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Topological s-wave superconductors driven by electron correlation
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It is interesting to ask whether electron interaction can turn a topologically trivial superconductor into
a nontrivial one without the presence of spin-orbital coupling. In this paper we solve a correlated s-wave
superconducting model exactly. The variation of the fermion number parity of the superconducting ground state
as a function of the electron interaction is calculated, and the topological phase diagram is obtained. Topological
s-wave superconducting states are revealed in the doped Mott insulators, which is further confirmed by the
numerical investigation of the topological boundary zero mode.
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I. INTRODUCTION

The past decade has witnessed the rapid progress in the
research of topological phases of condensed matter [1–8],
including topological insulators, semimetals, and supercon-
ductors. Among them, the topological superconductors have
attracted tremendous interest for their potential application
to realize fault tolerant quantum computation [9]. The fully
gapped superconducting ground states due to either intrin-
sic or effective spin-triplet p-wave pairing are believed to
be the central ingredient in various theoretical proposals
to realize topologically nontrivial superconductors. By tak-
ing advantage of the topological band structures of parent
compounds, intrinsic topological superconductivity [10] is
suggested to emerge in the bulk of the doped topological
insulators [11–14]. There are also many proposals to establish
effective p-wave pairing on the interface of heterostructures
combining topological insulators [15] or spin-orbital cou-
pled semiconductors with the s- [16–18] or d-wave [19–22]
superconductors. The linear dispersive low-lying electronic
bands possessing spin-momentum locked internal structures
are essential in the designs of realizing the bulk or interfacial
topological superconductivity.

The effects of electron-electron interaction on the topologi-
cal superconducting phases have also been studied extensively
[23–30]. Strong interactions were found to suppress topologi-
cal superconducting phases by destroying the pairing-induced
superconducting gap [23,24]. Furthermore, phase transitions
from topological superconducting phases to trivial conven-
tional ones [25,26,28,29] were examined. In short, interaction
can influence the stability of the topological phases by closing
the bulk gap or inducing conventional competing orders due
to spontaneous symmetry breaking. Despite the progress in
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the studies of the interaction effects, more fascinating effects
[30] of electron correlation are expected in the interacting
topological superconductors. It is important to ask whether
certain topologically nontrivial superconducting phases can
be generated due to strong electron correlations, which do
not have any noninteracting analog. Indeed as in the insulator
cases [31–35] several exotic states of matter, such as the
topological Mott insulators [36–38] and fractional Chern in-
sulators [39] have already been revealed, whose ground states
do not adiabatically connect to those of the noninteracting
topological insulators.

Motivated by the rich phenomena emerged in the inter-
play among superconductivity, correlations, and topologies,
we study in this paper how a topologically trivial super-
conductor is driven into a nontrivial one in the presence of
electron interactions. To realize this idea, a correlated electron
model, the Hatsugai-Kohmoto (HK) model [40], is adopted
where electron repulsion is local in momentum and the Mott
physics can be captured exactly. Recently Phillips et al. [41]
demonstrated an analog of the Cooper instability for the HK
model of a doped Mott insulator. Comparing with their work
[41] which studied exact superconducting instability in a non-
Fermi-liquid metallic state, here we focus on the topological
characteristics of the s-wave superconducting states in the HK
model. A fascinating observation in this paper lies in that a
topologically nontrivial s-wave superconducting ground state
can be established by strong electron correlations without
invoking spin-orbital coupling.

II. MODEL AND EXACT SOLUTION

The model Hamiltonian combines the HK model with the
s-wave pairing, which is written as

H =
∑
k,σ

ξkn̂k,σ +
∑

k

[Un̂k↑n̂k↓ + �(ck↑c−k↓ + H.c.)], (1)
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FIG. 1. Four normal phases of the HK model. Lower Hubbard
bands (LHBs) and upper Hubbard bands (UHBs) with energy dis-
persions ξk and ξk + U , respectively, are plotted as blue and yellow
lines. Here we let ξk = −2t cos k − μ for illustration. The black
dashed line denotes the position of chemical potential. (a)–(c) repre-
sent three metallic phases with (a) both bands are partially occupied;
(b) partially occupied LHB and empty UHB; and (c) fully occupied
LHB and partially occupied UHB. (d) denotes the Mott insulator
phase.

where ξk = εk − μ represents the single-particle energy dis-
persion relative to the chemical potential μ and the electron
number operator n̂k,σ = c†

kσ ckσ . As a main spirit of the HK
model, U signifies the electron interaction local in the mo-
mentum rather than the real space, which reflects the Mott
physics in a more tractable manner. � denotes the conven-
tional s-wave pairing potential which either arises from the
proximity effect when the doped Mott insulator is adjacent
to a s-wave superconductor or associates with Cooper pairing
in the presence of the pairing interaction as demonstrated in
Ref. [41].

