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Vestigial anyon condensation in kagome quantum spin liquids
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We construct a lattice model of topological order (kagome quantum spin liquids) and solve it with unbiased
quantum Monte Carlo simulations. A three-stage anyon condensation with two transitions from a Z, X Z,
topological order to a Z, topological order and eventually to a trivial symmetric phase is revealed. These results
provide concrete examples of phase transitions between topological orders in quantum magnets. The designed
quantum spin liquid model and its numerical solution offer a playground for further investigations on vestigial

anyon condensation.
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I. INTRODUCTION

Quantum spin liquids (QSLs) [1,2] are the embodiment
of topological orders and offer the ideal platform for sys-
tematical investigations of fractional anyonic excitations and
statistics therein [3,4]. While experimental progress on QSL
and topological orders is difficult and often hampered by
the complexity of materials and limitation of probing tech-
niques, such as how to remove the impurity scattering of
kagome antiferromagnets herbertsmithite and Zn-doped bar-
lowite [5—11], theoretical progress on both topological orders
and quantum phase transitions between them is fast and
promising. However, most theoretical studies on topological
phase transitions either stay at the algebraic level of anyon
condensation [12—-14] or are based on perturbed exactly solv-
able yet unrealistic models such as string-net models [15-22].
Realistic models and their fully quantum many-body solu-
tions of topological orders are rare, for obvious reasons: the
lack of imagination in model construction and the lack of
unbiased numerical methodology to handle these correlated
systems.

Here, we hit two birds with one stone. By designing a
lattice model of coupled kagome QSLs that involve only
two-spin interactions and solving it with large-scale quantum
Monte Carlo (QMC) simulations, amended with an analysis
on anyon condensation transitions, we found that our model
offers a three-stage anyon condensation process, of a vestigial
type [23], from a Z, X Z, topological order QSL to a Z,
topological order QSL and eventually to a trivial symmetric
phase. The difference in the two topological orders, dubbed
QSL-I and QSL-II, lies in their underlying anyon excita-
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tions, which we reveal with topological Wilson loops that
signal anyon condensation and dynamical spin spectra that
exhibit spinon confinement from QSL-I to QSL-II. The phase
transitions between the two QSLs and into other phases are
scrutinized, with the nature of the transition, first order versus
continuous, and the type of anyon condensation, symmetry
breaking, and universality class clarified from topologi-
cal field theory analysis and unbiased quantum many-body
numerics.

II. MODEL AND METHOD
A. Model

We design a lattice model that hosts a Z, X Z, kagome
QSL phase and solve it with large-scale QMC simulations. As
shown in Fig. 1(a), the model lives on a bilayer kagome lattice
with a six-site unit cell and Hamiltonian reads

H=—Jy) (S'S; +He)+ % > ( > Sf)z

(i) O €O
+7Y°8-8,, (1)
@J)y

where Jy is the ferromagnetic (FM) transverse nearest-
neighbor interaction in the kagome plane, J, is the antifer-
romagnetic longitudinal interactions between any two spins
in the hexagon of the kagome plane, and J is the inter-
layer antiferromagnetic Heisenberg interaction. Throughout
the paper, we set J; =1 as the energy unit. The first two
terms constitute the two-layered Balents-Fisher-Girvin (BFG)
model [24] and are coupled together by the last term. Since
the BFG model in each layer only has U(1) symmetry, even
if the interlayer interaction is SU(2) symmetric, the global
spin rotational symmetry of the system is still U(l). We
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FIG. 1. (a) Bilayer kagome lattice model with a six-site unit cell and lattice vectors r; . The nearest-neighbor ferromagnetic (FM) in-plane
transversal interaction J (black bonds), the hexagonal antiferromagnetic in-plane longitudinal interaction J, (gray-shaded hexagon), and the
interlaryer antiferromagnetic Heisenberg interaction J (blue bonds) are present. (b) Brillouin zone of the bilayer kagome lattice, with the
reciprocal space vectors b, and b, and the high-symmetry points I', M, and K. (c) QMC phase diagram of the model spanned by the axes of
J1/J, and J/J,. The two quantum spin liquids (QSL-I and QSL-II) and the FM and singlet phases are shown. Dashed lines are continuous phase
transitions and the solid line is the first-order phase transition. Symbols represent the places where the QMC parameter scans are performed.
(d) Schematic process of the vestigial anyon condensation from QSL-I to QSL-II and eventually to the trivial singlet phase. 1, e, m, and  are
the four anyons of Z, topological order and red X’s represent the confinement of the corresponding anyons at the phase transition.

