

rience of interacting with some practitioners about potential

collaborations, just to find that they are only interested in

descriptive and predictive analytics methods that inform

managers in their decision making, rather than prescriptive

methods that recommend decisions to managers, which is

the specialty of the OR community. The headline-grabbing
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FIGURE 1 Relative search frequencies for key OM phrases on Google [Colour figure can be viewed at wileyonlinelibrary.com]

success of AI may be changing this mentality by instilling

confidence in practitioners to trust (sometimes black-box)

prescriptive methods for decision making.

Under this backdrop, interesting avenues have opened up

for researchers in the operations of retail, a prime industry in

the digitalization movement. Traditionally, research in retail

operations has focused on model-based approaches built on

theoretical assumptions on how systems work. Often, this is

due to the fact that researchers did not possess the necessary

data to accurately depict the operations, and thus simpli-

fying assumptions were necessary. Although model-based

approaches often provide valuable strategic insights to practi-

tioners and tractable solution methods, the assumptions they

are built upon sometimes fail to hold in real life, especially as

modern retail operations become increasingly complex. With

digitalization, data of unprecedented richness, volume, and

accuracy has become available. For instance, now we have

detailed records for every customer order in online retail, from

keywords that the customer searched, the products (assort-

ment) displayed on screen, to the resulting click-through and

even social media activities of the customer, to the eventual

order, on the demand side. Likewise, on the supply side, we

have detailed accounts of procurement records from suppliers,

shipment dates and location tracking, arrival at warehouse and

storage, distribution trajectories and eventual outbound ship-

ment to customers, for every item. Therefore, there is no lack

of data for laying out every process in detail. The challenge

is how to extract the necessary information for modeling, and

subsequently optimizing, these complex operations.

In the last few years, researchers have focused on the

development of such data-driven models and solutions for

retail operations problems. Besides access to high-quality

data, methodological advances in machine learning (ML) and

data-driven OR techniques have been another key enabling

factor behind this development. For example, statistical

learning models provide parametric and nonparametric

models for high-quality prediction, while recurrent neural net-

works (RNN) can be used to model time-series data, which

is common in retail operations problems. Besides, an eas-

ier access to high-performance computing resources has also

made a major impact, since data-driven methods (especially

nonparametric ones) often require significant computational

efforts compared with model-based methods. For example,

recent developments in GPU-based training of deep neural

networks, availability of analytical (especially open-source)

software packages, and availability of cloud computing, all

combine to provide convenient tools for researchers and prac-

titioners to implement data-driven models.

In this article, we provide an up-to-date review by stocktak-

ing this rapidly-growing literature. To maintain a manageable

scope, we limit our attention to three main aspects of

data-driven research in retail operations, loosely following

the physical operations trajectory of a customer’s experience

with a digitalized retail supply chain. First, when a cus-

tomer visits a physical or online retail store, s/he chooses the

product(s) to purchase based on the assortment of products

displayed/ offered. We first review the data-driven literature

on assortment optimization, that is, the problem of the retailer

choosing the set of products to offer (Section 2). Then, once

the customer places an order in an online store, the order

will be fulfilled from the retailer’s fulfillment network. We

review the fulfillment optimization literature associated with

the data-driven design of such operations (Section 3). Finally,

the fulfillment and distribution networks have to ensure high

service levels and low costs through efficient inventory con-

trol. We discuss the latest works on data-driven methods for

inventory management (Section 4). We conclude in Section 5

with a discussion of important issues that appear across

different applications in the literature and potential future

directions. The set of problems reviewed is not intended

http://wileyonlinelibrary.com
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to be comprehensive. We have excluded several important

problems in retail operations, such as pricing (readers may

refer to Besbes and Zeevi (2009), den Boer (2015) and

the reference therein), joint pricing and inventory prob-

lems (e.g., Chen & Simchi-Levi, 2004, 2012; Feng, Luo,

& Zhang, 2014), as well as joint pricing and assortment

optimization (e.g., Jagabathula & Rusmevichientong, 2017;

Wang, 2012; Miao & Chao, 2020).

2 DATA-DRIVEN ASSORTMENT
OPTIMIZATION

Assortment optimization is a core problem in retail operations

and revenue management. It is of core importance to busi-

nesses, as it stands on the customer-facing end and is a direct

driver of revenue and customer satisfaction. The problem

involves a seller choosing an optimal set of products to offer to

a group of customers to maximize revenue, whereas each cus-

tomer chooses to purchase at most one of the offered products

based on their preferences. This is a difficult combinatorial

problem as it is typically not feasible (e.g., due to limited

shelf space) or not desirable (due to cannibalization) to offer

the full set of products. The assortment optimization problem

arises in many different application contexts, for example, in

selecting products for shelf display in retail stores or vending

machines, and selecting advertisements to be displayed on a

YouTube or Facebook page.

In this section, we first review parametric approaches to

assortment optimization based on parametric discrete choice

models and methods for parameter estimation from trans-

action and sales data. Then, we go over nonparametric

approaches to choice modeling and assortment optimization.

2.1 Parametric approach to customer choice modeling
To analyze assortment optimization problems, it is necessary

to model the customers’ purchase decisions given the offer

set. The classical way to model customer choice is to use para-

metric discrete choice models, which characterize customers’

choices between two or more discrete alternatives (the offer

set and the no-purchase option) as functions of the alterna-

tives’ attributes. Popular discrete choice models include the

Multinomial Logit (MNL), Nested Logit (NL), and Mixed

Multinomial Logit (MMNL) models. We provide a brief sum-

mary of these models below. For more detailed discussion,

we refer interested readers to Ben-Akiva, Lerman, and Ler-

man (1985), Anderson, de Palma, and Thisse (1992), Kök,

Fisher, and Vaidyanathan (2008), and the references therein.

2.1.1 Review of popular choice models
Let us consider a set of n products that the retailer can offer.

For an offer set S⊂ {1, … , n} chosen by the retailer, a para-

metric discrete choice model characterizes the probability

that a customer chooses to purchase product i as a function of

S, denoted by Pi(S). Here, product 0 denotes the no-purchase

option.

• Multinomial Logit model

Under the multinomial logit (MNL) model, customers choose

a product (or no purchase) according to randomly realized

utility Ui = Vi + 𝜀i with product i, where 𝜀i is the random

noise that follows standard Gumbel distribution and Vi is a

constant. Then the probabilities that a customer chooses prod-

uct i from assortment S, and the no purchase option, (denoted

by $0$), are

Pi(S) =
eVi

1 +
∑

j∈SeVj
; P0(S) =

1

1 +
∑

j∈SeVj
.

• Mixed Multinomial Logit model

Under the Mixed Multinomial Logit (MMNL) model, in addi-

tion to the random noise term, the mean utilities Vi, i = 1, … ,

n are also modeled as random variables. The mean utilities

can follow either discrete or continuous probability distribu-

tions. The case that the utility vector V = (V1, … , Vn) follows

a discrete distribution with m different values, denoted by

V̂
1
, … , V̂

m
, may represent the existence of multiple customer

types with V̂
j
corresponding to the mean utilities of customer

type j∈ {1, … , m}. An example where V follows a con-

tinuous distribution is when there are product-independent

sensitivities in the form Vi = 𝜇i +P−Bri, where 𝜇i is a deter-

ministic constant, ri is the price of product i, and P and B
are continuous random variables. The random variable B can

be assumed to be positive to represent price sensitivity of the

customer.

In the MMNL model, Pi is modeled as the conditional prob-

ability that a customer chooses product i from assortment S,

given both the assortment S and the realization of utility V:

Pi(S|V) = eVi

1 +
∑

j∈SeVj
; P0(S|V) = 1

1 +
∑

j∈SeVj
.

• Nested Logit model

Under the Nested Logit (NL) model, customers first select a

subset of product, referred to as a “nest”. The nests form a

partition of the product ground set. A customer first chooses

a nest (e.g., a cell phone brand), and then choose a specific

product (a phone model of the chosen brand). Suppose there

are m nests each with n products. We let Wij and W0j be the

utility weights of product j and the no-purchase option in nest

i, respectively. Conditioned on a customer choosing nest i,
the probabilities of the customer selecting product j from a

sub-assortment Si (in nest i) and no purchase are given by

Pi|j(Sj) =
Wij

Wj(Sj)
; P0|j(Sj) =

W0j

Wj(Sj)
,

where Wj(Sj) ≔ W0j +
∑

k∈Sj
Wkj. Furthermore, each nest j

is also associated with a parameter 𝛾 j ≥ 0 that characterizes

the degree of the dissimilarity of the products in the nest. In

the NL model, the dissimilarity parameters (𝛾1, … , 𝛾m) are

assumed to be constants and the preference weights Wij are
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generated by a random utility that follows a multidimensional

generalized extreme value distribution with mean Vij. Then,

the preference weights can be represented in a similar form as

in the MNL model:

Wij = eVij∕𝛾j .

Then, if the assortment consists of sub-assortments

(S1, … , Sm) for nests 1, … , m, then a customer chooses nest

j with probability

Qi(S1, … , Sm) =
Wj(Sj)𝛾j

W0 +
∑m

l=1 Wl(Sl)𝛾l

,

where W0 denotes the preference weight for not choosing any

nests (e.g., choosing a brand not carried by the seller).

2.1.2 Learning discrete choice models from data
Given a selected choice model, the model parameters

(denoted by a vector 𝜽) can be estimated from data. In

the ideal case, choice data is collected from an experiment

(Bunch, 1987). Suppose there are n products and let zi denote

the vector of explanatory variables (factors influencing pur-

chase) associated with product i for i = 1, … , n. Then the

utility of item i can be represented by a function Vi(𝜽, zi).

Consider an experiment for estimating the utility parameters,

which consists of T independent trials. In each trial t = 1, … ,

T , a randomly picked subject is asked to make a choice in an

offered choice set denoted by St (possibly multiple times). Let

Fit denote the relative frequency of subject t selecting prod-

uct i. The choice probability for product j can be written in

the form

Pi(S,𝜽) ≔ eVi(𝜽,zi)∑
k∈SeVk(𝜽,zk)

.

Then, for trial t, the probability of the subject selecting item

i in choice set St is Pi(St,𝜽). Then, the model can be esti-

mated through the maximum likelihood estimate (MLE) of 𝜽,

denoted by 𝜽̂, which can be formulated as

𝜽̂ = arg min
𝜽

L(𝜽),

where

L(𝜽) = −
T∑

t=1

∑
i∈St

Fit log Pi(St,𝜽).

Bunch (1987) investigate the particular case where

Vi(𝜽, zi) = 𝜽Tzi, and propose an algorithm for general proba-

bilistic choice models and show that the MLE problem can be

written as a problem in generalized regression. More details

about algorithms to achieve MLE and comparisons of MLE

with other estimators for choice model parameters are stated

in Bunch (1988), and Bunch and Batsell (1989).

However, identifying the exact explanatory variable val-

ues for each product and implementing the aforementioned

independent trials is often impractical. In fact, the customer

choice data collected in real-world situations are often very

sparse, that is, only a small number of observations are avail-

able for each choice set and a small proportion of choice sets

are observed among all possible ones. Benefited from recent

advances in learning low-rank models, it is possible to learn

choice models from data on comparisons and choices.

