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Following the April 16, 2020 release of the Opening Up America
Again guidelines for relaxing coronavirus disease 2019 (COVID-
19) social distancing policies, local leaders are concerned about
future pandemic waves and lack robust strategies for tracking and
suppressing transmission. Here, we present a strategy for trigger-
ing short-term shelter-in-place orders when hospital admissions
surpass a threshold. We use stochastic optimization to derive trig-
gers that ensure hospital surges will not exceed local capacity and
lockdowns are as short as possible. For example, Austin, Texas—
the fastest-growing large city in the United States—has adopted
a COVID-19 response strategy based on this method. Assuming
that the relaxation of social distancing increases the risk of infec-
tion sixfold, the optimal strategy will trigger a total of 135 d (90%
prediction interval: 126 d to 141 d) of sheltering, allow schools
to open in the fall, and result in an expected 2,929 deaths (90%
prediction interval: 2,837 to 3,026) by September 2021, which is
29% of the annual mortality rate. In the months ahead, policy
makers are likely to face difficult choices, and the extent of pub-
lic restraint and cocooning of vulnerable populations may save or
cost thousands of lives.

COVID-19 | optimization | cocooning | social distancing |
public health response

As of June 19, 2020, the coronavirus disease 2019 (COVID-
19) pandemic continues to spread worldwide and has

claimed at least 450,000 lives (1). To avert unmanageable surges
in COVID-19 hospitalizations, state and local policy makers
across the United States have implemented shelter-in-place
orders to enforce social distancing. Under mounting pressures
to relieve the economic and societal stresses of shelter-in-place
orders, the US White House and Centers for Disease Control
and Prevention (CDC) issued Opening Up America Again on
April 16, 2020, which is a three-phased plan for relaxing such
restrictions around the country (2).

In the absence of prophylactic and therapeutic countermea-
sures, nonpharmaceutical interventions are the only option for
mitigating pandemic morbidity and mortality. Measures such
as closures of schools and nonessential businesses, prohibitions
on public gatherings, requiring social distancing, and restrict-
ing travel, along with ordering face covering, frequent hand
washing, surface cleaning, and staying at home when sick, can
reduce both the frequency and risks of contacts between sus-
ceptible and infected people. During the early months of the
1918 influenza pandemic—the only comparably severe pandemic
in recent history—aggressive social distancing proved critical to
reducing mortality in the United States (3). Despite the life-
saving potential of social distancing measures (4, 5), they are
controversial (6), given their potentially large economic (7),
societal, and mental health (8) costs. Two recent studies have
projected pandemic resurgence if social distancing measures are
relaxed prematurely (9, 10), and others recommend the gradual
relaxation of social distancing measures only when hospitals are
no longer overburdened, to balance expected public health risks
and economic strain (11–13).

To this end, the goals of this article are threefold. First, we
present a conceptual and quantitative framework that clarifies
COVID-19 policy options for mitigating risk in the wake of the
first pandemic wave. Second, we apply the framework to derive
optimal triggers for initiating and relaxing shelter-in-place orders
to minimize the number of days of costly social distancing while
ensuring that COVID-19 hospitalizations do not exceed local
capacity. Finally, we demonstrate the incontrovertible impor-
tance of sheltering vulnerable populations to reduce the burden
of COVID-19. The impact of future social distancing policies
will depend on public adherence, which is highly unpredictable.
There are roughly two possible futures. In the first future, the
pandemic is held at bay through a combination of public willing-
ness to sustain extreme social distancing despite its costs and a
ramping up of testing, contact tracing, and isolation to rapidly
contain emerging clusters. In the other future, a relaxation in
social distancing or insufficient containment resources allow a
second pandemic wave to emerge. For a policy maker facing the
latter scenario, either intentionally or unintentionally, our frame-
work provides guidance for enacting short-term lockdowns based
on trends in local hospitalization data, to avert unmanageable
hospital surges while minimizing social and economic disruption.