stress that our bilayer BFG model is the first one that re-
alizes anyon condensation and that involves only two-spin
interaction.

B. Quantum Monte Carlo method

To investigate the ground-state phase diagram of Eq. (1),
we employ large-scale stochastic series expansion (SSE)
QMC simulations [25,26] with a plaquette update and general-
ized balance condition [27-29]. As for the spectral functions,
we employ the stochastic analytic continuation method
[30-39] to obtain the real frequency spin excitation spec-
tra from the QMC imaginary-time correlation functions. To
overcome the strong frustration of the system, we take the pla-
quette decomposition with five sites and 10 legs in a vortex of
the Hamiltonian, Eq. (1), which are shown in Fig. 2. Here, in
each bilayer hexagon, we consider both Cy and layer-inversion
symmetries of the lattice and make sure the five-site plaquette
unit fully covers all sites of the lattice and all the interactions
of the Hamiltonian. Then Eq. (1) is decomposed into diagonal
operators,

Hyig = C — i(s ST STST A+ S5SE)
<1

J. .
- Z(SjslZ + SiS5 + 8385,) —

J
(855, @)
13

where z; = 3, z; = 2, and z3 = 4 are prefactors to avoid over-
counting of bonds, and off-diagonal operators

J.
Hofi-diag = Z—i(S;rS,: +S5S7 + S8, +He)
I

J
+=(S}S7 +H.e.). 3)
13

After the decomposition, we implement the Monte Carlo
method with the general balance condition without detail bal-
ance [40] to obtain the solution of probability equations which
strongly reduces the unpreferred bounce update [28,41].

To benchmark the SSE-QMC code, we also implemented a
worm-type continuous-time QMC [42,43] for the same model.
As shown in Fig. 3, we used these two methods to calculate the
kinetic energy density E;/N as a function of J at Jx = 0.06
with system size L = 12 and inverse temperature SJ. = 2L
and obtained identical results. The more important reason
for implementing the worm QMC is that in the worm repre-
sentation, the transverse dynamical spin correlation function
Sfﬂ (q, 7) is easier to measure as the head (or tail) of the worm
is born with the “exact” imaginary time, whereas the longitu-
dinal dynamical spin correlation S7;(q, ) is easier to measure
with the SSE-QMC since it is a diagonal measurement. This is
how the data on dynamical spin correlation functions in Fig. 9
were obtained.
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FIG. 2. Plaquette decomposition with five sites and 10 legs in a
vortex.
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FIG. 3. The kinetic energy density E;/N as a function of J at
J+ = 0.06 with system size L = 12 and the inverse of temperature
BJ+ = 2L calculated with both the SSE-QMC and the worm QMC;
the results are identical.

III. MEASUREMENTS AND RESULTS

A. Kinetic energy

To obtain the ground-state phase diagram as shown in
Fig. 1(c), we first plot the kinetic energy density E;/N =
(— ZM) (Si*Sj’ + H.c.))/N, which is the expectation value of
the transverse part of the Hamiltonian, Eq. (1), with lattice
size N = 6 x L2, linear size L = 18, and inverse tempera-
ture § =2L/Jy. The results are shown in Fig. 4. We fix
different initial values of J+ and scan the value of J to mon-
itor how the E;/N values behave. At JL = 0.06 and 0.07,
where the single-layer kagome model is in a Z, QSL phase
as shown in previous work [44], the kinetic energy density
demonstrates a turning point around J = 0.01 and 0.022 in
a continuous manner. As shown schematically in Fig. 1(d),
this is the anyon condensation transition between the Z, X Z,
topological order QSL and the Z, topological order QSL.
With a further increase to J+ = 0.08 and 0.09, a discontinuous
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FIG. 4. The density of the kinetic energy E;/N as a function of
J for J. = 0.06, 0.07, 0.08, 0.09, 0.10, 0.11, and 0.12, respectively,
with system size L = 18 and inverse of temperature J. = 2L.