Negahban, Oh, Thekumparampil, and Xu (2018) investi-

gate the problem of estimating MNL model parameter values

that best explain the data. The authors consider different

forms of available data: pairwise comparisons, that is, the

customer’s choice when given two options; higher-order com-
parisons, that is, the customer’s rankings over a given subset

of items; customer choices, that is, the customer’s choices of

the best item out of a given subset; and bundled choices, that

is, the customer’s choices of bundled items. For the scenario

when pairwise comparisons are available, the authors propose

a graph sampling method that captures sample irregularity.

They also propose a convex relaxation of the MNL learning

problem and show that it is minimax optimal up to a logarith-

mic factor. This proves that the proposed estimator cannot be

improved upon other than by a logarithmic factor and identi-

fies how the accuracy depends on the topology of sampling.

The authors also extend their framework to the scenario where

data includes higher-order comparisons, customer choices,

and bundled purchase observations.

However, the richness of the MMNL model presents sub-

stantial difficulties for learning. In fact, Ammar, Oh, Shah,

and Voloch (2014) show that for any integer k, there exist

pairs of MMNL models with n = 2k+ 1 items and m = 2k mix-

ing components where the samples generated by both models

with length l = 2k+ 1 would be identical in distribution.

Therefore, it is impossible to uniquely distinguish MMNL

models in general. Oh and Shah (2014) investigate sufficient

conditions under which it is possible to learn MMNL mod-

els efficiently (in both statistical and computational sense),

and provide an efficient algorithm for cases with partial pref-

erence data (higher and pairwise comparisons). Given, for

example, pairwise comparison observations, the goal is to

learn the mixing distribution over m different MNL submod-

els and the parameters of each. They consider data in the

following form: Each observation is generated by first select-

ing one of the m mixture components, and then observing

comparison outcomes for l pairs of products therein. Their

proposed algorithm consists of two phases. The first involves

tensor decomposition to learn the pairwise marginals of mix-

ing components. Then, the second phase makes use of these

pairwise marginals to learn parameters for individual mix-

ture components. The authors also identify conditions under

which the model can be learned with sample sizes polyno-

mial in n (number of products) and m (number of mixing

components).

Chierichetti, Kumar, and Tomkins (2018) study the

problem of learning a uniform mixture of two MNLs from a

more realistic oracle that returns the distribution of choosing

products in a given slate. In particular, the uniform 2-MNL

model (a,b) assigns to item i in subset S⊂ {1, … , n} the prob-

ability
1

2

a(i)∑
j∈Sa(j)

+ 1

2

b(i)∑
j∈Sb(j)

, where a(⋅) and b(⋅) denote the
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preference weights generated by two different MNL models.

Their algorithm builds on a reconstruction oracle that returns

the probabilities that each item in a given slate will be chosen.

They show that slate sizes of two are insufficient for recon-

struction, and thus their oracle with slate size of at most three

is optimal. They propose to achieve this oracle by approxi-

mating it by sampling over choice processes. Moreover, the

authors provide algorithms that makes O(n) and O(n2) queries

when the oracle can be queried adaptively and non-adaptively,

respectively, and show that they are optimal.

2.1.3 Assortment optimization with parametric discrete
choice models
Once parameters of choice models are estimated, the opti-

mal assortment can be determined by solving an optimization

problem. A significant stream of literature deals with such

optimization problems under settings with different discrete

choice models and additional (e.g., capacity) constraints. The

literature generally investigates assortment problems with

either static or dynamic formulations. In the former case,

given the choice model of purchase behavior, the decision

maker decides the optimal assortment that maximizes the

expected profit in one shot. In the dynamic setting, the inven-

tory of products is taken into consideration over multiple

periods.

Suppose there are n products and each product i is asso-

ciated with revenue ri. The seller aims to choose a subset

S⊂N ≔ {1, … , n} to offer. Recall that Pi(S) and P0(S) denote

the choice probabilities of product i and of no purchase,

respectively, when assortment S is offered. In the static assort-

ment problem, one seeks the optimal assortment S that maxi-

mizes the expected profit where the expectation is taken over

the randomness of customer choice. The objective function

can be formulated as the following:

max
S⊂N

∑
i∈S

riPi(S).

When the customer choice probabilities Pi(S) follow the

MNL model with known utility parameters, the problem can

be solved efficiently by considering only revenue-ordered

assortments. In other words, one can start with the empty

set and incrementally construct S by sequentially adding a

product that results in the maximum increase in revenue at a

time. This elegant result is a special case of the nested offer

set property of Talluri and Van Ryzin (2004) (although this

article originally investigates a more general setting). Moti-

vated by this result, Aouad, Farias, Levi, and Segev (2018)

and Berbeglia and Joret (2020) provide performance guaran-

tees of the revenue-ordered assortments. Aouad et al. (2018)

consider a general choice model where customer choices are

characterized by a distribution over ranked lists of products

and Berbeglia and Joret (2020) investigate customer choice

models with the assumption that Pi(x) does not increase when

S is enlarged.

This simple optimal solution no longer holds when there is a

capacity constraint on the assortment, that is, |S | ≤C, due to

(for example) limits on shelf space. Rusmevichientong, Shen,

and Shmoys (2010) investigate the problem:

max
S⊂N,|S|≤C

∑
i∈S

riPi(S).

Rusmevichientong et al. (2010) develop a simple algorithm

for computing a profit-maximizing assortment based on a

connection between the MNL model and the geometry of

lines in the two-dimensional plane, and derive structural prop-

erties of the optimal assortment. Jagabathula (2014) study

the same problem and propose an easy-to-implement local

search heuristic. The authors show that it efficiently finds the

global optimum for the MNL model and derive performance

guarantees under general choice model structures.

Rusmevichientong and Topaloglu (2012) study the robust

assortment problem under the MNL model when some of the

parameters of the choice model are unknown. Wang (2012)

considers the problem of jointly finding an assortment of

products to offer and their corresponding prices when the

customers choose under the MNL model. Davis, Gallego,

and Topaloglu (2013) investigate the assortment optimization

problem with a set of total-unimodularity constraints when

customers make purchase decisions according to the MNL

model. The authors show that this problem can be formu-

lated as a linear program. Wang (2013) considers the joint

problem of assortment and price optimization with a capacity

constraint and they assume that customer purchase behav-

ior follows the MNL model with general utility functions.

The author simplifies this problem to one of finding a unique

fixed point of a single-dimensional function and propose an

efficient solution algorithm.

Another extension of the static assortment optimization

problem with the MNL model explores the consideration

sets of customers. In this model, there are multiple customer

types, and a particular type is interested in purchasing only a

particular subset of products (the consideration set). A cus-

tomer observes which of the products in her consideration

set are actually included in the offered assortment and makes

a choice from among only those products, according to the

MNL model. Feldman and Topaloglu (2018) study capaci-

tated assortment problems when the consideration sets are

nested. The authors show that this assortment problem is

NP-hard, even when there is no restrictions on the total space

consumption of offered set. They also provide a fully polyno-

mial time approximation scheme (FPTAS) for the problem.

Recall that FPTAS refers to a family of algorithms that for

any ϵ> 0, the algorithm is ϵ-optimal with polynomial running

time with respect to the input size and 1/ϵ.

With the MMNL and NL models, the static assortment

optimization problem, even under the simplest setting, is

difficult to solve. Rusmevichientong, Shmoys, Tong, and

Topaloglu (2014) study the assortment problem under the

MMNL model, where there are multiple customer types, each

making purchase choices according to their own MNL model.
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To illustrate the computational complexity, they show that the

assortment problem is NP-complete even with the simple case

when customers are randomly realized from two different cus-

tomer types. The authors further show that revenue-ordered

assortment is optimal for two special cases:

1. when the utility functions include product-

independent price sensitivity Vi = 𝜇i +P−Bri

(where P and B are constants); or

2. when customers are value conscious, where realiza-

tion of V satisfies V1 ≤V2 ≤ · · ·≤Vn and r1eV1 ≥
r2eV2 ≥ · · · ≥ rneVn (with the products indexed such

that r1 ≥ r2 ≥ · · ·≥ rn).

The authors also provide an approximation guarantee for

the revenue-ordered assortment policy for general MMNL

models. Bront, Méndez-Daz, and Vulcano (2009) show that

the same problem is NP-hard and Méndez-Daz et al. (2014)

develop a brand-and-cut algorithm to find the optimal assort-

ment.

To circumvent computational difficulties, Mittal and

Schulz (2013) propose a FPTAS for assortment optimiza-

tion problem with MMNL model and NL model. Désir,

Goyal, and Zhang (2014) consider the capacity-constrained

version of the assortment optimization problem under MNL,

MMNL, and NL models and provide FPTAS by exploit-

ing connections with the knapsack problem. It is worthwhile

pointing out that the running time of their algorithm depends

exponentially on the number of mixture components in the

MMNL model, and such exponential dependence is necessary

for any (1−ϵ)-approximation algorithm. Instead of develop-

ing approximation schemes such as FPTAS, Şen, Atamtürk,

and Kaminsky (2018) reformulate the constrained assortment

optimization problem under the MMNL model as a conic

quadratic mixed-integer program. Making use of McCormick

inequalities that exploit the capacity constraints, their for-

mulation enables solving large instances using commercial

solvers.

Davis, Gallego, and Topaloglu (2014) study the assortment

optimization problem under the two-level NL model with an

arbitrary number of nests. They show that the problem is poly-

nomially solvable when the nest dissimilarity parameters (𝛾 j’s

in Section 2.1.1) of the NL model are less than one and cus-

tomers always make a purchase within the selected nest. The

problem becomes NP-hard if either assumption is relaxed.

To deal with the NP-hard cases, they also develop parsimo-

nious collections of candidate assortments with worst-case

performance guarantees and formulate a convex program that

provides an upper bound on the optimal expected revenue.

Gallego and Topaloglu (2014) then extend the setting to

accommodate constraints on the total number of products and

the total shelf space used by the offered assortment.

Li, Rusmevichientong, and Topaloglu (2015) investigate

the assortment optimization problem under a more general

d-level NL model. In their setting, the taxonomy of the

product is described by a d-level tree where each node cor-

responds to a set of products, and each leaf node denotes

a single product. Then the customer choice probability can

be formulated as a walk from the root node to one of the

leaf nodes where at each of the non-leaf nodes, children

nodes are chosen following probability generated by pref-

erence weights (Qis defined in Section 2.1.1). With this

formulation, the authors give a recursive characterization

of the optimal assortment and provide an algorithm that

achieves the optimal assortment with complexity O(dnlogn).

Wang and Shen (2020) also adopt the d-level NL model

and investigate the assortment optimization problem with the

no-purchase option in every period of the customer choice

process, with cardinality constraints imposed on the lowest

level. The authors show that the optimal assortment can be

obtained in O(nmax{d,k}) operations (where k denotes the

capacity), which is faster than the result for unconstrained

case developed in Li et al. (2015). Other studies on the NL

case include Mittal and Schulz (2013), who propose a FPTAS

for the problem, and Désir et al. (2014), who consider the

capacity constrained version of the problem and provide a

FPTAS.