Our optimization model, detailed in SI Appendix, is designed
to guide the relaxation of social distancing. To demonstrate,
we derive optimal surveillance triggers for enacting and lifting
temporary shelter-in-place orders in the Austin–Round Rock
metropolitan area of Texas (henceforth Austin), with a high-risk
population of 547,474 and total population of 2,168,316. Austin
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leadership enacted the Stay Home – Work Safe Order (SHWSO)
(14) on March 24, 2020, requiring individuals to stay at home
except for certain essential activities. The decision to do so was
partially based on model projections provided by the Univer-
sity of Texas at Austin. Three weeks later, a second order was
issued, requiring cloth face coverings in public spaces. On May
1, 2020, Austin was forced to relax several of these requirements
and allow its citizens to return to work, entertainment, and com-
merce as Texas mandated the first phase of Opening Up America
Again (15).

The analyses presented herein were requested by the Austin
mayor and county judge and are informing ongoing risk assess-
ments, policy planning, and public messaging. We estimate that
the COVID-19 epidemic began with a single importation case
to Austin on February 15, 2020 and that the March 24 SHWSO
reduced transmission by 95% through May 1, as fit using local
hospitalization data; see SI Appendix. We project pandemic
hospitalizations under various intervention scenarios through
September 2021. Schools are assumed to remain closed from
March 14 until August 18, 2020. After that, they can be reopened
or closed in tandem with shelter-in-place orders (16). After May
1, we assume that the city is either in a relaxed state in which
the transmission rate is partially but not fully reduced by lim-
ited measures and efforts to test, trace, and isolate cases, or a
lockdown state in which renewed shelter-in-place orders reduce
transmission by 90% relative to the baseline. We find simple
triggers for issuing sheltering orders and estimate the impact of
cocooning vulnerable populations, that is, maintaining a 95%
reduction in transmission to high-risk individuals. These find-
ings provide actionable insights for other metropolitan areas
where shelter-in-place orders have curbed the first wave of the
COVID-19 pandemic. Moreover, the framework can incorpo-
rate any dynamic model of COVID-19 transmission to support
similar planning throughout the United States.

Results
All of our results are based on simulating variable levels of
social distancing using a data-driven model for COVID-19 trans-
mission and healthcare needs in the Austin, TX, metropolitan
statistical area (MSA) (16). Based on COVID-19 hospitaliza-
tion data from the Austin–Round Rock MSA through April 16,
we estimate that local COVID-19 transmission rates dropped by
approximately 95% following the March 24 SHWSO, as detailed
in SI Appendix. Our simulations assume that Austin maintained
this reduced transmission rate until the Texas governor issued
the first statewide relaxation order, effective May 1 (17). Fol-
lowing that order, our model allows Austin to toggle between
a relaxed state, in which transmission is reduced by 40% rela-
tive to the baseline transmission rate estimated prior to schools
closing on March 14, and a lockdown state, in which trans-
mission is reduced by an estimated 90%. The relaxed state
(40%) does not fully rebound to baseline transmission, under
the assumption that testing-based containment and voluntary
social distancing will partially mitigate risks. The lockdown state
does not quite reduce transmission as much as the original stay-
home order—by 90% rather than 95%—to account for likely
declines in adherence. Further analyses for other degrees of
relaxation, ranging from a 20% to 80% reduction in transmission,
are provided in SI Appendix. All projections end in September
2021, which is an optimistic time horizon for the develop-
ment and distribution of prophylactic or therapeutic medical
countermeasures (18).

To evaluate and optimize intervention policies, we compare
two outcome measures. First, we measure the total number
of days of lockdown (i.e., shelter-in-place) until September 30,
2021 as a proxy for the economic and societal costs of the pol-
icy, depicted by gray shading in Fig. 1. Second, we determine
the probability of exceeding hospital capacity as a proxy for

the public health risks of the policy, indicated when the red
hospitalization curves surpass the red capacity line in Fig. 1.

