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Understanding quantum many-body states of correlated electrons is one main theme in modern condensed-
matter physics. Given that the Fermi-Hubbard model, the prototype of correlated electrons, was recently
realized in ultracold optical lattices, it is highly desirable to have controlled numerical methodology to provide
precise finite-temperature results upon doping to directly compare with experiments. Here, we demonstrate the
exponential tensor renormalization group (XTRG) algorithm [Chen et al., Phys. Rev. X 8, 031082 (2018)],
complemented by independent determinant quantum Monte Carlo, offers a powerful combination of tools for
this purpose. XTRG provides full and accurate access to the density matrix and thus various spin and charge
correlations, down to an unprecedented low temperature of a few percent of the tunneling energy. We observe
excellent agreement with ultracold fermion measurements at both half filling and finite doping, including the
sign-reversal behavior in spin correlations due to formation of magnetic polarons, and the attractive hole-doublon
and repulsive hole-hole pairs that are responsible for the peculiar bunching and antibunching behaviors of the
antimoments.

DOI: 10.1103/PhysRevB.103.L041107

Introduction. The Fermi-Hubbard model (FHM), describ-
ing a paradigmatic quantum many-body system [1,2], has
relevance for a broad scope of correlation phenomena, ranging
from high-temperature superconductivity [3], metal-insulator
transition [4], and quantum criticality [5] to interacting topo-
logical states of matter [6]. Yet puzzles remain in this strongly
interacting many-body model after several decades of inten-
sive investigations. In solid-state materials, FHM is often
complicated by multiband structures and interactions such as
spin-orbital and Hund’s couplings [7]. In this regard, recent
progress in two-dimensional (2D) fermionic optical lattices,
where the interplay between the spin and charge degrees of
freedom in FHM has been implemented in a faithful way
[8–14], enables a very clean and powerful platform for sim-
ulating its magnetic [15–22] and transport [23,24] properties.
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With the state-of-the-art quantum gas microscope tech-
niques, single-site and spin-resolved imaging is now available,
and “snapshots” of correlated fermions have been studied
experimentally [8–10,12]. On top of that, detailed local spin
and charge correlations [11,13–15,17,22], as well as hidden
orders revealed by pattern recognition [19,20], all inaccessible
in traditional solid-state experiments, can be read out by a
microscope. As a highly controlled quantum simulator, ultra-
cold fermions in optical lattices therefore serve as a promising
tool for resolving various intriguing theoretical proposals in
the 2D FHM. However, numerous challenges remain, both
theoretically and experimentally. The currently lowest achiev-
able temperature is T/t � 0.25–0.5 (with t being the fermion
tunneling energy) on a finite-size system with about 70–80
6Li atoms [17,20,22], and T/t ∼ 1 in 40K systems [12,25].
These temperatures are still much higher than the estimated
superconductivity transition temperature, Tc/t ∼ 0.05, near
the optimal doping of the square-lattice FHM [3,26].

On the theoretical side, it is then of vital importance to
provide precise quantum many-body calculations in the 2D
FHM with system size and fermion density similar to those
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studied experimentally. With that, one can benchmark theory
with experiment, determine the effective temperature of the
fermionic optical lattice system, explain experimental results,
and provide accurate guidance for future progress. However,
accurately computing properties of the 2D FHM at finite
temperature and finite doping is difficult. Quantum Monte
Carlo (QMC) methods suffer from the minus-sign problem,
although with finite size and temperature it can actually be
performed, yielding unbiased results before one hits the “ex-
ponential wall.” In this regard, it is highly desirable to have an
alternative and powerful method, whose accessible parameter
space extends to more difficult yet highly interesting regions.
In this Letter, we demonstrate that the thermal tensor network
approach constitutes the method of choice.