In contrast to the static problem, the dynamic assortment

optimization problem considers a multi-period setting where

inventory can be carried over (though usually not replenish-

able). This setting arises naturally in revenue management

applications. Talluri and Van Ryzin (2004) consider an assort-

ment optimization problem that involves multiple time peri-

ods and a capacity constraint on inventory. The setting is

motivated by the problem of an airline offering different fare

products with a fixed aircraft capacity. In their setting, the

different fare products consume the same capacity (seats on

the flight) and differ in terms of revenues and conditions

(e.g., cancellation policies). They assume that demand arrives

with probability 𝜆 at each period. The seller chooses a sub-

set S⊂N ≔ {1, … , n} to offer. Under this setting, the value

function Wt(x) is defined as the maximum expected revenue

obtainable from periods t = 1, … , T , given that there are x

units of inventory (unsold seats) remaining at the start of time

t. Then, the Bellman equation for Wt(x) is

Wt(x) = max
S⊂N

{∑
i∈S

𝜆Pi(S)(ri + Wt+1(x − 1))

+ (𝜆P0(S) + 1 − 𝜆)Wt+1(x)
}
,

where Pi(S) is the probability that product i is sold when

assortment S is offered. Similarly, P0 is defined as the proba-

bility of no purchase when customer is offered S. When Pi(S)

and P0(S) takes the form of the MNL model with know utility

weights, Talluri and Van Ryzin (2004) show that the optimal

policy is the so-called nested allocation policy based on the

order of revenue of product.

Liu and Van Ryzin (2008) investigate a more general

multi-period network revenue management problem. The net-

work has l legs and provides n products with initial capacities
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c1, … , cl. The incidence matrix A = {aji} indicating whether

leg j (∈{1, … , l}) is used by product i (∈N) in which case

aji = 1, and zero otherwise. They also assume that in each

period, the probability of a customer arrival is 𝜆. The decision

maker controls the set of offered products (S) in each period

to maximize expected total profit over a finite horizon. Simi-

lar to the setting in Talluri and Van Ryzin (2004), the problem

can be formulated as a dynamic program with the following

Bellman equation:

Wt(x) = max
S⊂N

{∑
i∈S

𝜆Pi(S)(ri + Wt+1(x − Ai))

+ (𝜆P0(S) + 1 − 𝜆)Wt+1(x)
}
, (1)

where Ai denotes the i-th column of the incidence matrix A
and x∈Rl is the vector of unsold capacities of the l legs.

The authors then generalize the analysis of efficient offer

sets, proposed by Talluri and Van Ryzin (2004), to the net-

work case. The authors show that, with the MNL model, the

optimal assortment can be found based on sorting the prod-

ucts in a descending order of marginal profits. They propose

a choice-based deterministic linear program that determines

the set of efficient assortments and demonstrate their asymp-

totic optimality. They also proposed heuristics that convert

efficient sets into control policies. Bront et al. (2009) also

study the same problem and extend the analysis and decom-

position heuristics proposed in Liu and Van Ryzin (2008) to

a MNL model where customers belong to discrete segments

with different, but possibly overlapping consideration sets.

They make use of integer programming formulations and col-

umn generation techniques to solve the resulting problem. To

solve the same problem as Liu and Van Ryzin (2008), Zhang

and Adelman (2009) adopt a different approach that approx-

imates Wt(x), the value function defined in (1), with affine

functions of the state vector x. The authors then develop a col-

umn generation algorithm to solve the resulting problem and

construct associated policies. The authors show that, empiri-

cally, their proposed policies can outperform those of Liu and

Van Ryzin (2008) by up to 50%.

Rusmevichientong and Topaloglu (2012) study the

dynamic assortment optimization problem from the robust

optimization perspective, where the true parameters of the

choice model are assumed to be unknown and fall within

an uncertainty set. In their setting, there is a limited initial

inventory to be allocated over time. The authors show that

offering revenue-ordered assortments in each period is still

optimal. This leads to a method that computes robust optimal

policies as efficiently as non-robust approaches.

Other multi-period assortment problems that differ from

the aforementioned dynamic formulation include Gallego,

Ratliff, and Shebalov (2015), Rusmevichientong et al. (2010),

Liu, Ma, and Topaloglu (2020). Gallego et al. (2015) investi-

gate the multi-period network revenue management problem

under a more general customer choice model, known as the

general attraction model, which includes the MNL model

as a special case. Besides the static assortment optimiza-

tion problem with capacity constraints, Rusmevichientong

et al. (2010) also study an online learning version the problem.

In particular, the authors consider the setting where the

parameters of MNL models are initially unknown and are

adaptively learned over time. The authors formulate this

problem as a multiarmed bandit problem, provide a pol-

icy, and establish an O(log2T) upper bound on the regret.

Liu et al. (2020) consider assortment optimization problems

where the choice process of a customer takes place in mul-

tiple stages. In each stage, customer choice is captured by

the MNL model, and the offered assortment is assumed not

to overlap with the those offered in the previous stages. The

authors prove the NP-hardness of this problem and develop a

FPTAS. They also show that, if there are multiple stages, then

the union of the optimal assortments to offer in each stage

is nested by revenue, though there is no efficient method to

determine the stage in which each product should be offered.

2.2 Nonparametric choice modeling and associated
assortment optimization problems

The literature discussed so far involves first estimating a para-

metric model that captures choice behavior and then optimiz-

ing the corresponding optimization problem. However, this

approach can be sub-optimal in case of model misspecifica-

tion and overfitting/underfitting. Nonparametric approaches

offer an alternative to mitigate such risks. Farias, Jagabathula,

and Shah (2013) consider a nonparametric approach that

views choice models as generic distributions over rankings

(or preference lists) of products, based on a limited amount of

data on observed consumer choice decisions. To be more spe-

cific, the authors consider a set of products N, and a ranking 𝜎

associated with each customer. A customer’s choice is given

by argmin i∈ S𝜎(i) when offered set S. Since purchase behav-

ior is completely characterized by 𝜎, customers with the same

𝜎 can be considered the same type. Noted that this assumption

is consistent with the MNL, MMNL, and NL models. In this

general choice model, choice probabilities can be determined

from a distribution 𝜆 :𝚷N → [0, 1] over the set of all possible

permutations 𝚷N of N:

Pi(S) =
∑

𝜎∈i(S)
𝜆(𝜎),

where i(S) = {𝜎 ∈ 𝚷N ∶ 𝜎(i) < 𝜎(k),∀k ∈ S, k ≠ i} denotes

the set of all customer types that would purchase product i
when offered set S. The authors also assume that the data

observed are given by an m-dimensional “partial information”

vector y = A𝝀, where 𝝀∈RN! is the vector with components

𝜆(𝜎), A∈ {0, 1}m×N! and m≪N! in the case that data for

only a limited number of assortments are available. Under this

setting, the authors consider the problem of predicting the rev-

enue rate (i.e., the expected revenue garnered from a random
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customer) for some given assortment S by solving:

min
𝝀

∑
i∈S

riPi(S)

s.t. A𝝀 = y

1T𝝀 = 1

𝝀 ≥ 0.

Note that it is a linear program with respect to the vari-

ables 𝝀, so the problem is conceptually tractable. However,

in practice, the number of variables is intractably (in fact,

exponentially) large. The authors propose to overcome this

difficulty by formulating the dual problem (with exponential

number of constraints), and solving it with both constraint

sampling and an efficient reformulation of the constraint

set. They also examine the performance of the scheme on

simulated transaction data as well as on a real-world sales

prediction problem using real data.

Although Farias et al. (2013) provide the novel idea of

general choice models and investigate the revenue rate of a

given assortment S, optimizing the assortment that maximizes

the expected revenue remains nontrivial. Aouad et al. (2018)

show that the assortment problem is NP-hard even to approx-

imate, and provide best-possible approximability. Feldman,

Paul, and Topaloglu (2019) investigate the k-product non-

parametric choice model in which the rankings only con-

tain at most k products. The retailer attempts to find the

revenue-maximizing assortment when customer choice is

governed by the k-product nonparametric model. The authors

show that this problem is strongly NP-hard even for k = 2

and develop an algorithm with an improved approximation

guarantee.

Bertsimas and Mišić (2019) investigate the product line

design problem, which is essentially a nonparametric assort-

ment optimization based on product rankings. They propose a

new mixed-integer optimization formulation for the problem

as well as a specialized solution approach, based on Benders

decomposition. They show that utilizing their formulation and

Benders decomposition, the problem can be solved more effi-

ciently than other formulations. Bertsimas and Mišic (2015)

investigate a similar assortment optimization problem with

a general choice model considering the probability distribu-

tion over all possible rankings of the products. The difference

is that, instead of evaluating the worst-case revenue over all

probability distributions that reconcile the available data as

described in Farias et al. (2013), Bertsimas and Mišic (2015)

consider a small and fixed set of rankings of the products, and

a probability distribution over this small set. Suppose there

are p rankings or permutations, 𝜎1, … , 𝜎p, each assigning

the set of products {0,1,2, … , n} to different ranks. Let 𝜆k

denote the probability that a customer follows permutation 𝜎k

(k = 1, … , p). Then the expected revenue of assortment S can

be presented by

R(S) =
∑
i∈S

ri

( p∑
k=1

𝜆k1{i = arg min
i′∈S{0}

𝜎k(i′)}

)
.

Then the optimal assortment can be found by solving

S∗ = arg max
S⊂N

R(S).

The authors reformulate this problem as a mixed-integer

optimization (MIO) problem which can be relatively effi-

ciently solved via branch-and-bound. This formulation can

also be extended to incorporate additional constraints.

Besides the MIO formulation, the authors also provide esti-

mation method for the general choice model by minimizing

the 𝓁1 error between the choice probabilities predicted by the

model and the empirical choice probabilities that provided by

the data. Suppose data corresponding to M assortments S1,

… , SM is available and we know Fim which is the observed

frequency of customer selecting option i with assortment Sm.

The following problem is solved to estimate 𝝀, the distribution

over permutations:

min
𝝀

||A𝝀 − F||1
s.t. 1T𝝀 = 1

𝝀 ≥ 0

where the matrix A is defined in the same way as in Farias

et al. (2013). Then, the authors reformulated the problem into

a large-scale linear optimization problem and can be solved

efficiently by column generation.

Under a data-driven environment, the availability of highly

detailed purchase data enables nonparametric approaches

for modeling customer choice via ranked preference, as

described above. Although being more flexible with data,

this approach is often computationally challenging in solv-

ing the subsequent assortment optimization problem, due to

the (mixed) integer formulations and searching over permu-

tations. Therefore, approximation algorithms and decompo-

sition techniques such as Benders decomposition and column

generation are often required.

Chen and Mišić (2019) propose a novel nonparametric

approach for customer choice modeling using decision trees.

In their proposed model, each customer type is associated

with a binary decision tree, which represents a customer’s

decision given specific offered assortments. To obtain the

choice probabilities, the authors consider a collection F of

decision trees (also called a decision forest) combined with a

probability distribution 𝜆 : F → [0, 1] over the trees in forest

F. Then the probability of a customer choosing product i in

offer set S can be defined as

Pi(S) =
∑
l∈F

𝜆(l)1{i = Â(S, l)},

where Â(S, l) ∈ S is the choice out of offer set S made by

a customer according to decision tree l. This model relaxes
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the assumption of weak rationality, that is, that adding a

product to an assortment will not increase the choice proba-

bility of another product in that assortment. Weak rationality

is a common technical assumption in most choice models,

but may not necessarily hold in practical scenarios where

customers exhibit irrational (or boundedly rational) choice

behavior. With historical observations of assortments S1, … ,

Sm and for each of historical assortments, the transaction data

is large enough so that the probabilities Pi(Sm) can be esti-

mated. The authors show that this model can perfectly fit such

data with shallow trees and propose an efficient algorithm

for estimating such models from data, based on combining

randomization and optimization.