We first project COVID-19 hospitalizations in the extreme
scenario that the city maintains a 90% reduction in local
transmission indefinitely through a combination of extensive
social distancing, transmission-reducing precautions, and proac-
tive testing, contact tracing, and isolation (Fig. 1 A and B).
The analysis assumes that schools remain closed, and cocooning
of high-risk populations reduces their risk of infection by 95%
rather than 90%. Under this policy, we would not expect a second
wave to emerge during the model horizon (Fig. 1A). Cumulative
deaths would be expected to slowly climb to 81 (90% prediction
interval: 10 to 202). This scenario costs a year and a half (555 d)
of lockdown.

In the other extreme, consider the scenario in which Austin
permanently relaxes social distancing on May 1, while contin-
uing to cocoon high-risk populations and opening schools on
August 18 (Fig. 1 C and D). While this policy requires a lock-
down for only the initial 38-d period prior to May 1, we would
expect a catastrophic surge in hospitalizations that exceeds the
local capacity by 80% during July–September 2020, resulting in
an expected 23,075 (90% prediction interval: 22,409 to 23,741)
patients not receiving critical care. Without accounting for the
excess mortality during this period, which could be considerable,
we would expect at least 30-fold higher COVID-19 mortality rel-
ative to the indefinite lockdown scenario, with deaths reaching
2,957 (90% prediction interval: 2,868 to 3,040) by September
2021. Under this policy, we expect two epidemic waves during
the model horizon, with the second large wave peaking in the
late summer of 2020.

Assuming that the first scenario is unattainable and the sec-
ond scenario unacceptable, we seek alternative policies that limit
the number of days in lockdown while preventing COVID-19
healthcare surges beyond local capacity. Based on our decision
support efforts for the city of Austin and potential biases in
confirmed case count data across the United States, we con-
jecture that local hospitalization data will be a more reliable
indicator of transmission intensity and future hospital surges.
Our best policies track daily COVID-19 hospital admissions and
daily total hospitalizations across the city and trigger the initia-
tion and relaxation of lockdown periods when admissions cross
predetermined thresholds.

Specifically, we formulate and solve a stochastic optimization
problem that selects daily hospitalization triggers and recom-
mends reinstatement and relaxation of lockdown periods as
follows: 1) reinstate the lockdown—corresponding to a 90%
reduction in transmission—when the 7-d average of daily hospi-
tal admissions exceeds the trigger; and 2) release the lockdown—
corresponding to a 40% reduction in transmission—when both a)
the 7-d average of daily hospital admissions drops below the trig-
ger, and b) city-wide hospitalizations (heads in beds) are below a
fixed factor (60%) of surge capacity for COVID-19.

We include criterion 2b to hedge against premature relaxation
when hospitals are relatively full. If randomized testing becomes
available at sufficient scale, we could similarly determine triggers
based on testing rather than hospitalization data, and thereby
gain earlier indications of a rising or declining threat.

Given the hospital capacity in the Austin, TX, metropolitan
area, we recommended a simple, yet robust, strategy with two
fixed thresholds, as indicated by the blue step function in Fig. 1F.
The policy tracks the 7-d moving average of daily COVID-19
hospital admissions and triggers the tightening and loosening
of measures when the value crosses 80 daily admissions prior
to September 30, 2020, and 215 thereafter. We optimized these
two values as well as the date of the transition. Under the point
forecast for the pandemic, 135 d of lockdown are required,
and hospitalizations remain safely below capacity. Stochastic
simulation yields a mean of 135 d (90% prediction interval: 126