In fact, various tensor renormalization group (TRG)
methods have been developed to compute the ground-state
properties of the 2D FHM [27–34]. However, the T > 0 prop-
erties at finite doping are much less explored. In this work,
we generalize the exponential TRG (XTRG) from spin sys-
tems [35,36] to strongly interacting fermions and employ it to
simulate the FHM at both half filling and finite doping, down
to a few percent of the tunneling energy t . We compare the
results obtained from both the XTRG and determinant QMC
(DQMC) [37] in the parameter space where both methods
are applicable and find excellent agreement between them.
Then we carry out XTRG+DQMC investigations of the 2D
FHM to cover the entire parameter space accessed by current
cold-atom experiments. We find that the experimental data
can be perfectly explained by our numerical simulations. The
combined XTRG+DQMC scheme therefore opens a route
for systematic investigation of the finite-temperature phase
diagram of the 2D FHM and constitutes an indispensable
theoretical guide for ultracold fermion experiments.

The Fermi-Hubbard model. We consider the interacting
electrons on an L × L square lattice with open boundary con-
ditions,

H = −t
∑

〈i, j〉,σ
(ĉ†

i,σ ĉ j,σ + H.c.) + U
∑

i

n̂i↑n̂i↓ − μ
∑

i,σ

n̂i,σ ,

(1)

with t = 1 being the nearest-neighbor hopping amplitude
(which sets the unit of energy throughout), U > 0 being the
on-site Coulomb repulsion, and μ being the chemical po-
tential. The fermionic operator ĉi,σ annihilates an electron
with spin σ ∈ {↑,↓} on site i, and n̂i,σ ≡ ĉ†

i,σ ĉi,σ is the local
number operator.

In the large-U limit (U 
 t ) and at half filling (μ =
U/2), FHM can be effectively mapped to the Heisenberg
model with exchange J = 4t2/U , giving rise to a Néel-
ordered ground state with strong antiferromagnetic (AF)
correlations at low temperature [depicted schematically in
Fig. 1(b)]. This has been demonstrated in many-body cal-
culations [38] and recently observed in ultracold fermion
experiments [17]. To make a direct comparison with recent
experiments [12,17,20,25], we take L = 4, 6, 8, set U = 7.2,
and further tune the chemical potential μ < U/2 to introduce
hole doping.

Fermion XTRG. Finite-temperature TRG methods have
been proposed to compute the thermodynamics of interact-

FIG. 1. (a) Bilayer calculation of the spin-spin 〈Ŝi · Ŝ j〉 and hole-
doublon 〈ĥi · d̂ j〉 correlators by sandwiching corresponding operators
in between ρ̂(β/2) and ρ̂†(β/2), where the snakelike ordering of
sites for the XTRG is indicated by thick gray lines. (b) In the
low-temperature AF background (blue down and red up spins), a
magnetic polaron (gray shaded region) emerges around a moving
hole, where the spins around the hole can be in a superposition of
spin-up and -down states. The blue ellipse represents a hole-doublon
pair showing a strong bunching effect. (c) A hole moves in the system
along the path indicated by the gray string, leading to a sign reversal
of the diagonal spin correlation. The red and blue shaded regions
illustrate the deformed magnetic background due to the interplay
between the hole and spins. Diagonal correlations are indicated red
(aligned) or blue (antialigned).

ing spins [35,39–45]. However, the simulation of correlated
fermions at finite temperature has so far been limited either
to relatively high temperature [46,47] or to rather restricted
geometries, like one-dimensional (1D) chains [48]. XTRG
employs a density-matrix renormalization group (DMRG)-
type setup for both 1D and 2D systems [35,36] and cools down
the systems exponentially fast. It has shown great precision in
quantum spin systems [35,49,50], thus holding great promise
to be generalized to correlated fermions.

As shown in Fig. 1(a), we represent the density matrix
ρ̂(β/2) as a matrix product operator defined on a 1D snakelike
path [thick gray lines in Fig. 1(a)]. To guarantee the positive-
definite condition of the density matrix and accurately
compute the expectation value of an observable Ô, we adopt
the bilayer technique [48], yielding 〈Ô〉 = 1

ZTr[ρ̂(β/2) · Ô ·
ρ̂†(β/2)], with Z = Tr[ρ̂(β/2) · ρ̂†(β/2)] being the parti-
tion function. We consider mainly two-site static correlators,
〈Ô〉 = 〈Ôi · Ô j〉, with Ôi being a local operator such as
the SU(2) spinor Ŝi ≡ [ −1√

2
ĉ†

i↑ĉi↓, 1
2 (n̂i↑ − n̂i↓), 1√

2
ĉ†

i↓ĉi↑]T , the
fermion number n̂i ≡ n̂i↑ + n̂i↓, the occupation projectors
ĥi ≡ |0〉〈0|i (hole) and d̂i ≡ | ↑↓〉〈↑↓ |i ≡ n̂i↑n̂i↓ (doublon),
etc. The spin-spin 〈Ŝi · Ŝ j〉 and hole-doublon 〈ĥi · d̂ j〉 correla-
tions are schematically depicted in Fig. 1(a).