The HK model, i.e., the case of � = 0 in Eq. (1), is
integrable and exactly solvable because [H, n̂kσ ] = 0 and
[n̂kσ , n̂k′σ ′] = 0 for any k and k′, and accordingly each eigen-
state of the HK model can be written as

∏
k |nk↑nk↓〉, where

nkσ = 0, 1 is the quantum number of n̂kσ . In each k sector,
there are four eigenstates: |00〉, |10〉, |01〉, and |11〉, namely,
the empty, singly (spin-up and spin-down), and doubly oc-
cupied states, respectively. The corresponding eigenenergies
are 0, ξk, and 2ξk + U . From this knowledge, the many-body
ground states of the HK model can be readily obtained, whose
four typical phases are shown in Fig. 1 for illustration. Note
that the metallic phases are highly degenerate for the sake of
the spin-up and spin-down degeneracy of the singly occupied
band.

For U = 0, the model is reduced to the mean-field BCS
Hamiltonian HBCS = ∑

k Hk with

Hk = ξk(n̂k↑ + n̂−k↓) + �(ck↑c−k↓ + H.c.). (2)

Since Hk’s are mutually commutative, the ground state of
HBCS are, therefore, the product of that of each Hk. After the
Bogoliubov quasiparticle transformation, the ground state of

H can then be written as

|gs〉 =
∏

k

(uk + vkc†
k↑c†

−k↓)|0〉, (3)

where uk and vk are the coherent factors. The BCS ground
state is obviously of even fermion parity and topologically
trivial.

We then give the exact solution of Eq. (1) and investigate its
topological properties by examining the interplay between the
U and the � terms. Apparently the U term couples the spin-up
and -down electrons with the same momentum, whereas the �

terms couple the time-reversal related partners, which com-
plicate the solution of H . However, the model Hamiltonian
Eq. (1) is still tractable after decomposing it into the following
form:

H =
∑

k

′HU
k , (4)

where the ′ denotes that the summation over k is restricted
to half of the first Brillouin zone (HFBZ), e.g., 0 � k � π in
the one-dimensional (1D) case. For k in the interior of HFBZ
(e.g., 0 < k < π in 1D), HU

k is

HU
k = Hk + H−k + U (n̂k↑n̂k↓ + n̂−k↑n̂−k↓), (5)

whereas for the momenta on the boundary of HFBZ (k = 0, π

in 1D), i.e., the time-reversal-invariant momenta k∗,

HU
k∗ = Hk∗ + Un̂k∗↑n̂k∗↓. (6)

All HU
k(k∗ )’s are commutative with each other and, therefore,

the ground state of H is the product of that of each HU
k(k∗ ).

For any interior k of HFBZ, the Fock space where HU
k

lives is 16 dimensional (16D), whose basis vectors are
|n1n2n3n4〉k = c†n1

k↑ c†n2
−k↓c†n3

−k↑c†n4
k↓ |0〉k with ni = 0, 1. Since HU

k
conserves the fermion parity, this 16D Fock space can be
further divided into even and odd sectors each of which is
eight dimensional (8D). In the even sector we find five dou-
bly occupied eigenstates. Three of them are the spin triplet,
i.e., |1010〉k,

1√
2
(|1100〉k − |0011〉k ), and |0101〉k. The other

two are the Pauli blocking states, namely, |1001〉k, |0110〉k.
The spin-triplet states obviously are immune to the s-wave
pairing potential as well as the U term as reflected in their
eigenenergy 2ξk. The two Pauli blocking states do not take
part in the pairing because they forbid Cooper pairs hopping
into them according to the Pauli exclusion principle, and
their energies are 2ξk + U . The remaining three eigenstates
of HU

k in the even sector seat in the subspace spanned by
{|0000〉k,

1√
2
(|1100〉k + |0011〉k ), |1111〉k}, i.e., the empty,

spin singlet, and fully occupied states. The matrix of HU
k in

this three-dimensional subspace is⎛
⎜⎝

0 −√
2� 0

−√
2� 2ξk −√

2�

0 −√
2� 4ξk + 2U

⎞
⎟⎠. (7)