FIG. 5. The spin stiffness p, as a function of J for J. = 0.06,
0.07, 0.08, 0.09, 0.10, 0.11, and 0.12 with system size L = 18 and
inverse of temperature 8J. = 2L.

jump appears in the J scans and this is the first-order phase
transition from the FM phase to QSL-II in the phase diagram
in Fig. 1(c). The data on spin stiffness across these transi-
tions are shown in Fig. 5. It is interesting to observe that,
for the J1 = 0.06, 0.07, 0.08, and 0.09 curves, there exists
another turning point at larger values of J, which signifies
the second anyon condensation transition from QSL-II to
a trivial product state of interlayer singlets. This condensa-
tion transition is again schematically shown in Fig. 1(d). At
the larger values of J; = 0.10, 0.11, and 0.12, there exists
only one transition between the FM phase and the singlet
phase.

B. Spin stiffness

In order to construct the phase diagram of the model
shown in Fig. 1(c), we also compute other observables such as
the spin stiffness p; = WrzI + Wrz2 )/(4BJx) through winding
number fluctuations me [45], where r; 5 are the two lattice
directions. The results of the spin stiffness p; as a function of
J for different J1. values with system size L = 18 are shown
in Fig. 5. At J; = 0.06, p; = 0 for all values of J, meaning
that the system is always in the QSLs and the singlet phase,
without transverse long-range order. Only when J. = 0.08
and 0.09 is the spin stiffness finite at small J, which means
that the system is in the FM phase. However, when J increases
to the transition point, o, decreases sharply to 0, which reveals
the first-order transition from the FM phase to QSL-II. We
also consider the finite-size effect of this transition, as shown
in Fig. 6, and find that when L > 12, it is then large enough
to eliminate finite-size effects. Going back to Fig. 5, when
J+ > 0.10, the J scans again show a continuous drop; this is
the three-dimensional (3D) O(3) transition from the FM phase
to the singlet phase.

To illustrate the phase transition between QSL-I and the
FM phase as shown in Fig. 1(c), we also simulate the spin
stiffness as a function of Ji for J = 0.01 with system size
L =6, 12, 18, and 24, as shown in Fig. 7(a), and then take
the data collapse of the spin stiffness p,L° as a function of
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FIG. 6. The spin stiffness p, as a function of J for J. = 0.08 with
system size L = 6, 12, and 18 and inverse of temperature fJ. = 2L.

Jt — Ji)Ll/ Y with critical point J. = 0.0710(4) and expo-
nents z =1 and v = 0.67(1), as shown in Fig. 7(b). This
suggests that the transition from QSL-I to the FM phase is
a continuous phase transition of 3D XY* universality.
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FIG. 7. (a) The spin stiffness p, as a function of J. for J = 0.01
with system size L = 6, 12, 18, and 24 and inverse of temperature
BJ+ = 2L. (b) Data collapse of the spin stiftness p,L* as a function
of (Jx — JS)LYY.

C. Wilson loop

Next, we focus on the two QSLs and reveal the main
discovery of this work: vestigial anyon condensation. We
first recall that the single-layer BFG model [24] realizes Z,
topological order [36,44,46], with four types of anyons: The
trivial anyon 1, the bosonic spinon e, the vison spinon m, and
the fermionic spinon 1, which is obtained by fusing e and m.
The operators S* and S° in Hamiltonian (1) create/annihilate
a pair of e and m anyons, respectively. Hence, their spectra re-
flect the two-particle continuum of the corresponding anyons,
and the two operators can be used to construct Wilson-loop
operators, which we use below. Furthermore, ¢ and m anyons
both carry nontrivial symmetry fractionalization: e anyons
carry half-integer spins and m anyons carry a fractional-
ized crystalline momentum [47]. Consequently, condensing
either type of anyon leads to spontaneous breaking of the
corresponding symmetries: Condensing e (m) anyons gives a
continuous transition to an FM phase (a valence-bond-solid
phase) [36], respectively.