19874 | www.pnas.org/cgi/doi/10.1073/pnas.2009033117 Duque et al.
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Fig. 1. Projections for COVID-19 hospitalizations and deaths in Austin, TX, metropolitan area under baseline and optimized policies for initiating and relax-
ing social distancing measures. A, C, E, and G show daily hospitalizations and cumulative deaths. COVID-19 surge capacity in Austin is approximately 3,240
beds (red line). Daily COVID-19 hospitalizations for the entire metropolitan area from March 13 to April 28 are shown in A; data up to April 16 were used
to fit the seed date and transmission rates in the model. Optimized strategies can relax lockdowns when total hospitalizations drop below a safety thresh-
old of 60% capacity (blue line). B, D, F, and H show daily hospital admissions. Optimized strategies use a stepped threshold: Lockdowns are enacted when
the 7-d rolling average in daily admissions surpasses a threshold and are relaxed when admissions decline below a threshold (indicated with blue horizontal
lines), if hospitalizations are below 60% capacity. Note that the cyan curves indicate daily admissions rather than 7-d averages, and thus changes (indicated
by horizontal gray regions) are triggered a few days after the daily values cross a threshold. (A and B) The lockdown continues through September 2021,
resulting in a 90% reduction in transmission, along with vigilant cocooning of vulnerable populations (95% effective), and school closures. (C and D) The
lockdown is relaxed on May 1, 2020. Thereafter, transmission is reduced by 40%, schools open in mid-August 2020, and 95% effective cocooning of vul-
nerable populations is maintained through September 2021. Hospitalizations are expected to grossly overrun capacity. (E and F) Adaptive lockdowns are
triggered when hospital admissions cross optimized thresholds, assuming 95% effective cocooning of vulnerable populations. The thresholds minimize the
expected days of lockdown while ensuring hospital capacity is not exceeded with high probability. (G and H) Adaptive lockdowns are triggered when effec-
tiveness of cocooning drops to 80%. Even under an optimized solution, expected deaths and days in lockdown both more than double, relative to cocooning
at 95%. In all graphs, solid curves correspond to the point forecast, and shaded regions give 90% prediction intervals based on 300 stochastic simulations.
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Table 1. Projected days of lockdown and COVID-19 mortality
under the optimized strategies with 95% and 80% effective
cocooning of vulnerable populations

Scenario Cocooning at 95% Cocooning at 80%

Days of lockdown
Mean 135 346
Median 135 347
5 to 95% PI (126 to 141) (333 to 360)

Cumulative deaths by
September 30, 2021
Mean 2,929 6,527
Median 2,646 6,532
5 to 95% PI (2,837 to 3,026) (6,338 to 6,690)

The second and third columns correspond to Fig. 1 E and F and Fig. 1 G
and H, respectively. Each 90% prediction interval (PI) (i.e., from 5 to 95%)
shown in the table and in Fig. 1 is based on 300 simulations.

to 141). The projected mortality is substantial, with a mean of
2,929 deaths (90% prediction interval: 2,837 to 3,026), which is
again over 30 times larger than the baseline scenario of indefinite
lockdown (Fig. 1A). While the other baseline scenario of indefi-
nite relaxation projected similar COVID-19 mortality (Fig. 1C),
it produces a catastrophic surge in hospitalizations, and those
projections do not account for excess mortality caused by inad-
equate healthcare resources during the July–September 2020
surge period.

These projections assume an ambitious policy of cocooning
vulnerable populations with a 95% level of effectiveness. If
cocooning only attains an 80% reduction in transmission risk,
then we would expect far greater numbers of hospitalizations and
deaths. Under this scenario, the optimal policy requires lower
thresholds for enacting lockdowns: a 7-d moving average exceed-
ing 30 daily COVID-19 hospital admissions prior to July 31, 2020
and 110 thereafter (Fig. 1 G and H and Tables 1–3). Leaky
cocooning can substantially undermine containment. In this case,
the optimal strategy for managing hospital surge requires mul-
tiple periods of lockdown totaling about 350 d and more than
doubling expected mortality.

We conducted sensitivity analyses to assess the robustness
and limitations of the optimized triggers. The proposed triggers
are relatively robust to weaker social distancing during relax-
ation periods, for example, if transmission is only reduced by
20% rather than 40%. However, the proposed triggers are not
robust to leaky cocooning. We analyze the relative merits of poli-
cies with a constant lockdown threshold to the horizon, relative
to having two distinct thresholds, as presented here. We show
the importance of optimizing trigger thresholds: Conservative
triggers significantly increase the duration of lockdown periods,
while loose triggers result in hospital capacity being overrun. See
SI Appendix for details.