Blanchet, Gallego, and Goyal (2016) propose a general

semiparametric choice model known as the Markov chain

choice model. The products are modeled as states in a Markov

chain and substitution behavior is modeled by state transi-

tions. Then, the choice probabilities for a given offer set can

be computed as the absorption probabilities of the products in

the offer set. The authors show that this model can approxi-

mate any choice model based on random utility maximization.

However, estimation of this model requires data correspond-

ing to a specific set of n+ 1 assortments when there are n
products.

Another interesting alternative to the data-driven nonpara-

metric approach is to make use of the so-called persis-

tency model in distributionally robust optimization. In this

semi-parametric approach, one considers a population of het-

erogeneous customers each solving an instance of a linear

zero-one optimization problem with random coefficients, and

analyzes the aggregate behavior over the population, that is,

the expected objective and the probability (known as the per-
sistency value that a decision variable will be selected (equal

to one) in the optimal solution. While these metrics are diffi-

cult to compute exactly, good approximations can be tractably

obtained by evaluating the extremal (upper bound) expected

objective value given only partial distributional information

on the random coefficients.

In the choice modeling context, one can consider the cus-

tomer’s optimization problem as simply selecting the prod-

uct (or no-purchase option) with the highest realized utility

value (coefficient). Natarajan, Song, and Teo (2009), Mishra,

Natarajan, Padmanabhan, Teo, and Li (2014) consider this

problem under the marginal distribution model (MDM),

where the utility associated with product j is given by a con-

stant Vj plus a random error. Only the marginal distributions

of the error vector, but not the joint distribution, is known.

In contrast to the setting of random utilities in MNL model,

which assumes that the noises are i.i.d. and follow the Gum-

bel distribution, the MDM model allows idiosyncratic error

terms to have different scales across products/alternatives. In

the MDM model, the choice probabilities, when customers

are offered set S, are evaluated for a joint distribution 𝜃* of

random utility vector Ũ that yields the highest expected objec-

tive value out of the set Θ of all joint distributions satisfying

the given distributional information (the ambiguity set). This

can be computed by solving:

max
𝜃∈Θ

E𝜃(Z(Ũ, S))

where Z(Ũ, S) defines the optimal utility a customer may

achieve

Z(Ũ, S) = max

{∑
i∈S

Ũiyi ∶
∑
i∈S

yi = 1, yi ∈ {0, 1},∀i ∈ S

}
.

Natarajan et al. (2009) show that if Θ is the set of all

utility error distributions with given marginals Fi(⋅), cus-

tomer choice probabilities under distribution 𝜃* is the optimal

solution of

max
P

{∑
i∈S

[
ViPi + ∫

1

1−Pi

F−1(u)du
]
∶

∑
i∈S

Pi = 1,Pi ≥ 0,∀i ∈ S
}
.

Moreover, if Θ is the set of all joint distributions of util-

ity errors with zero mean and standard deviations 𝜎i (i∈ S),

customer choice probability under 𝜃* can be obtained by

solving

max
P

{∑
i∈S

(ViPi + 𝜎i
√

Pi(1 − Pi) ∶
∑
i∈S

Pi = 1,Pi ≥ 0,∀i ∈ S
}
.

Mishra et al. (2014) show that under appropriate choice

of marginals, there is a one-to-one correspondence between

all choice probabilities in the simplex and the determinis-

tic components of the utilities. The authors also study the

parameter estimation problem under the MDM using the max-

imum log-likelihood approach. Mishra, Natarajan, Tao, and

Teo (2012) also investigate a similar setting where only the

mean vector and second-moment matrix of utility vectors

(i.e., including covariances) are known, referred as the cross

moment model (CMM). The authors show that choice prob-

abilities under the extremal distribution can be computed by

solving a semidefinite program.

3 DATA-DRIVEN ONLINE RETAIL
FULFILLMENT

In online retail, once customers place orders, the next line of

operations that determines customer experience concerns the

order fulfillment: the physical process of satisfying an order

by dispatching the purchased item from one or multiple stock-

ing locations and shipping the products to the customer. For

online retailers such as Amazon, inventory can be shipped

out of a network of (75 in Amazon’s case) fulfillment centers

(FCs) and for omni-channel retailers such as Urban Outfit-

ters, online orders can be fulfilled from not only dedicated

FCs but also stores (Acimovic and Farias (2019)). Thus, for

omni-channel retailers, fulfillment decisions not only affect

shipping costs; they also provide an additional lever for the
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brick-and-mortar store network to maintain healthy stock

levels.

3.1 Fulfillment optimization models

A generic fulfillment problem can be described as follows.

The retailer operates a set J of fulfillment nodes, each of

which carries inventory of (possibly some subset) of the set of

products N = {1, … , n}. Let st,i,j denote the inventory of prod-

uct i at node j at the start of time period t, where i∈N, j∈ J,

and t∈ {1, … , T}. Customer orders arrive over time accord-

ing to some (deterministic or stochastic) process denoted by

{𝝃t}T
t=1

. For example, 𝝃t can be a n-vector whose components

give the quantities of each of the n products included in the

order; alternatively, 𝝃t take on an integer index value over a

set of discrete demand types. Then, the fulfillment decisions

can be characterized by xt,i,j, which represents the amount of

demand for product i fulfilled from inventory at node j in

period t. Given the order process and fulfillment decisions, the

reward (profit) is denoted by R(x, 𝝃), which may capture rev-

enue, shipping costs, late-delivery penalty, etc. We consider

that the set J includes a dummy node with infinite inven-

tory but low (potentially negative) reward to reflect shortage

penalty. Hence, the fulfillment decisions at period t can be

optimized by solving:

max
xt∈(s,𝝃t)

R(x, 𝝃t) + Wt+1(st − xt), (2)

where (s, 𝝃) denotes the set of feasible fulfillment decisions

and Wt(s) = E[maxx∈(s,𝝃t)R(x, 𝝃t)+Wt+1(st−xt)] denotes the

expected optimal reward starting with inventory vector s at

time period t. This dynamic programming problem is difficult

to solve due to the curse of dimensionality.

Acimovic and Graves (2015) consider a simple determin-

istic linear programming (DLP) approximation of (2), by

replacing the value function Wt+ 1(⋅) with a simple linear

function based on the dual of a linear program to be discussed

below. Suppose the demand can be represented by a set K of

discrete types of orders, that is, 𝜉t ∈K. Assume forecasts for

customer demand through a lookahead window (e.g., of the

next 𝜏 periods) is available, given by d̃k for type k orders. The

reward (profit) of satisfying demand type k from node j can

be written as Rj,k. Note that the index i are suppressed since

the problem can be solved for each product separately. Then,

given the realization of demand type 𝜉t = k, the fulfillment

decisions at time t can be approximated by:

max
x∈(st ,k)

∑
j∈J

Rj,kxj,t −
∑
j∈J

𝜆jxj,t, (3)

where 𝜆j is the dual variable corresponding to the first group

of constraints in the following linear program, which is an

“offline” transportation problem that reflects the fulfillment

of demand through the lookahead window:

max
x̂

∑
j∈J

∑
k∈K

Rj,kx̂j,k (4)

s.t.
∑
k∈K

x̂j,k ≤ sj ∀j ∈ J (𝜆j)

∑
j∈J

x̂j,k = d̃k ∀k ∈ K

x̂j,k ≥ 0 ∀j ∈ J, k ∈ K,

where sj denotes the inventory level at node j. Intuitively

speaking, the dual variables 𝜆j reflects the opportunity cost

of consuming a unit of inventory from node j, and hence

can be used to approximate the value function. With data

on both demand and contextual information, granular fore-

casts of d̃k, especially for products with high sales volume, are

often available by use of modern forecasting techniques. Aci-

movic and Graves (2015), Acimovic and Farias (2019) show

that the above approximation, supported by state-of-the-art

forecasting methods, achieves empirical success and has been

implemented in industry.

Several other works also rely on the DLP approximation

similar to one proposed in Acimovic and Graves (2015). Avra-

hami, Herer, and Levi (2014) consider the fulfillment problem

for a two-phase distribution system with an industrial collab-

orator, the Yedioth Group. Using similar techniques, they also

approximate the value function as a linear program and then

develop an innovative stochastic gradient-based algorithm.

Their proposed method has been implemented at Yedioth and

has led to both reduction in production cost while maintain-

ing the same level of sales and reduction in returns levels with

total savings more than $350,000 a year.

Jasin and Sinha (2015) consider the online fulfillment

problem in which customers may place orders involving mul-

tiple items. They formulate the stochastic control problem

that minimizes the expected total shipping costs and approx-

imate it with a DLP. It is worth pointing out that their

DLP is constructed differently compared with Acimovic and

Graves (2015). Specifically, the DLP is constructed by replac-

ing the stochastic demand with expected values and decou-

pling the fulfillment decisions across items in the order. Then,

the authors provide two heuristics based on the DLP solu-

tion. Their proposed approaches also require a priori demand

forecasts.

When availability of sales data is limited, it can be difficult

to model the order arrival process {𝝃t} or forecast demand

reliably. Hence, Andrews, Farias, Khojandi, and Yan (2019)

propose a robust approach that considers adversarial demand

rather of assuming reliable forecasts are available. To be more

specific, they assume that one order arrives in each period

t = 1, … , T , and define two sequences  ≔ {zj,t ∶ zj,t ∈
{0, 1}, t ∈ {1, … ,T}, j ∈ J} and  ≔ {Rj,t ∶ Rj,t ∈
R+, t ∈ {1, … ,T}, j ∈ J}. The reward for period t is given

by Rj,t = zj,tRj,t. The authors consider the values of  to be

chosen adversarially from an uncertainty set. This adversar-

ial model of rewards reflects uncertainty in demand, since it

is possible that zj,t = 0 and thus the order is shut off. Follow-

ing (3), the best fulfillment node j at time t can be chosen by
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solving:

max
j∈J

Rj,t − 𝜆j,t,

where 𝜆j,t is the dual multiplier associated with the inven-

tory availability constraint for node j, similar to (3). Instead

of computing these multipliers by solving a DLP problem (4),

Andrews et al. (2019) propose a primal-dual algorithm for

computing 𝜆j,t for each t under the adversarial demand setting.

The authors further provide a strong performance guarantee

by showing that, under the adversarial demand setting, no

algorithm can achieve better competitive ratio.

Xu, Allgor, and Graves (2009) investigate whether or not it

is beneficial to reevaluate real-time order-warehouse assign-

ment decisions during the time delay between when an order

is placed and when it gets fulfilled. The real-time assignment

refers to the assignment made right after a customer makes

a purchase of product. This real-time assignment has to be

myopic because it cannot account for any subsequent cus-

tomer orders or future inventory replenishment. Starting from

the myopic decision, the authors examine the benefits of peri-

odically reevaluating these real-time assignments. Inspired

by neighborhood search, they construct near-optimal heuris-

tics for the reassignment of a large set of customer orders to

minimize the total number of shipments.