In our bilayer model, the QSL-I phase is smoothly con-
nected to the J = 0 limit where the two layers decouple.
Hence, this topological order is a stacking of two Z, topolog-
ical orders. We abuse the notation of the Deligne product X
to represent such stacking and denote this topological order
Z, X Z,. Anyon excitations in this topological order have
the form a X b, where a and b are anyons of the two layers,
respectively.

The second phase, QSL-II, is a single Z, topological order,
which can be obtained from the QSL-I phase by condensing
the anyon m X m, as shown in Fig. 1(d). This condensation
has two consequences: First, it means that the visons in the
two layers, m X 1 and 1 X m, are identified as the same type
of anyons and become the vison (m anyon) in the Z, topolog-
ical order. Second, the condensation of m X m confines the
spinons on each layer, which are denoted e X 1 and 1 Xe,
because they have nontrivial mutual braiding statistics with
m X m. On the other hand, the bound state e X e is still decon-
fined after the condensation and becomes the e anyon in the
Z, topological order. We note that unlike the spinons in the
QSL-I phase, the e anyon in the QSL-II phase does not carry
a fractional spin because it is a bound state of spinons in each
layer. As a result, a further condensation of e anyons brings
the QSL-II phase to a trivial paramagnetic phase without
topological order or spontaneous symmetry breaking, which
is the singlet phase in the phase diagram.

To reveal this theoretical understanding of the vestigial
anyon condensation process, we designed the measurement
of Wilson loops W, as shown in Fig. 8(a). Wa = ([ [;), 257)
measures the probability of moving an m X 1 anyon along
loop M on one of the kagome planes. The results are shown
in Fig. 8(c); in a semilog plot versus Liyop, (proportional to
the perimeter), the perimeter-law decay of Wy is present in
both QSL-I and QSL-II, indicating the deconfinement of such
anyons, and in the singlet and FM phases, the W, decays
via an area law, indicating the confinement of the anyons
[48].

To distinguish QSL-I and QSL-II, we further designed
another Wilson loop Wg shown in Fig. 8(b). It is a vison loop
that is halfway in the upper layer and halfway in the lower
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FIG. 8. Two types of Wilson loops Wy, as a function of the side
length of the loop Ly, (proportional to the perimeter of the encir-
cled region M) in different phases: QSL-I (J. = 0.06, J = 0.004),
QSL-II (J+ = 0.06, J = 0.20), singlet (J1+ = 0.06, J = 0.40), and
FM (Jx = 0.09,J = 0.06), repectively, with system size L = 18 and
inverse of temperature J. = 2L.

layer. As illustrated in Fig. 8(d), Wy only exhibits perimeter-
law decay in the QSL-II phase, indicating that the visons in
the two layers belong to the same type. In other words, the
vison in one layer is able to hop to another layer. In the
QSL-I phase, on the other hand, Wp decays via an area law,
indicating that visons in the two layers belong to different
types and they cannot hop from one layer to another. There-
fore, Wg does not form a closed Wilson loop in this phase.
The area-law decays are also present in the singlet and FM
phases.