Discussion
A significant relaxation of social distancing in the absence of a
comprehensive program for testing, contact tracing, and isola-
tion will likely lead to future waves of the COVID-19 pandemic
in US cities. Even if policy makers extend lockdown periods, lack
of public willingness to comply might undermine their efficacy.
Thus, planning for future relaxations is paramount to averting
unmanageable surges in COVID-19 hospitalizations. Carefully
designed strategies for triggering future shelter-in-place mea-
sures can mitigate the impact on the community’s healthcare
system while minimizing economic and societal costs.

Our framework clarifies a key decision facing city and state
leaders in the wake of the first wave of COVID-19—when
to enact and relax social distancing measures should the epi-
demic rebound. We posit a simple strategy for measuring and

responding to future surges in hospitalizations—enact and then
relax temporary lockdowns when daily hospital admissions climb
above and eventually recede below a predetermined, optimized
threshold. Whereas policy makers and public dashboards primar-
ily track confirmed COVID-19 cases and deaths, we intentionally
use COVID-19 hospitalization data to fit our model parameters
and guide policy. Hospitalization admissions are less subject to
bias than confirmed case counts, given the heterogeneous and
rapidly changing test availability and priorities across the United
States, and they are less time-lagged than reported COVID-
19 deaths. Our policies are specifically designed to track a 7-d
rolling average for daily COVID-19 hospital admissions, to pre-
vent overreacting to statistical variability and to account for
weekly periodicity in hospital reporting.

The optimal strategies derived for Austin, TX, provide three
critical insights. First, data-driven optimization yields policies
that are expected to protect against catastrophic hospital surges
while requiring far fewer days of costly shelter-in-place mea-
sures than most sensible expert-designed strategies. For exam-
ple, triggering lockdowns based on an arbitrarily chosen trigger
of 50 new admissions per day should prevent hospitalizations
from reaching capacity, but they are expected to require more
than 150 additional days of lockdown, relative to the opti-
mized trigger policy. However, implementing this trigger-based
optimization framework requires continual review of daily hos-
pital admissions and overall hospital utilization, as well as
constant validation of transmission rates during lockdown and
relaxation phases.

Second, under the plausible scenario that transmission
rebounds to 60% of baseline (i.e., a 40% reduction), the best
strategy for limiting lockdowns without undermining the health-
care system would likely trigger only one future lockdown in
mid-June following a steep increase in hospitalizations that sur-
passes the trigger of 80 new admissions per day (Fig. 1F).
Hospitalizations would then be expected to peak and subside in
late July, allowing relaxation of the lockdown by late September.
The simultaneous release of the lockdown and start of a delayed
2020–2021 school year would fuel a third wave, which would be
expected to be self-limiting, that is, subside without requiring a
third lockdown period. This decline is driven by herd immunity,
with an expected 79% of the population already infected and
recovered by October 2021.

We emphasize that, while this strategy offers a practical bal-
ance between economic and healthcare constraints, it is not
designed to minimize morbidity and mortality and results in
nearly 3,000 expected deaths by September 2021. If we assume

Table 2. COVID-19 mortality under the optimized strategies with
95% and 80% effective cocooning of vulnerable populations

Percent deaths

Risk group Age group Cocooning at 95% Cocooning at 80%

Low risk
0 y to 4 y 0.03 0.02
5 y to 17 y 0.20 0.08
18 y to 49 y 9.01 3.60
50 y to 64 y 18.23 6.97

65 y+ 4.43 6.12
High risk

0 y to 4 y 0.00 0.02
5 y to 17 y 0.10 0.09
18 y to 49 y 6.04 5.82
50 y to 64 y 26.86 28.32

65 y+ 35.06 48.95

The third and fourth columns correspond to Fig. 1 E and F and Fig. 1 G
and H, respectively.