3.2 Extensions

As the fulfillment optimization is highly practice-driven,

the literature has extended the basic problem discussed in

Section 3.2 in several directions, to capture various operations

scenarios in practice. We shall review two lines of exten-

sions, namely, on the analysis of joint problems of fulfillment

and product pricing or inventory management, and on the

interface with flexibility design.

3.2.1 Joint fulfillment and pricing or inventory
management models
In smart retail supply chains, it is best to integrate decisions

on fulfillment and pricing (which determines demand) and

inventory management (which determines supply). Govin-

darajan, Sinha, and Uichanco (2018) investigate the joint

problem of inventory management and fulfillment optimiza-

tion for omni-channel retailers. They consider a multi-period,

multi-location setting with no replenishment lead time. The

authors provide heuristics for different fulfillment settings

and show the advantages of their methods using numerical

experiments on real-world data. Lim, Jiu, and Ang (2020)

investigate the joint problem of inventory replenishment, allo-

cation, and order fulfillment for online retailers. The authors

formulate this problem as a multi-period stochastic optimiza-

tion problem and solve it with a two-phase approach that

based on robust optimization.

Lei, Jasin, and Sinha (2018) consider a similar joint pric-

ing and order fulfillment problem for e-retailers. The authors

formulate this as a stochastic control problem with random

demand. They propose a tractable deterministic approxima-

tion of the problem and two practical heuristics. Lei, Jasin,

Uichanco, and Vakhutinsky (2018) then move further to con-

sider a dynamic, multi-period joint display, pricing, and ful-

fillment optimization problem faced by e-retailers. They pro-

vide an approximation of the stochastic control problem using

its deterministic relaxation and reformulate it as a tractable

linear program. They then develop a randomized heuristic

policy based on the idea of hierarchical matrix decomposi-

tion and propose a novel iterative algorithm based on finding

augmenting paths in a graph representation of the display

assignment. Using numerical experiments with synthetic and

real-world data, they show that their proposed heuristic is very

close to optimal.

Harsha, Subramanian, and Uichanco (2019) examine the

joint problem of pricing and order fulfillment for an

omni-channel retailer instead of an e-retailer. This adds a

new dimension to the problem—in the omni-channel set-

ting, the retailer can charge different prices at different

brick-and-mortar stores and online channels at the same time.

Motivated by constraints encountered by retailers in prac-

tice, the authors consider the omni-channel fulfillment pattern

(e.g., the proportion of online customers choosing to pick up

in store) to be uncertain and exogenous and focus on opti-

mizing the pricing strategy. The authors propose two pricing

policies based on the idea of “partitions” of store inventory

for online and offline demand. With partitions, inventory at

a store can be used for online fulfillment as long as there is

enough inventory to exceed the threshold implied by the par-

tition. Once the inventory drops below this level, no more

online orders would be fulfilled from this store. The concept is

similar in spirit with the setting of booking limits of different

fare classes in revenue management.

The proposed solution approach is based on controlling

channel prices to adjust demand to meet the inventory parti-

tions. The authors formulate the problem as a mixed-integer

program with a tractable number of binary variables, and sug-

gest a scheme to reduce the number of binary variables when

demand follows the MNL model. Such a strategy is computa-

tionally tractable at a practical scale and the authors describe

a successful implementation at their partner firm, where the

partitions are implied from network-level pricing strategies.

3.2.2 Flexibility design in fulfillment optimization
Another extension of the fulfillment problem is to investi-

gate the flexibility structure of the fulfillment network. In

manufacturing, the long-chain strategy has been shown to

be a very effective flexibility structure, in that a long chain

with a small degree of flexibility can perform almost as

well as a fully flexible system in meeting uncertain demand

(Jordan and Graves (1995), Simchi-Levi and Wei (2012)).

The effectiveness of this structure is also investigated by

Asadpour, Wang, and Zhang (2020) in an online resource

allocation problem with inventory considerations, which is
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closely related to online fulfillment problem. The authors

show that the long-chain structure is effective in hedging

against demand uncertainty and mitigating supply–demand

mismatch. In their work, the performance of an alloca-

tion policy is measured by the expected total number

of lost sales in the system and their work aims to pro-

vide an upper bound on E[lost sales under long chain] −
E[lost sales under full flexibility]. The authors assume a total

of T demand requests of n possible types will arrive, where

the types of requests are stochastic with known probabilities.

They propose a simple and practical policy, known as the

modified greedy policy, and show that the expected lost sales

under the long-chain design is finite and does not diverge as

T increases. In the regime when T is significantly larger than

the number of types n, the upper bound being independent of

T implies that the expected lost sales as a function of total

demand is very small.

The authors then investigate the fulfillment optimization

problem as a potential application. They consider an online

retailer that operates n warehouses and customers are also

segmented into n regions (demand types) according to geo-

graphic proximity. However, the long-chain concept, which

would suggest that each customer region can only be ful-

filled by two warehouses (in the case of a 2-chain), does

not directly apply well to the online fulfillment problem. In

practice, even if the preferred (chain-connected) warehouses

run out of stock, the retailer would rather incur higher ship-

ping cost from the n− 2 non-preferred warehouses than lost

sale. The authors adapt their proposed policy to account for

this. Under this policy, fulfillment is made from one of the

chain-connected warehouses if there is stock, and from other

non-connected warehouses otherwise. Then, the relevant per-

formance metric is the total outbound shipping cost. The

authors compare the performance of their method with Aci-

movic and Graves (2015) and Jasin and Sinha (2015). Their

numerical experiments show that their method outperforms

that of Jasin and Sinha (2015) in all parameter settings and

outperforms Acimovic and Graves (2015) when n is small.

Xu, Zhang, Zhang, and Zhang (2018) extend the work of

Asadpour et al. (2020) and investigate online resource allo-

cation problems involving sparsely connected networks with

arbitrary numbers of resources and request types, and pos-

itive generalized capacity gaps (GCGs). The GCG concept

formalizes a notion of “effective chaining” and measures the

effectiveness of a given flexibility structure. It is first intro-

duced by Shi, Wei, and Zhong (2019) when discussing the

process flexibility of a multi-period make-to-order system. Xu

et al. (2018) show that positive GCGs are both necessary and

sufficient for sparse network structures to achieve bounded

performance gap compared with full-flexibility networks.

Jehl, Shi, Wu, and Shen (2020) investigate the prod-

uct placement problem for a fulfillment network with the

long-chain structure. Instead of investigating inventory allo-

cation of the fulfillment problem, the authors focus on the

allocation of SKUs in different warehouses to maximize the

number of orders that can be fulfilled. The authors simplify

the problem by assuming that an order can be fulfilled by

a warehouse if all SKUs involved in the order are placed

in the warehouse, and formulate the resulting product place-

ment problem as a mixed-integer program. The authors use

a Lagrangian relaxation solution approach, and show that the

Lagrangian dual function can be evaluated by solving a mini-

mum cut problem. They also conduct numerical experiments

to show that the performance of the long-chain structure

achieves over half of the performance of a fully flexible

network.

3.3 Practice-driven research

Research on the fulfillment problem and its extensions

are both practice- and data-driven in nature, and often

involve performance evaluation by numerical experiments

with real-world data. Often, this also involves implementation

of the proposed methods by industry collaborators. Compared

with data-driven frameworks for assortment optimization and

inventory management, this line of work has shown strong

potential of making real-world impact.

For example, Harsha et al. (2019) implemented their pro-

posed method with their industrial partner, a large U.S.

retailer, and achieved a 13.7% increase in clearance-period

revenue. DeValve, Wei, Wu, and Yuan (2018) collaborated

with one of China’s leading e-commerce companies with over

300 million active users and tested their proposed fulfill-

ment policy, leading to a profit improvement on the order

of tens of millions in U.S. dollars. Avrahami et al. (2014)

collaborated with Yedioth Group, the largest media group in

Israel, and implemented fundamental changes in how Yedioth

distributed print magazines and newspapers.

While real-world implementation is not always possi-

ble, several others have made contributions via pursuing

a practice-driven path, focusing on empirical analysis with

large-scale real data from industry. For example, Sun, Lyu,

Yu, and Teo (2018) analyze data from a wedding gown

e-retailer in China to analyze the impact of the fulfillment

by Amazon (FBA) model compared with fulfillment by seller

(FBS). They develop a risk-adjusted fulfillment model that

incorporates the e-retailer’s risk attitude toward FBA. They

use generalized linear models to predict the expected rewards

of shifting to FBA, while controlling the variability of the

reward distribution. Applied on a set of real data, the numeri-

cal experiments show that their interpretable decision rule can

improve the e-retailer’s total rewards by more than 35%.

Glaeser, Fisher, and Su (2019) empirically study a “buy

online, pickup in store” problem faced by omni-channel retail-

ers. In their setting, online orders can be fulfilled by customers

picking up their orders from trucks parked at specific con-

venient locations. The retailer needs to decide the location

and schedule to deploy its trucks to maximize profit. In

this setting, customer demand is influenced by the conve-

nience of pickup days as well as locations. The authors first



QI ET AL. 607

train a regression model using machine learning techniques

to predict observed sales while extracting cannibalization

effects. The model is built using over 200 explanatory features

in three categories: demographic and economic data, busi-

ness location data, and the retailer’s historical sales. Then,

the authors solve the spatial-temporal location problem that

maximizes weekly revenue, where different from traditional

location problem formulation, the objective includes not only

the revenue earned, but also spatial and temporal cannibal-

ization effect. The authors use sales data from an industry

partner, together with data from the U.S. Census Bureau and

OpenStreetMap, for numerical experiments. The numerical

results suggest a potential revenue increase of at least 51%

from the improved location configuration and schedule.

Cachon, Gallino, and Xu (2018) focus on the setting of

deciding free shipping threshold, that is, the minimum order

amount over which free shipping is offered. Using actual

transaction and product return data, the authors provide an

analytical model to assess the profitability of a retailer’s

current shipping threshold policy and identify the best pol-

icy. They conclude that free shipping threshold policies are

profitable only under a set of restrictive conditions.

4 DATA-DRIVEN INVENTORY
MANAGEMENT

Inventory management is another field where availability

of data makes a revolution. In this section, we discuss

emerging data-driven approaches for single- and multi-period

inventory problems. The typical stochastic inventory man-

agement problem involves making decisions on ordering

quantities under uncertainty in demand, either over a sin-

gle selling season or an episode of multiple periods. While

the traditional literature typically assumes knowledge of the

probability distribution of uncertain demand, the emerging

data-driven literature relaxes this by starting with a historical

sample of demand. Thus, data-driven inventory management

involves both modeling the uncertainty from data, as well as

optimizing ordering quantities. We shall review data-driven

approaches to analyzing both single- and multi-period prob-

lems, in Sections 4.1 and 4.2, respectively.

In the rapidly growing line of literature on data-driven

inventory management, an important consideration is on con-
textual information that supplements the modeling of the

key uncertainties of interest. By contextual information (also

known as features, covariates, explanatory variables), we refer

to exogenous variables that are observable at the point of

decision making, and thus may serve as predictors of the

focal uncertainty. For example, in inventory control problems

where the key uncertainty is in terms of demand volume, the

decision-maker may use observable side information, such as

social network data, weather forecasts, seasonality, economic

indicators, etc., as predictors. Such relevant information often

reduces the degree of uncertainty in the model and often leads

to better decisions.