Such a 3 × 3 symmetric matrix can be diagonalized analyti-
cally [42], and the three eigenenergies in ascending order are

λ
(i)
k = 2ξk + 2U

3
+ 4√

3
E even

k cos

(
θk + 2π

3
i

)
, (8)
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where i = 1–3,

E even
k =

√(
ξk + U

2

)2

+ �2 + U 2

12
, (9)

θk = 1

3
arccos

[
qk(√

3E even
k

)3

]
, (10)

qk = U

(
U 2 + 9

2
Uξk + 9

2
ξ 2

k − 9

4
�2

)
. (11)

It can readily be found that λ
(1)
k is the lowest-lying one among

the eight eigenvalues regardless of the variations of system
parameters.

Similarly, the 8D odd sector can be decomposed into four
subspaces each of which is spanned by two basis vectors, e.g.,
|1000〉k and |1011〉k. In each subspace, HU

k has the same 2 ×
2 matrix form as (

ξk −�

−� 3ξk + U

)
. (12)

The two eigenenergies are

λk± = 2ξk + U

2
± Eodd

k , (13)

where

Eodd
k =

√(
ξk + U

2

)2

+ �2. (14)

Comparing the minimum energies in both sectors, we find
that λ

(1)
k is always lower than λk−. Since the eigenvector cor-

responding to λ
(1)
k is in the even sector, the lowest-lying state

of HU
k is definitely even in fermion parity. Thus, the parity of

the ground state of the whole system H is solely determined
by that of HU

k∗ .

III. THE TOPOLOGICAL INVARIANT AND PHASE
DIAGRAM

Comparing Eq. (6) with Eq. (5) we see that the Fock space
of HU

k∗ is four dimensional (4D) rather than 16D. This 4D Fock
space is the direct sum of one even and one odd subspace,
each of which is two dimensional. The even sector is spanned
by |00〉k∗ and |11〉k∗ in which the Hamiltonian matrix is(

0 −�

−� 2ξk∗ + U

)
. (15)

In the even sector, the lowest eigenenergy of HU
k∗ is ξk∗ +

U/2 − Eodd
k∗ , which is negative and approaches zero when

U → ∞. In the odd sector, the spin doublets |10〉k∗ and |01〉k∗

are two degenerate eigenstates of HU
k∗ whose eigenvalue is ξk∗

independent of U . With increasing U , an energy-level cross-
ing will take place at a critical point Uc = 2Eodd

k∗ , accompanied
by the parity switch from even to odd. The fermion parities
of all HU

k∗ ’s together determine the fermion parity P of the
ground state of whole system H . The fermion parity operator

FIG. 2. Topological phase diagram of the 1D superconduct-
ing HK model. The single-electron energy dispersion is ξk =
−2t cos k − μ. t = 1 and the pairing potential � = 0.4.

is defined as P̂ = (−1)
∑

kσ n̂kσ , from which we obtain

P =
∏
k∗

sgn
(
2Eodd

k∗ − U
)
, (16)

=
∏
k∗

sgn[ξk∗ (ξk∗ + U ) + �2], (17)

which acts as the topological invariant of this correlated s-
wave superconducting model.

From Eqs. (16) and (17) because P2 = 1, P is a many-
body Z2 topological invariant. The uncorrelated s-wave
superconductor with U = 0 has P = 1 corresponding to the
topologically trivial superconductor, whereas the ground state
of the nontrivial s-wave superconductor is of odd fermion
parity with P = −1. For weak pairing potential satisfying
� 
 min{ξk∗ , ξk∗ + U }, the topological index can be writ-
ten approximately as P = PLPU with PL = ∏