19876 | www.pnas.org/cgi/doi/10.1073/pnas.2009033117 Duque et al.
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Table 3. Probabilities of exceeding hospital capacity under the
optimized strategies with 95% and 80% effective cocooning of
vulnerable populations

Probability of exceeding
percent of hospital capacity

Hospital capacity Cocooning at 95% Cocooning at 80%

60% 1.000 1.000
70% 0.997 1.000
80% 0.803 0.973
90% 0.020 0.197
100% 0.000 0.007

The second and third columns correspond to Fig. 1 E and F and Fig. 1 G
and H, respectively. Note that Fig. 1 shows 90% prediction intervals (PIs),
5%-95%, for hospitalizations based on 300 simulations, and the last row of
the table includes more extreme events.

a similar COVID-19 mortality rate for the entire United States,
this extrapolates to over 450,000 deaths, an order of magnitude
higher than the annual mortality from seasonal influenza. We
note, with concern, that this alarming projection assumes that
high-risk populations maintain 95% effective social distancing
through September 2021.

Finally, failing to vigilantly cocoon our vulnerable populations
will significantly increase both the death toll and the requisite
number of days in lockdown, even under the most efficient policy
for keeping hospitalizations in check. Nursing homes and popu-
lations experiencing homelessness have both large proportions
of high-risk individuals and living conditions that exacerbate the
risks of COVID-19 transmission. Proactive measures to pre-
vent COVID-19 introductions into these communities and to
rapidly contain initial clusters are essential to effective cocooning
but will require considerable forethought and resources, includ-
ing additional trained staff and isolation facilities. In addition,
providing incentives and support for high-risk members of the
workforce to shelter at home will be critical.

While we believe that our qualitative findings are robust and
provide actionable insights for navigating the challenges ahead,
our quantitative findings are specific to Austin and are based on
several simplifying assumptions. For example, we do not con-
sider the impact of the 2020–2021 influenza season on surge
capacity for COVID-19 cases. During the 2019–2020 influenza
season, several Austin area hospitals neared their capacity. In
reality, we cannot predict when or how much transmission will
rebound from policy loosening or public fatigue. Yet, our opti-
mal policies assume a specific and constant degree of relaxation.
Our sensitivity analysis suggests that the derived policies are
relatively robust to uncertainty regarding future transmission
but not to a relaxation of cocooning. While our epidemiolog-
ical model considers age-specific contact rates and vulnerabili-
ties to COVID-19, it does not explicitly model subgroups with
anomalously high contact rates, such as nursing home residents,
individuals experiencing homelessness, and the healthcare, gro-
cery, and construction workforces. Such high-risk communities
can amplify transmission and lead to rapid spikes in hospital-
izations that are unmanageable, even when total hospitalizations
are far below capacity, or can inadvertently trigger unnecessary
lockdowns. We assume a single infectious individual seeded the
epidemic in Austin. This does not preclude earlier importations
that produce a limited cluster of cases. Fig. 1A shows fit and
forecast hospitalizations from March 13 through April 16, and
additional hospitalizations through April 28. As a final caveat,
we note that locking down and opening up a city may require
overcoming substantial societal inertia. However, our analyses
do not consider potential delays in community responses follow-
ing a policy change. While we could modify the analysis to build

in buffers, we also advocate for the design of multistage “track
and trigger” policies that require both less extreme transitions
and proactive socialization of such policies by city leaders to cul-
tivate a sense of personal responsibility and accelerate adherence
when restrictions are enacted.

Our study presents a relatively simple scenario in which a city
can toggle between two extreme states of lockdown and relax-
ation. It is meant to serve as a proof-of-concept and provide a
flexible framework for guiding COVID-19 policies as the pan-
demic unfolds in cities across the United States. For example,
we have adapted this method to help the city of Austin design
a five-stage risk chart that allows the city to tap on the brakes
to avoid full-blown stay-home measures. Working closely with
Austin’s Executive COVID-19 Task Force—including the Austin
mayor, Austin Health Authority, judge of the largest county,
and leadership from all area hospitals—we derived robust trig-
gers to guide the transitions between all five stages. The city
leadership has undertaken an aggressive socialization process to
explain when and how behavioral changes will be expected from
the city’s citizens. This includes almost daily reminders in the
press and a public dashboard that tracks hospital admissions rela-
tive to color-coded thresholds provided by our analyses (19). We
are monitoring the situation on a daily basis. If local COVID-19
transmission deviates from our original assumptions, our anal-
ysis pipeline is poised to rapidly reevaluate the policy options.
We emphasize that such triggers should guide rather than dictate
policy. For example, if a localized outbreak in a nursing home
leads to a surge, but the outbreak does not appear to represent
larger trends, city leaders could delay enacting a recommended
lockdown.