4.1 Single-period problems

As the classical single period inventory management setting,

the newsvendor problem naturally became a starting point

of data-driven studies. Recall that the newsvendor problem

involves a seller (newsvendor) who determines the stocking

quantity for a single product for a selling period with ran-

dom demand volume D. At the end of the selling period, each

unit of demand that cannot be satisfied incurs a penalty of b,

whereas each unit of unsold stock will be scrapped at the cost

of h. The question is: What is the optimal quantity q that the

newsvendor should order? When the demand distribution is

known, the problem can be formulated as:

min
q≥0

C(q) ≔ ED[b(D − q)+ + h(q − D)+], (5)

where (⋅)+ ≔max{0, ⋅} and the expectation is taken over

the distribution of the stochastic demand D. Moreover, the

optimal solution to (5), denoted by q*, takes the form of

F−1
(

b
b+h

)
, the

b
b+h

-quantile of the demand distribution.

In practice, it is not possible to directly solve (5), since

the distribution of D is unknown and must be estimated from

data. Consider the case where data in the form of N inde-

pendent historical observations of D, {di}N
i=1

is available. The

traditional way of solving this is to assume that demand falls

in a family of parametric distributions, estimate the parame-

ters based on data, and then solve the stochastic optimization

problem (5). MLE and the Bayesian approach (Scarf (1959),

Iglehart (1964)) are common methods for parameter estima-

tion.

Although this sequential estimation and optimization

framework is a standard and widely-adopted approach, it has

intrinsic disadvantages—as the estimation stage has a dif-

ferent objective (e.g., maximizing log-likelihood) than the

optimization stage, the “optimal” parameter values in the

estimation sense may not necessarily lead to optimal solu-

tions in the optimization stage. To tackle this issue, Liyan-

age and Shanthikumar (2005) then propose the operational

statistics approach that integrates parameter estimation and

optimization. Chu, Shanthikumar, and Shen (2008) show the

connection between the optimal operational statistic and the

Bayesian framework. Ramamurthy, George Shanthikumar,

and Shen (2012) study the operational statistics approach

when the demand distribution has an unknown shape parame-

ter. Lu, Shanthikumar, and Shen (2015) then generalize oper-

ational statistics to the risk-averse case under the conditional

value-at-risk (CVaR) criterion.

4.1.1 Models without contextual information
In the era of digitalization and e-retailing, inventory man-

agement is supported by the availability of high-quality data.

Endowed with this richness of data, researchers begin to
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explore purely sample-based, data-driven approaches as an

alternative to the conventional parametric approaches. We

first consider approaches that do not make use of contextual

information, that is, rely only on historical data on demand.

Levi et al. (2015, 2007) analyze the sample average approx-

imation (SAA) approach for the data-driven newsvendor

problem under the case where the only information avail-

able is an independent and identically distributed (i.i.d.)

demand sample, {di}N
i=1

. To be more specific, they consider

the problem with the following formulation:

min
q≥0

1

N

N∑
k=1

(b(dk − q)+ + h(q − dk)+),

for which the solution q̂ is the b/(b+ h)-quantile of the ran-

dom sample, which is random due to the randomness of

sample. Thus, a critical issue is to quantify and guarantee

the performance of the solution q̂, which is a function of

historical data, when applied to future decisions. In general,

these out-of-sample performance guarantees, also known as

generalization bounds, are often achieved by proving proba-

bility bounds on expected test-set performance of the solution.

Levi, Roundy, and Shmoys (2007) introduce the concept of

ϵ-optimality of a solution q̂, which suggests that its relative

regret, denoted by
C(q̂)−C(q∗)

C(q∗)
, is no more than ϵ (where q*

is the true optimal solution, and C(⋅) denotes the expected

cost under the true demand distribution). Using Hoeffding’s

inequality (see Hoeffding (1994) for a reference), they derive

a bound on the probability that the SAA solution solved with

a sample size N (denoted by q̂N) has one-sided derivative

bounded by
ϵ
3

min (b, h), and use this boundedness property

to prove ϵ-optimality of the solution using the piece-wise lin-

ear structure of the newsvendor cost function. In particular,

Theorem 2.2 of Levi et al. (2007) shows that q̂N is ϵ-optimal

with probability at least

1 − 2 exp

(
−2

9
Nϵ2

(
min {b, h}

b + h

)2
)
.

Using Bernstein’s inequality instead of Hoeffding’s

inequality, Levi et al. (2015) further tightened the bound to

1 − 2 exp

(
− Nϵ2

18 + 8ϵ
min {b, h}

b + h

)
. (6)

The key difference between these two bounds is in the

constants within the exponential terms,
2

9

(
min {b,h}

b+h

)2

vs

1

26

min {b,h}
b+h

. For an illustration, to achieve an ϵ-optimal solu-

tion with probability 1− 2𝛿 with min{b,h}/(b+ h) = 0.1, the

bound provided in Levi et al. (2007) suggests a sample size of

N ≈ 454.5 log(1∕𝛿) 1

ϵ2
; whereas the result of Levi et al. (2015)

suggests N ≈ 263 log(1∕𝛿) 1

ϵ2
. When min{b,h}/(b+ h)= 0.01,

the former suggests N ≈ 45455 log(1∕𝛿) 1

ϵ2
and the latter

suggests N ≈ 2632 log(1∕𝛿) 1

ϵ2
. Therefore, the latter is a sig-

nificant improvement when min{b,h}/(b+ h) is small, which

is often the case in real-world problems. Later on, Cheung

and Simchi-Levi (2019) prove a lower bound on the number

of samples needed for an ϵ-optimal solution that matches the

upper bound (6), which implies that the upper bound is indeed

tight.

Besides the improved bound based on Bernstein’s inequal-

ity, the authors also introduce a property of the demand

distribution known as the weighted mean spread (WMS)

and show that it is the key property of a distribution that

determines the accuracy of the SAA method when solving

newsvendor problems. The WMS is defined as f (q*)Δ(q*),

where f (q*) is the probability density at q*,Δ(q∗) ≔ E(D|D ≥
q∗) − E(D|D ≤ q∗) and q* is the

b
b+h

quantile of D. The

authors show that, by choosing 𝛼 =
√

2ϵbhΔ(q∗)f (q∗) +
O(ϵ), and biasing the SAA solution to q̂𝛼

N ≔ the
b

b+h
+

1

2

𝛼

b+h
empirical quantile, q̂𝛼

N is ϵ-optimal with probability at

least 1−2 exp
(
− 1

4
N𝜖𝛥(q∗)f (q∗)

)
. The authors show that this

bound is tighter than previously stated ones and matches the

empirical accuracy of the SAA observed in many computa-

tional experiments. Although this bound is tighter, it requires

extra information on the demand distribution; whereas the

previously stated bound based on Bernstein’s inequality only

requires knowledge of the Lipschitz constant of the newsven-

dor cost function.

4.1.2 Models with contextual information
When contextual information is available, it is possible to

improve the solution by taking into account observable con-

textual information in decision making. In the newsvendor

problem, this involves finding the optimal mapping from

observable features x ∈  to ordering decision q∈R+ that

minimizes the conditional expected cost function with respect

to the distribution of the random demand D. Therefore,

problem (5) would be replaced by

min
q(⋅)

C(q(x)) ≔ ED|x[b(D(x) − q(x))++h(q(x) − D(x))+] (7)

where q(⋅) is the policy that maps the feature space  ∈ R
p

to decision space R+. Available data takes the form of a his-

torical sample of both features and demand, denoted by S ≔
{(xi, di)}N

i=1
.

Following a machine learning approach, one can treat the

policy q(⋅) as a hypothesis, that is, a function mapping from

 → R+, to be learned through a learning algorithm. A natu-

ral way to obtain such hypothesis, given sample S, is through

empirical risk minimization (ERM):

min
q∈ R̂S(q) ≔

N∑
i=1

b(di − q(xi))+ + h(q(xi) − di)+, (8)

where  denotes the hypothesis set, that is, a set of that

mapping features to the ordering decision. Often, a regular-

ization term, for example, ||q||1 or ||q||2
2
, is added to R̂S(h) to

avoid overfitting. It is interesting to note that the data-driven

contextual newsvendor problem is equivalent, up to scaling,

to the conditional quantile prediction problem. Therefore,
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multiple machine learning models, including linear regres-

sion, kernel methods as well as deep neural networks, can

be applied to provide order policies (Beutel & Minner, 2012;

Ban & Rudin, 2018; Cao & Shen, 2019; Huh, Levi, Rus-

mevichientong, & Orlin, 2011; Oroojlooyjadid, Snyder, &

Takáč, 2020).

Beutel and Minner (2012) propose linear programming

models to deal with the case when demand is a linear com-

bination of some exogenous variables and a random shock.

Sachs (2015) extends the Beutel and Minner (2012) study to

the case where demand observations are censored. In both

papers, the goal is to minimize an objective of in-sample cost,

following ERM.

Ban and Rudin (2018) consider a linear hypothesis class

with ERM and regularization and provide performance guar-

antees for these methods under certain conditions. Oroo-

jlooyjadid et al. (2020) use deep neural networks to fit the

policy map and conduct numerical experiments on real-world

data. Cao and Shen (2019) use a deterministic polynomial

feed-forward neural network for the newsvendor problem with

stationary and non-stationary time series demand.

To get a data-driven solution for (7), Beutel and Min-

ner (2012), Ban and Rudin (2018), Huh et al. (2011), Oroo-

jlooyjadid et al. (2020), and Cao and Shen (2019) choose

to fit a map between feature and decision using machine

learning techniques, based on the idea of SAA/ERM. A

different approach to tackle (7) is to approximate the con-

ditional distribution of D | x using nonparametric methods

(Ban & Rudin, 2018; Bertsimas & Kallus, 2019; Ho &

Hanasusanto, 2019; Lin, Chen, Li, & Shen, 2020; Meller &

Taigel, 2019). In particular, given a feature x and historical

observations {(xi, di)}N
i=1

, machine learning methods can be

utilized to assign weights wN,i(x) for each data point (xi, di)

based on the similarity between xi and x. For instance, both

Ban and Rudin (2018) and Bertsimas and Kallus (2019) inves-

tigate a method motivated by kernel regression which sets the

weights as

wKR
N,i(x) =

K(||xi − x||2∕𝛾)∑N
i=1 K(||xi − x||2∕𝛾) ,

where K(⋅) is a kernel and 𝛾 > 0 is a constant known as

the bandwidth. Besides using kernel regression, Bertsimas

and Kallus (2019) also propose other methods for construct-

ing weights, based on k-nearest-neighbors (KNN), local lin-

ear regression (LOESS), classification and regression trees

(CART), random forests (RF), and so on.

With the weights computed, the conditional distribution of

demand given feature x can be approximated by empirical dis-

tribution of {di}N
i=1

weighted by wN,i(x). Then, problem (7)

can be rewritten as:

q(x) ≔ arg min
s≥0

N∑
i=1

wN,i(x)[b(di − s)+ + h(s − di)+]. (9)

Ban and Rudin (2018) investigate the out-of-sample per-

formance guarantee for the case where weights are generated

by kernel estimation. Bertsimas and Kallus (2019) propose

a more general framework that is applicable to not only

the newsvendor problems, but to general convex optimiza-

tion problems, and provide guarantees on consistency and

generalization bounds.