k∗ sgn ξk∗ and
PU = ∏

k∗ sgn (ξk∗ + U ) denoting the fermion parities of the
LHB and UHB, respectively. Therefore, the position of the
chemical potential μ with respective to the LHB and UHB,
together with the lifting of the UHB above the LHB con-
trolled by U , determines the topological nature of the ground
states. For illustration, PL = sgn(ξ0ξπ ) and PU = sgn[(ξ0 +
U )(ξπ + U )] for the 1D case. When s-wave pairing is estab-
lished in the weakly correlated metallic phase as shown in
Fig. 1(a), both the LHB and the UHB are partially occupied
and, thus, PL = PU = −1 resulting in the trivial conventional
superconducting state. Enhancing the electron correlation by
increasing U , a strongly correlated metallic phase is reached
with partially occupied LHB and empty UHB corresponding
to Fig. 1(b). For this case we have PL = −1 and PU = 1 and
the resulting superconducting ground state is topologically
nontrivial. A similar result can also be obtained for the metal-
lic state shown in Fig. 1(c).

Figure 2 displays the topological phase diagram of our
model system where the phase boundaries separating the two
topologically distinct phases are governed by

∏
k∗ [ξk∗ (ξk∗ +

U ) + �2] = 0. The topologically nontrivial region is com-
posed of two shaded areas denoted by I and II which
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correspond to topological superconducting phases on the basis
of the normal states (b) and (c) in Fig. 1.

The above results show how the ground-state fermion par-
ity as a many-body topological invariant of superconductors
[43] varies with the electron correlations. From another per-
spective, the ground-state degeneracy of the correlated normal
states is also altered greatly when the s-wave pairing is es-
tablished. The ground states of all the three metallic phases
as shown in Figs. 1(a)–1(c) are highly degenerate because
there are k segments on which the energy levels are singly
occupied by either spin-up or spin-down electrons. However,
in the presence of a s-wave pair potential, the high degeneracy
is totally lifted for the metallic phase (a) or reduces to two for
the phases (b) and (c).

IV. TOPOLOGICAL BOUNDARY MODE

The topological superconducting state can also be identi-
fied by examining the boundary zero modes associated with its
nontrivial bulk topology. For this purpose, the real-space cor-
respondence to the momentum space Hamiltonian of Eq. (1)
is studied, which is expressed as

H = − t
L−1∑
j=1

(c†
jσ c j+1σ + H.c.) − μ

L∑
j=1

c†
jσ c jσ

+�

L∑
j=1

(c j↑c j↓ + H.c.)

+U/L
L∑

j1, j2, j3, j4=1

δ j1+ j3, j2+ j4 c†
j1↑c j2↑c†

j3↓c j4↓. (18)

Here we choose a 1D lattice for simplicity, L denotes the
lattice length, and the open boundary condition is chosen to
examine the topological end modes. Note that the locality
of the U term in momentum space as in Eq. (1) results in
the nonlocal long-range interaction in the real-space lattice
as in Eq. (18). The real-space Hamiltonian is solved by ex-
act diagonalization in the Fock space using basis vectors
| · · · n j↑ · · · ; · · · n j↓ · · · 〉. The dimension of the Fock space is
22L. Although the total fermion number is not conserved due
to the pairing term, the fermion parity and the z component
of the total spin Mz = N↑ − N↓ are good quantum numbers,
which can help to reduce the matrix dimension. Actually,
the Fermi parity and Mz are closely related because P =
(−1)N↑+N↓ = (−1)Mz . Thus, Mz is used to label each sector
of the Fock space. Furthermore, since the time-reversal sym-
metry is reserved, the ground states in the Mz = ±1 sectors
are degenerate according to Kramers’ theorem. Therefore, we
only need to perform numerical diagonalization of Eq. (18)
in the Mz = 0, 1 sectors for the purpose of exploring the end
modes.

Figure 3 illustrates the U dependence of the single-particle
excitation gap of our s-wave superconducting HK model for
open boundary conditions (OBCs) and periodic boundary
conditions (PBCs). The gap is calculated according to εgap =
|ε(0)

g − ε(1)
g |, where ε

(Mz )
g denotes the ground-state energy of

the system in the Mz sector. In our investigation, the model
parameters are t = 1 as the unit of energy, μ = 0 giving rise to