Our simple threshold policies allow optimization using a rela-
tively small discrete grid. This approach can be directly applied to
other epidemiological simulation models, provided that they can
incorporate both triggers and variable levels of social distancing,
for example, by adjusting transmission rates over time. Model-
ers can readily incorporate critical subpopulations, like schools,
the concurrent transmission of influenza, and intercity travel, all
of which may grow in importance in the months ahead. Thus,
modelers can broadly apply this framework to provide decision
support for COVID-19 responses in cities worldwide. In addi-
tion to tracking hospitalizations for triggering shelter-in-place
orders, modelers will need to regularly estimate local transmis-
sion rates as policies and individual behavior evolve. Integrating
cell phone mobility data reflecting social distancing, as we do
in our forecasting model (20, 21), may improve the accuracy
and timeliness of our estimates. Finally, September 2021 is a
long horizon. In the months ahead, the likelihood and timeline
for promising antiviral drugs and vaccines may become clearer.
If such life-saving measures appear within reach, communities
may have a renewed willingness to shelter in place that can be
directly incorporated into designing new triggers for aggressive
mitigation.

Materials and Methods
We use a data-driven SEIR (susceptible, exposed, infected, recovered)-
style metapopulation model for COVID-19 transmission (16). This epidemi-
ological model has compartments for susceptible, exposed, infectious–
asymptomatic, infectious–symptomatic, infected–hospitalized, recovered,
and deceased. We partition the population into 10 groups comprising all
combinations of five age groups and two risk groups. Contact matrices
encode the expected number of daily contacts during a lockdown, and in
the relaxed state, and further account for cocooning of high-risk groups,
weekdays versus weekends, and whether school is currently open and, if
so, the school calendar. Using a least-squares method, we fit the epidemio-
logical model to hospitalization data from March 13 to April 16 via the seed
date, a baseline transmission rate, and the reduction in the transmission rate
from baseline during SHWSO, with the fit shown in Fig. 1A.

We formulate an optimization model that determines daily values for
both thresholds in a two-tiered policy depicted in Fig. 1 F and H. The
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optimization model has constraints that account for the epidemiological
dynamics and a set of constraints that link that model’s 7-d moving average
of daily hospital admissions with the trigger thresholds, and the corre-
sponding reductions in transmission via the contact matrices. A final set of
constraints keep estimated hospitalizations within capacity. To do so, we
use the square-root staffing rule from queueing theory (22). This rule main-
tains a high probability (we use ≥ 0.9999) that a single arrival in steady
state does not have to wait for service, and yet servers are highly utilized.
Our “servers” are hospital beds, along with necessary healthcare providers
and equipment. We assume that 80% of Austin’s hospital beds are available
for COVID-19 patients. We require that the square-root staffing rule hold,
under a point forecast for daily COVID-19 hospitalizations. In addition, we
simulate, and optimize with respect to, 300 sample paths of the epidemic,
taking into account both macrolevel and microlevel stochastics, with details
in SI Appendix. We ensure that the probability of exceeding hospital capac-

ity within the time horizon is, at most, 0.01. With these constraints in place,
we select triggers to minimize the expected number of days of lockdown.
Minimizing lockdown acknowledges social and economic pressures to relax
stringent measures.

All data required for this analysis can be found in SI Appendix. The code
that produced the results of our analyses is available at https://github.com/
dukduque/COVID-TriggerOpt.
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