We also fully implement non-Abelian spin and particle-
hole symmetries in the QSpace framework [51,52] (for
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FIG. 2. Half-filled FHM with U = 7.2 and L = 4, 6, 8. (a) The
finite-size AF order pattern is determined from the spin correlation
CS (d ) versus (dx, dy ), which melts gradually as T increases. We show
in (b) the spin correlation function |CS (d )| of various d = 1,

√
2, 2

and in (c) the finite-size spontaneous magnetization ms. Excellent
agreement between the calculated (L = 8) data and the experimental
data [17] can be observed.

technical details, see [53]). To be specific, for the half-filled
case we exploit SU(2)charge ⊗ SU(2)spin, and for the doped
case we exploit U(1)charge ⊗SU(2)spin symmetry. The imple-
mentation of symmetries has been shown to be very useful in
the DMRG-type calculations [54–56], and here it allows us to
reduce the D states retained in XTRG to an effective dimen-
sion of D∗ multiplets. Practically, for the half-filled (doped)
cases, the effective dimensional reductions D/D∗ ∼ 5.6(2.6),
corresponding to a (D/D∗)4 � 50–1000 fold reduction of
computation time, guaranteeing high efficiency and accuracy
for the thermal simulations. We obtain well-converged XTRG
results on the L = 8 square lattice at half filling (total site
number N = L2 = 64) using up to D∗ = 900 multiplets (D �
5000 states) and, upon doping, using up to D∗ = 1200 multi-
plets (D � 3100 states) [53] down to temperature T/t � 0.06,
which is unprecedentedly low for such system sizes. The
DQMC simulation performed here is of the finite-temperature
version with fast update [57].

Spin correlations and finite-size magnetic order at half
filling. In recent experiments with the FHM, the AF has
been realized in ultracold optical lattices at low effective
temperature T/t < 0.4 [17]. We first benchmark the XTRG
method, along with DQMC, with the experimental results of
the half-filled FHM. Figure 2(a) exhibits the spin correla-

tions CS (d ) ≡ 1
Nd

∑
|i− j|=d

〈Ŝi ·Ŝ j 〉
S(S+1) , summed over all Nd pairs

of sites i and j (Cartesian coordinates) with distance d . It
shows AF magnetic order across the finite-size system at
low temperature, e.g., T � 0.12, which melts gradually as
temperature increases and effectively disappears above T ∼
0.49, in good agreement with recent experiments [17]. In
Fig. 2(b), we show |CS (d )| vs T at three fixed distances d =
1,

√
2, 2, where the XTRG and DQMC curves agree rather

well in the whole temperature range. Figure 2(c) shows the
finite-size spontaneous magnetization ms ≡ √

S(π, π ) vs T ,

where S(q) = 1
N (N−1)

∑′
i, j

〈Ŝi ·Ŝ j 〉
S(S+1) e

−iq·(i− j) is the spin structure
factor, with the summation �′ excluding on-site correlations

FIG. 3. Doped FHM with U = 7.2 and L = 6, 8. (a) The spin
correlation pattern CS (d ) versus δ, plotted at T = 0.06, where the
finite-size AF order fades out for δ � 0.15. The computed (b) spin
correlations |CS (d = 1)| and (c) staggered magnetization ms are
compared to the experimental data [17]. The XTRG data in (b) and
(c) are obtained via extrapolation 1/D∗ → 0 [53]. In the inset in (c),
we show how δ, computed by both XTRG and DQMC, varies with
T and on an L = 6 lattice and at a fixed chemical potential μ = 1.5.