The method described in (8) directly applies the super-

vised learning framework to obtain a mapping from features

to decision. The advantage is that the mapping q(⋅) directly

yields a new decision given a new set of feature values x.

On the other hand, the method described in (9) approximates

the conditional distribution of D with an empirical distri-

bution with weights dependent on feature values. Given a

feature vector x, one has to first obtain the weights wN,i(x)

by inputting x into a nonparametric model (e.g., the kernel

regression model), and then solve an (convex) optimization

problem to obtain a decision q. Thus the former approach has

an advantage in terms of computational effort. Yet, (9) enjoys

another significant advantage in that it is able to accommodate

side constraints on decision q. Such constraints may come

from business and operational requirements, such as capacity,

minimum order quantity, and so on. To accommodate such

constraints (denoted by q ∈ (x)), one simply needs to solve

for

q(x) ≔ arg min
s∈(x)

N∑
i=1

wN,i(x)[b(di − s)+ + h(s − di)+],

instead of (9).

Other works that adopt similar settings include Meller and

Taigel (2019), Ho and Hanasusanto (2019), Lin et al. (2020).

Meller and Taigel (2019) propose to use the quantile loss

function when learning the tree structure for the weights and

compare the joint estimation-optimization method with tra-

ditional separated estimation and optimization methods. Ho

and Hanasusanto (2019) propose a kernel-based approach

with regularization and provide performance guarantees. Lin

et al. (2020) investigate a risk-averse newsvendor problem

subject to a value-at-risk constraint.

4.2 Multi-period problems

The goal of the stochastic, multi-period inventory manage-

ment problem is to determine (dynamically) a sequence of

orders over a planning horizon of multiple discrete periods,

to satisfy a sequence of random demand over the planning

horizon, and to minimize expected cost. The problem often

adopts the following system dynamics: at the beginning of

each time period t = 1, … , T , the system state is charac-

terized by inventory level It. The planner chooses an order

quantity qt, and then the uncertainty zt (e.g., demand and/or

lead time) is realized, which leads an incurred cost Ct(qt, It, zt)

for the period. Then, after satisfying as much demand as pos-

sible, the inventory state is updated as It+ 1 = f (q:,t, It, zt),

where q:,t = (q1, … , qt), since the transition of inventory

state depends previous order quantities under positive lead

time, current state It and the uncertainty zt. The one-period
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cost function Ct(qt, It, zt) may include holding cost, stockout

cost, fixed and variable order costs, and so on. The goal of

the multi-period inventory management problem is to find

a control policy that yields qt given the current state It to

minimize the total inventory cost over a finite or infinite

horizon. Dynamic programming has been the most dominant

approach in studying this type of problem (see Zipkin (2000)

for a representative reference). This involves defining the opti-

mization problem recursively over time periods. Unlike the

single-period newsvendor model, the multi-period problem is

often difficult even when the probability distribution of uncer-

tain parameters (e.g., demand) is precisely known. One major

challenge is the curse of dimensionality, where the complex-

ity of the problem explodes exponentially in the number of

periods.

4.2.1 Models without contextual observation
As with single-period models, we first discuss studies without

considering the availability of contextual information. While

the multi-period inventory management problem is difficult

in general, under certain conditions, it is well-known that the

optimal policy takes the form of base-stock policy, when there

is no fixed order cost, or (s,S) policy, when there is a fixed

order cost (see Snyder and Shen (2011), for details). There-

fore, various data-driven algorithms have been proposed to

seek data-driven decisions restricted to one of these policies.

Kunnumkal and Topaloglu (2008) consider settings where

base-stock policies are known to be optimal and propose

stochastic approximation methods to compute the optimal

base-stock levels. Given samples of demand, they show that

their method will converge to the optimal base-stock levels.

Ban (2020) develops a nonparametric procedure to estimate

the (s,S) policy when given historical demand data. The cost

at each period consists of ordering cost in the form:

Ot(q) =

{
Kt + ctq, if q > 0

0, otherwise,

in addition to the newsvendor cost function

Ct(q,d)≔ bt(d − q)+ + ht(q− d)+. The available demand data

consists of observations D = {[di
1
, … , di

T ]
N
i=1

} for N previ-

ous selling seasons, each with T periods. Demand in each

period is assumed to fall within support [D,D]. Then, the

optimal (st, St)Tt=1
are estimated by (̂st, Ŝt)Tt=1

, where:

Ŝt ≔ arg min
q∈[D,D]

Ĝt(q)

and

ŝt ≔ min
s
{D ≤ s ≤ Ŝt|Ĝt(s) − Ĝt(Ŝt) − K = 0},

where Ĝt(q) = 1

n

∑n
i=1 g(q, di

t) and

gT (q, d) = ctq + CT (q, d),

gt(q, d) = (1 − 𝛼t)ctq + Ct(q, d) + 𝛼tctd

+ 𝛼tĜt+1(̂st+1)1(q − ŝt+1 ≤ d)

+ Ĝt+1(q − d)1(q − ŝt+1 > d)
for t = 1, … ,T − 1,

and 𝛼t denotes the discount rate of cash. The author then

shows that these proposed estimators are asymptotically con-

sistent, that is, ŝt and Ŝt converge to the optimal values st
and St as t→∞. The author also provides confidence inter-

vals by first proving the central limit theorem for (̂st, Ŝt) with

the property of “M-estimators.” Then, confidence intervals

can be constructed based on asymptotic normality. The author

also extends the method to the case of censored demand.

Some other works focus on the SAA method. Levi

et al. (2007) study the multiperiod extension of Newsvendor

problem (i.e., without fixed ordering costs), where the optimal

policy is the base-stock policy. Similar to the single-period

Newsvendor setting, the authors describe a sampling-based

algorithm that provides 1+ϵ-base-stock level with any given

confidence level 𝛿. Cheung and Simchi-Levi (2019) then con-

sider the multi-period inventory management problem with a

constraint on the order quantity in each period. The authors

investigate the minimum number of samples required by the

SAA method to achieve a near-optimal base-stock policy

with any given confidence level. In particular, it is sufficient

for the SAA method to achieve near-optimal solution with

polynomially many (w.r.t. T and ϵ) samples.

Another stream of research seeks to learn the inventory

management policy in an adaptive manner. Huh and Rus-

mevichientong (2009) investigate the multi-period inventory

management problem over a fixed horizon, assuming demand

in each period are i.i.d. random variable. The authors con-

sider the case with instantaneous replenishment (zero lead

time), and develop an adaptive inventory policy 𝜙= (qt | t≥ 1)

where each qt only depends on the observed historical sales

during the previous t− 1 periods. To quantify the perfor-

mance of their policy, the authors use the newsvendor optimal

order quantity as a benchmark. The policy 𝜙 is optimized to

minimize average expected regret:

ΔT (𝜙) = E

[
1

T

T∑
t=1

V(qt)

]
− V(q),

where V(qt) is the single-period newsvendor cost function

with order quantity qt, and q is the optimal Newsvendor quan-

tity. By proposing gradient descent based algorithms, the

authors provide a policy achieving the average expected regret

ΔT (𝜙) = O
(

1√
T

)
.

Huh, Janakiraman, Muckstadt, and Rusmevichien-

tong (2009) propose algorithms for finding the optimal

order-up-to levels in lost-sales inventory systems with deter-

ministic, positive lead time. They prove that the T-period

running average expected cost under their algorithm con-

verges to the cost of the best base-stock policy with

a convergence rate O
(

1

T1∕3

)
. Later, Zhang, Chao, and

Shi (2020) close the gap between upper and lower bounds
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of the regret by providing an algorithm that achieves regret

O
(

1√
T

)
that matches the theoretical lower bound. Agrawal

and Jia (2019) further provide an upper bound of the regret

that depends linearly on the lead time L. This result improves

the bound provided in Zhang et al. (2020) that depends

exponentially on the lead time L. Huh et al. (2011) apply

the Kaplan-Meier estimator to develop nonparametric adap-

tive data-driven policies for the multiperiod distribution-free

newsvendor problem with censored demand. Later, Shi,

Chen, and Duenyas (2016) propose a data-driven, stochastic

gradient descent type algorithm for solving the periodic

review multi-product inventory management problem over a

finite horizon, under capacity constraints. They show that the

average regret converges to zero at the rate of O(1∕
√

T).

4.2.2 Models with contextual observation
Bertsimas and McCord (2019) extend the prescriptive learn-

ing framework to solve finite-horizon multi-period optimiza-

tion problems, including the inventory management problem.

For a T-period problem, let zt denote the key uncertain fac-

tors (e.g., demand) and xt denote the feature values that can

be used to guide decision yt (e.g., order quantity). Bertsimas

and McCord (2019) consider the presence of a sample of N
observations, each containing the values of (xt, zt) for all peri-

ods t = 1, …T . They consider the setting where uncertainty

zt (e.g., demand) is revealed prior to the decision and system

update at time t. Therefore, without loss of generality, the cost

and transition function can be represented as Ct(yt) and f t(yt)

that only depend on the decision variable yt. They consider

the following problem:

min
y0∈0(I0)

c0(y0) + E[W1(f0(y0); z1, x1)|x0 = x̂0], (10)

where t denotes the feasible region of decision variable yt in

period t, which may depend on state variable It (such as the

inventory level) and the realization of zt, and Wt denotes the

cost-to-go function defined recursively as:

Wt(It; zt, xt)
= min

yt∈t(It ,zt)
ct(yt) + E[Wt+1(ft(yt); zt+1, xt+1)|xt = x̂t]

for t = 1, … , T − 1 and WT (IT ; zT , xT ) ≔
minyT∈T (IT ,zT )cT (yT ).

With training data {(xi
0
, … , xi

T−1
), (zi

1
, … , zi

T )}
N
i=1

,

weights wt
N,i(xt−1) are learned and the recursion of Wt can be

approximated by approximating the conditional expectation

E[Wt+1(It; zt+1, xt+1)|xt = x̂t] by:

Ŵt(It; zt, xt)

= min
yt∈t(It ,zt)

ct(yt) +
N∑

i=1

wt
N,i(xt)Ŵt+1(ft(yt); zi

t+1
, xi

t+1
).

From the perspective of computational tractability, this

method still requires solving a dynamic programming

problem (10), which requires exact or approximate solu-

tion techniques. Note that (10) is no more difficult to solve,

yet often leads to significant improvements, compared with

sample average approaches that ignore covariates.

Qi et al. (2020) propose a practical framework that builds

upon supervised machine learning. The authors investi-

gate the multi-period inventory replenishment problem with

uncertain demand and vendor lead time (VLT), assuming that

a large quantity of historical data is available. In their set-

ting, the planning horizon consists of periods t = 1, … , T .

The demand sequence {D1, … , DT} is uncertain. The plan-

ner may place orders in M pre-specified periods, denoted

by {t1, … , tM}. Such a setting can arise in scenarios such

as the periodic review. For each order m∈ {1, … , M}, the

VLT Lm is a random variable. The problem involves selecting

order quantities a1, … , aM for the M orders, to minimize the

expected cost during the planning horizon, that is

min
a1,… ,aM

E

[ T∑
t=1

St(a1, … , aM)

]
, (11)

where St(⋅) is single period cost function defined as

St(a1, … , aM) = h

[
It − Dt +

M∑
m=1

am1{t = tm + Lm}

]+

+ b

[
−It + Dt −

M∑
m=1

am1{t = tm + Lm}

]+

,

and the updates of inventory level It follows

It+1 = It − Dt +
M∑

m=1

am1{t = tm + Lm}.