FIG. 3. Single-particle excitation gap εgap as a function of U in
the 1D superconducting HK chain with L = 10. εgap is measured as
the difference between εeven

g and εodd
g which are the energies of the

ground states in the even and odd sectors. The system parameters are
t = 1, μ = 0, and � = 0.4. The solid black line and open circles
threaded by the dashed blue line correspond to periodic and open
boundary conditions, respectively. The inset: εgap as a function of
lattice size L for U = 10 (solid circles threaded by the dashed line)
and U = 20 (open squares threaded by the solid line).

half filling of the LHB as shown in Fig. 1(b), and � = 0.4. In
calculating the variation of the single-particle excitation gap
as a function of U , a shorter chain with L = 10 is chosen.
The PBC results, obtained from our analytic results Eqs. (8)
and (13), indicate that the gap first closes at and then reopens
above Uc = 2.08. For the OBC case, the gap closes around
U = 2.8 and remains nearly closed above it implying the
existence of an approximate zero mode with εgap ≈ 0.04 
 �

inside the superconducting gap. The deviation of the critical
Uc’s obtained for the PBC and the OBC as well as the small
but nonvanishing excitation energy are attributed to the finite
size of the system. With the increase in the lattice length
L, the εgap diminishes rapidly for U well above Uc as shown
in the inset of Fig. 3, implying that the zero modes will be
exact in the thermodynamic limit.

To further check whether this zero mode is localized
around the ends of the chain, we study the low-energy local
density of states (LDOS), which can manifest the spatial dis-
tribution of the zero mode. The contribution of the zero mode
to the LDOS can be extracted from the imaginary part of the
single-particle retarded Green’s function and written as

ρ jσ (ω) = p jσ δ
(
ω − ε(1)

g + ε(0)
g

) + h jσ δ
(
ω + ε(1)

g − ε(0)
g

)
,

(19)
where the p jσ (h jσ ) represents the probability of
adding(removing) a spin-σ electron on site j of the chain. pj↑
and h j↑ are calculated according to

p j↑ = ∣∣〈ψ (1)
g

∣∣c†
j↑

∣∣ψ (0)
g

〉∣∣2
, (20)

h j↑ = ∣∣〈ψ (−1)
g

∣∣c j↑
∣∣ψ (0)

g

〉∣∣2
. (21)

Here |ψ (Mz )
g 〉 denotes the ground-state eigenvector of Eq. (18)

in the Mz sector of the Fock space. By using the time-reversal
symmetry we have |ψ (−1)

g 〉 = T̂ |ψ (1)
g 〉 and T̂ c j↑T̂ −1 = −c j↓

with T̂ as the time-reversal operator, and, therefore, p j↑ = p j↓
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FIG. 4. Spatial distribution of the probability of adding a single-
electron (pjσ , blue line) or a single-hole (hjσ , yellow line) to the
ground state. The chain length is L = 14 with other parameters
μ = 0, � = 0.4, and U/L = 2 chosen in the topological region I
in Fig. 2.

and h j↑ = h j↓ = |〈ψ (1)
g |c j↓|ψ (0)

g 〉|2. In the investigation of the
boundary mode, the model parameters are the same as those
in Fig. 3 except that we study a longer chain with L = 14
and the interaction U/L = 2 corresponding to a topological
phase in Fig. 2. This results in the energy difference between
ground states in the even and odd sectors is as small as 0.004,
further supporting the emergence of the zero mode. As for
the spatial distribution of the zero mode, p jσ and h jσ as a
function of j are plotted in Fig. 4. Both p jσ and h jσ have

greater values near the chain boundaries and decay fast into
the bulk, exhibiting localized distribution of the zero modes.
Furthermore, p jσ is about ten times larger on average than
h jσ , and this asymmetry between adding the single particle
and hole into the ground state is caused by the strong electron
correlation. Therefore, the many-body boundary zero mode is
a fermionlike zero mode rather than a Majorana one.

To summarize, a correlated s-wave superconducting model
whose normal states are doped Mott insulating phases is inves-
tigated. This model is exactly solved taking advantage of the
fact that the electron-electron interaction is local in the mo-
mentum space. The fermionic parity of the superconducting
ground state, which acts as the many-body topological invari-
ant, is derived explicitly and found to be related merely to the
time-reversal-invariant momenta. The 1D lattice model with
the open boundary condition is examined by the exact diag-
onalization, and the excitation energy and spatial distribution
of the boundary mode further identify the interaction-induced
topological superconducting phase.
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