(following the convention from experiments [17]). For all
sizes considered, ms grows quickly as T is decreased from
1 to 0.1. Notably, for both spin correlations and spontaneous
magnetization, the L = 8 XTRG data show good qualitative
agreement with the experimental measurements. This may be
ascribed to the similar system sizes and boundary conditions
[17].

Staggered magnetization upon hole doping. By tuning the
chemical potential μ < U/2, we dope holes into the system
and study how they affect the magnetic properties. Figure 3(a)
shows the spin correlation patterns for different dopings δ at
low T . The AF order clearly seen at low doping becomes
increasingly short ranged as δ increases, effectively reduced
to nearest neighbor (NN) only for δ � 0.15. The falloff of
AF order upon doping can also be observed in |CS (d )| with
a fixed distance d . In Fig. 3(b), we show the d = 1 NN
spin correlations, where the XTRG and DQMC agree well,
whenever the latter is available (for L = 6 lattice at T = 0.24
and T = 0.49). Remarkably, our L = 8 XTRG data again
show excellent agreement with the experiments, while the
sign problem hinders DQMC from reaching such system size
at T = 0.24 [53].

Figure 3(c) shows the staggered magnetization ms vs δ.
Again a rapid drop of the finite-size AF order at approximately
δ ∈ [0.1, 0.25] can be seen. Based on the agreements between
the XTRG (L = 8) and experimental results [Figs. 3(b) and
3(c)], we find the effective temperature of ultracold fermions
in the doped case is also around T/t = 0.24, consistent with
the experiments [17]. In our calculations we tune the dop-
ing δ by scanning the chemical potentials μ. In the inset of
Fig. 3(c), we show the doping δ vs T for a fixed μ = 1.5
(again the XTRG and DQMC results agree for T � 0.24 with
a tolerable sign problem [53] for DQMC). The behavior of
δ is nonmonotonic: it first increases as T is lowered [having
δ(T = ∞) = 0] and then slowly decreases due to hole repul-
sion [53].
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FIG. 4. Diagonal and NNN CS (d ) correlations versus δ for an
L × L system with U = 7.2 and L = 6, 8 for (a) d = √

2 and (b) d =
2. The inset in (b) zooms in on small CS (d ) values. The sign reversal
of Cd is in good agreement with experimental data [20].

Two-point spin correlations upon hole doping. In Fig. 4,
we analyze spin correlations between the diagonal (d = √

2)
and next-nearest-neighbor (d = 2, NNN) sites. We compare
them to recent measurements where the diagonal correlation
CS (

√
2) undergoes a sign reversal around δ � 0.2 [20]. Our

computations reproduce this fact [Fig. 4(a)], and the L = 8
XTRG results computed at T = 0.24 accurately reproduce the
experimental measurements. For the NNN correlations (d =
2) [Fig. 4(b)], we find that an analogous sign reversal, hardly
discernible in experiments, takes place around δ � 0.25.

The sign reversal can be explained within the geometric
string theory [58]. It signals the formation of a magnetic
polaron in the system. As shown in Fig. 1(c), the hole motion
through the system generates a string of misaligned spins.
The strong NN AF spin correlations are thus mixed with the
diagonal and even further correlations, e.g., CS (2), resulting
in even ferromagnetic clusters [red and blue shaded regions in
Fig. 1(c)]. Due to the interplay between the charge impurity
and magnetic background, the moving hole distorts the nearby
AF background [see the gray “cloud” in Fig. 1(b)], giving
rise to the magnetic polaron. Such exotic quasiparticles have
been imaged experimentally [22] for a doublon in the particle-
doped Fermi-Hubbard model and investigated numerically in
the context of the t-J model [59].

Hole-doublon bunching and hole-hole antibunching. A
quantum gas microscope can also access parity-projected
antimoment correlation functions defined in the charge
sector, ḡ2(d ) ≡ 1

Nd

∑
|i− j|=d

〈α̂i α̂ j 〉
〈α̂i〉〈α̂ j 〉 [13] and g̃2(d ) ≡

1
Nd

∑
|i− j|=d [ 1

δ2 (〈α̂iα̂ j〉 − 〈α̂i〉〈α̂ j〉) + 1] [20], with the

antimoment projector α̂i ≡ ĥi + d̂i [60]. Figures 5(a) and
5(b) show the computed antimoment correlation results.
Antimoments are bunching (ḡ2 > 1) at low doping yet
become antibunching (ḡ2 < 1) at large doping, in quantitative
agreement with an earlier 40K experiment [13] and a more
recent 6Li gas measurement [20]. The antibunching at large
doping is attributed to hole repulsion, and the bunching at low
doping is attributed to hole-doublon pairs [13].