With the establishment of the vestigial anyon condensation,
we now discuss the phase transitions. As mentioned above,
the continuous transition between QSL-I and QSL-II is driven
by the condensation of m X m. This transition reduces the
topological order from Z, X Z, to Z, but does not break
any global symmetry because m X m carries no symmetry
fractionalization. Therefore, it belongs to the (2 + 1)D Ising*
universality class, but since there is no local order parameter
one cannot perform finite-size scaling to extract the corre-
lation length exponent v. As for the specific exponent «, in
principle it can be deduced from the second derivative of the
energy curves but that would require a parameter grid much
finer than our current computational capability allows. In-
stead, the nature of this continuous transition is revealed from
the continuous curve of the kinetic energy density as shown
in Figs. 4 and 3 and the analysis of the anyon condensation

(a) QSL-I  x3 (b) QSL-II x6

J=10.004 J=02

x400

FIG. 9. S*(q, w) spectra along the high-symmetry path with
J+ =0.06. (a) J = 0.004 in QSL-IL, (b) J = 0.2 in QSL-II, and (c)
J = 0.4 in the singlet phase, with § = 600 and system size L = 18.
S$%(q, w) spectra along the high-symmetry path with the same pa-
rameter sets (d) in the QSL-I phase, (e) in the QSL-II phase, and (f)
in the singlet phase.

process in Fig. 1(d) (in that language, this can be deduced
from an exact duality mapping to the transverse-field Ising
model on the square lattice [49]). Similarly, the transition from
QSL-II to the singlet phase is driven by the condensation of
the e anyon and also belongs to the Ising® class. The continu-
ous transition from the QSL-I phase to the FM phase is driven
by the condensation of spinons (e X 1 and 1 X ¢), which elim-
inates the topological order completely and breaks the U(1)
global symmetry; this is denoted the 3D XY* transition and
we present data to illustrate this understanding (this has been
revealed in previous studies [28,50,51]) in Fig. 7, in which we
performed finite-size scaling of the spin stiffness across the
transition, and the data collapse nicely reveals the correlation
length exponent of v = 0.67 for this transition. The transition
from the QSL-II phase to the FM phase, however, is first
order, consistent with the fact that there is no anyon in the
QSL-II phase that carries a fractional U(1) charge. Finally, the
continuous transition between the singlet and the FM phase is
of the Landau type and belongs to the 3D XY universality class
[52,53].

D. Spectra

Finally, we illustrate the dynamical signature of the ves-
tigial anyon condensation via the spin spectra that can
be probed from neutron scattering. As shown in Fig. 9,
we compute the dynamical spin-spin correlation functions
Sp(d. ) = (874 o (1)Sg ) and SZy(q. 7) = (8% 4 ()SE ).
where q moves along the high-symmetry path in the Brillouin
zone [Fig. 1(b)] and «, B stand for the site index of the six-site
unit cell. From the stochastic analytic continuation process
and by taking the trace of the site indices, we obtain the
spectra S*(q, w) and S¥(q, w), with the former probing the
spinon pair and the later probing the vison pair. The spec-
tra in Figs. 9(a) and 9(d) in the QSL-I phase are consistent
with those in previous works [36,46] and the spinon and
vison continua are clearly visible, with the former acquiring
a larger gap and wider spread in the frequency and the latter
acquiring a much smaller gap and signature of translational
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symmetry fractionalization (a finite-momentum minimum at
point M). Going into the QSL-II phase in Figs. 9(b) and
9(e), due to the confinement of the spinon, i.e., condensation
of m X m, the Si(q, ) loses its continuum and becomes a
sharp triplon band with a big gap, above which there are
multitriplon bands. On the other hand, since the visons in
the two layers are now identical, the S%°(q, w) can still detect
their continua as shown in Fig. 9(e), with an even smaller
gap and spread in energy than those in Fig. 9(d). With a
further increase in J to the singlet phase, both spectra are now
sharp and present the typical S = 1 triplon dispersion in an
anisotropic singlet-product paramagnet. All of Fig. 9 therefore
demonstrates the dynamical signature of the vestigial anyon
condensation.

IV. DISCUSSION

In this work, we construct a concrete coupled kagome
QSL model for anyon condensation and solve it with un-
biased QMC numerics. Our vestigial anyon condensation
process from QSL-I to QSL-II and eventually to the trivial
singlet phase is fully consistent with the topological field
theory analysis, and our dynamics spectra provide the ex-
perimental relevant signature for its detection. This work

paves the way for investigation of anyon condensation in
more realistic quantum many-body models and eventually real
materials.
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