Note that the expectation is taken over the joint distribution

of the demand {Dt}T
t=1

and the VLTs {Lm}M
m=1

.

Qi et al. (2020) propose a one-step end-to-end (E2E) frame-

work that uses deep-learning models to output replenishment

quantities directly from input features without any interme-

diate steps. To apply deep learning methods, it is necessary

to construct a training data set consisting of paired features

and label values. As the available data consists of historical

observations of demand, VLT, and contextual information,

the label, that is, the target decision variables, are not directly

known. The ideal target decision would be the optimal solu-

tion of the stochastic multi-stage optimization problem (11).

However, this is not an option since the joint distribution

of multi-period demand and VLTs is unknown. To over-

come this difficulty, the training dataset is labeled with the

optimal dynamic programming solutions a∗
i under observed

trajectories.

To be more specific, each observation in the data corre-

sponds to a T-period episode during which M orders were

placed. Let 𝜏m denote the period in which the m-th order

arrived, that is, the VLT was 𝜏m − tm, and let d[s,t] denote the

total realized demand in the time [s,t]. Then, the authors solve

the following (deterministic) problem for each observation:

Wm(I𝜏m) = min
am≥0

𝜏m+1−1∑
s=𝜏m

h[I𝜏m + am − d[𝜏m,s]]
+
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+ b[d[𝜏m,s] − I𝜏m − am]+

+ Wm+1(I𝜏m + am − d[𝜏m,𝜏m+1−1]),

where Wm(Ivm) is the optimal cost overtime interval

[𝜏m, 𝜏m+ 1 − 1], d[i,j] ≔ ∑j
t=i dt. The authors show

that this problem admits a closed-form solution a∗
m =

max {d[𝜏m,s∗] − I𝜏m , 0}, where s∗ = b(𝜏m+1−𝜏m)
h+b

+ 𝜏m. Therefore,

labeling observations with a∗
i serves as an efficient method

even with enormous data.

Then, a multi-quantile recurrent neural network (MQRNN)

is trained with the training objective:

min
f∶→R

N∑
i=1

L(f (xi); a∗
i ),

where N is the total number of training data, L is the loss

function that is defined based on the difference between the

output of function f (⋅) and the optimal order quantity a∗
i .

By conducting a series of thorough numerical experiments

including a field experiment from a leading e-commerce com-

pany, the authors demonstrate the numerical advantages of the

proposed framework.

It is interesting to note that, thus far, much of the success of

data-driven research in retail operations stems from the avail-

ability and clever use of demand-side data, such as contextual

information that influences demand and sales. Qi et al. (2020)

provide an interesting example of incorporating both demand-

and supply-side data (on VLT) in an E2E framework. We

believe the integrated use of data from both ends of the supply

chain is a promising direction for future research.

5 DISCUSSION AND CONCLUSION

As Simchi-Levi (2014) pointed out, the emergence of

data-driven research is a major paradigm shift for the opera-

tions research (OR) community, who has historically focused

on problem-oriented research. Not only does this develop-

ment lead to new topics for research, it also calls for rethinking

of our community’s core philosophy. Elaborating on this,

we shall close the paper by pointing out some promising

directions for future work.

Various methodologies and techniques have been employed

in the reviewed literature. First, many (e.g., assortment ful-

fillment optimization) problems involve formulations that

are hard to solve, for example, in the form of integer or

mixed-integer problems. It is common to develop approxima-

tion schemes to find nearly optimal solutions in polynomial

time. Second, it has become a popular in data-driven research

is to apply (statistical) machine learning methods. In fulfill-

ment optimization problems, machine learning techniques are

extensively used in forecasting customer behavior. In assort-

ment optimization problems, low-rank learning methods are

used to estimate choice model parameters from data. While

in many cases, machine learning techniques are mainly used

for forecasting, there are successful attempts to develop learn-

ing frameworks that integrate both prediction and optimiza-

tion, particularly for inventory problems. In scenarios where

offline data is not available, the online learning framework has

become another methodological trend that is widely adopted

in assortment optimization and inventory management. Such

a framework balances the trade-off between exploration and

exploitation, and often provides performance guarantees in

the form of regret bounds.

In Sections 2 and 4, we reviewed both parametric and non-

parametric methods for assortment optimization and inven-

tory management. Parametric methods are a natural fit with

conventional OR research, which typically proceeds with a set

of model assumptions to ensure tractability. While some of

these assumptions (e.g., stationarity of demand distributions

in multi-period problems) often play important roles in prov-

ing important structural results, the extent to which they hold

in practice, and thus the generalizability of structural results,

may vary substantially from one setting to another. With the

rapid growth in computational power and availability of rich,

high-quality data sets, nonparametric methods become both

feasible and practical, although they are often less “elegant”

and more reliant on numerical solution methods. This devel-

opment challenges our conventional mindset of focusing on

model-based structural properties. Rather than viewing this as

a strict trade-off to reconcile, we believe that our community

should identify synergies between these apparently diver-

gent approaches. For example, one may investigate problem

properties that translate at least qualitatively (if not in the

strict technical sense) to more general and practical settings,

and use these to inform the design of data-driven solution

methods.

Associated with the choice between parametric and non-

parametric approaches, an important direction for future

research is the integration of prediction/estimation and opti-

mization. Many of the works reviewed in this article adopt the

sequential estimation/optimization paradigm. Although sep-

arating estimation and optimization is intuitive and common

in practice, it may lead to sub-optimal solutions as we dis-

cussed in Section 4. To address this, there is an active stream

in the machine learning (ML) and OR literature focusing on

integrating the prediction and optimization stages. It remains

to be studied how these concepts can be extended to the wide

range of supply chain problems.

Another important direction where one can marry OR and

ML methods is in tackling dynamic, multi-period problems,

which arise in different applications in supply chain man-

agement. Traditionally, the OR community has focused on

developing structural properties of optimal policies to reduce

the search space in optimization, often in idealized settings.

To extend these to practical settings where various sim-

plifying assumptions are relaxed, researchers often employ

approximate dynamic programming (ADP) techniques. In

parallel, the ML community has focused on the development
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of reinforcement learning (RL) methods, which enable (vir-

tual) agents are trained to learn the best actions for solving a

Markov decision problem in virtual/simulated environments.

As pointed out by prominent researchers in this area (e.g.,

Bertsekas (2019)), the key concepts of ADP and RL overlap

substantially. Building on recent advances in deep learning,

RL has achieved great success in solving many difficult prob-

lems. We believe that one promising future research direc-

tion is to leverage (deep) RL techniques to develop practical

solution frameworks for complex supply chain management

problems. While direct applications of existing RL techniques

may already lead to interesting findings, we believe that the

most interesting avenue will involve leveraging the wealth of

structural insights of our community (e.g., on optimal inven-

tory policies) to steer the design of RL algorithms, such as the

design of special-purpose neural net architectures.

As our community continues to adopt ideas from ML in

developing supply chain solutions, we believe that it is crit-

ical to blend these ideas with our domain knowledge about

supply chain management and expertise in optimization tech-

niques so that the methods can best exploit domain-specific

problem (and/or data) characteristics in the supply chain con-

text. For instance, Qi et al. (2020) provide an example of

using domain knowledge to develop a better deep learn-

ing solution in a scenario where it is not apparent how a

supervised learning framework can be applied. Besides, as

pointed out by Mišić and Perakis (2020), it is an important

future direction to develop interpretable data-driven mod-

els. Black-box machine learning models, although they may

achieve favorable numerical performance, often fail to pro-

vide intuitive insight that helps real-world practitioners to

understand this model. Therefore, the lack of interpretability

may hold back the implementation of practical data-driven

solutions. Although interpretability already becomes a major

research area in ML (we refer to Murdoch, Singh, Kumbier,

Abbasi-Asl, and Yu (2019) and Rudin (2019) for comprehen-

sive reviews), there have been few works that address this

issue in our community until very recently (e.g., Bertsimas,

Dunn, and Mundru (2019)). We believe this is also an issue

that our domain knowledge will play an important role.

Finally, our community may take inspiration from our

ML counterparts in the development of standard benchmark

datasets for testing new models. Not only would this improve

transparency and reproducibility of our data-driven research,

but this would also aid dissemination of our research outputs.

Imagine if a set of online courses on our methods, comple-

mented by open-source code and benchmark datasets, are

made widely available for the general audience, just like sim-

ilar courses on ML and artificial intelligence. We believe this

has not yet happened, in part, due to our community’s focus

on problems and data that companies consider proprietary.

Yet, there has been promising recent development toward this

direction, as in the publication of interesting, real datasets

(e.g., Acimovic, Erize, Hu, Thomas, & Mieghem, 2019; Shen,

Tang, Wu, Yuan, & Zhou, 2019; Zhao, Li, & Shen, 2020) in

leading journals. While these datasets are intentionally chosen

to be rich and practical to encourage the exploration of new

problems, we believe that extracting benchmark datasets for

several common problem themes (such as those reviewed in

Sections 2–4) can be extremely valuable for our community.
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Bertsimas, D., & Mišić, V. V. (2019). Exact first-choice product line

optimization. Operations Research, 67(3), 651–670.

Besbes, O., & Zeevi, A. (2009). Dynamic pricing without knowing

the demand function: Risk bounds and near-optimal algorithms.

Operations Research, 57(6), 1407–1420.

Beutel, A.-L., & Minner, S. (2012). Safety stock planning under

causal demand forecasting. International Journal of Production Eco-
nomics, 140(2), 637–645.

Blanchet, J., Gallego, G., & Goyal, V. (2016). A markov chain approxi-

mation to choice modeling. Operations Research, 64(4), 886–905.

Bront, J. J. M., Méndez-Daz, I., & Vulcano, G. (2009). A column gen-

eration algorithm for choice-based network revenue management.

Operations Research, 57(3), 769–784.

Bunch, D. S. (1987). Maximum likelihood estimation of probabilistic

choice models. SIAM Journal on Scientific and Statistical Comput-
ing, 8(1), 56–70.

Bunch, D. S. (1988). A comparison of algorithms for maximum

likelihood estimation of choice models. Journal of Econometrics,

38(1–2), 145–167.

Bunch, D. S., & Batsell, R. R. (1989). A Monte Carlo comparison of

estimators for the multinomial logit model. Journal of Marketing
Research, 26(1), 56–68.

Cachon, G. P., Gallino, S., & Xu, J. (2018). Free shipping is not free:

A data-driven model to design free-shipping threshold policies.

Available at SSRN, 3250971.

Cao, Y., & Shen, Z.-J. M. (2019). Quantile forecasting and data-driven

inventory management under nonstationary demand. Operations
Research Letters, 47(6), 465–472.

Chen, X., & Simchi-Levi, D. (2004). Coordinating inventory control and

pricing strategies with random demand and fixed ordering cost: The

finite horizon case. Operations Research, 52(6), 887–896.

Chen, X., & Simchi-Levi, D. (2012). Pricing and inventory management.

The Oxford Handbook of Pricing Management, 1, 784–824.
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