Now antimoments contain contributions from both holes
and doublons, yet their individual contributions cannot be
distinguished via parity projection measurements [13,20].
XTRG, however, readily yields detailed correlators gll ′

2 (d ) ≡
1

Nd

∑
|i−j|=d

〈l̂i l̂ ′j〉
〈l̂i〉〈l̂ ′j 〉

, with l ∈ {h, d} and l̂i ∈ {ĥi, d̂i} for hole and

FIG. 5. Various g2 correlators for an 8 × 8 system with U = 7.2.
The antimoment correlators (a) ḡ2(d = 1) and (b) g̃2(d = 2) are
shown versus δ. Experimental data with d = 1, T/t � 1.0 [13] and
d = 2, T/t � 0.25 [20] are included for comparison. (c) and (d) The
two-site hole-doublon (ghd

2 ), hole-hole (ghh
2 ), and full-density (gnn

2 )
correlations for (c) d = 1 and (d) d = 2. The d = 1 hole-doublon
correlation ghd

2 is compared with experiment in (c), with a nice
agreement despite a separate U/t � 11.8 in experiment [25].

double-occupancy projectors, respectively. Later we also use
l = n for l̂ j = n̂ j , the local density.

Our results for the correlations ghh
2 (d ) and ghd

2 (d ) vs δ are
shown in Figs. 5(c) and 5(d). We always find anticorrelation
among holes (ghh

2 < 1) but strong bunching between a hole
and a doublon (ghd

2 > 1). As shown in Fig. 5(c), the computed
ghd

2 data show qualitative agreement with very recent experi-
mental measurements using the full-density-resolved bilayer
readout technique [25,61]. The change from bunching to anti-
bunching behaviors in antimoment correlations in Figs. 5(a)
and 5(b) can be ascribed to the fact that the hole-doublon
attraction is advantageous over the hole-hole repulsion at low
doping, while the latter dominates at relatively large doping
[53]. When comparing the charge correlations at d = 1 and 2
in Figs. 5(c) and 5(d), we find that the hole-doublon bunching
effect in ḡ2(1) is particularly strong at δ � 1, where the holes
mostly stem from NN hole-doublon pairs [see the illustration
in Fig. 1(b)]. The further-ranged ghd

2 (2) still shows the bunch-
ing effect yet gets much reduced.

The full density correlation gnn
2 (d ) is shown in Figs. 5(c)

and 5(d). We observe gnn
2 (d ) ≈ 1 at low doping for both

d = 1, 2, i.e., weak nonlocal charge correlations near half
filling, and a more pronounced anticorrelation gnn

2 (d ) < 1
as δ increases. Based on our XTRG results, we further
reveal that the longer-ranged gnn

2 (2) also exhibits anti-
correlations upon doping, suggesting the statistical Pauli
holes may be rather nonlocal, though decaying rapidly
spatially.

Conclusion and outlook. In this work, we generalized
XTRG [35,36] to the 2D FHM. Employing XTRG and
DQMC, we obtained reliable results for both half filling and
doped cases and found consistency with the ultracold-atom
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experiments. XTRG can explore a broader parameter space,
especially in the doped case, than DQMC, which is lim-
ited by a minus-sign problem. XTRG+DQMC constitutes a
state-of-the-art complimentary numerical setup for probing
the phase diagram of FHM, for SU(2) fermions here and
generally SU(N) fermions [62], thanks to the implementation
of non-Abelian symmetries [51]. Fundamental questions such
as the explanation of the Fermi arcs and the pseudogap phase
[63,64], with their implications for the breaking of Luttinger’s
theorem [65–68], and the role of topological order [69–71] are
open interesting topics to be studied by XTRG+DQMC and
optical lattices.
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