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Abstract: The finer resolution observation and monitoring of the global land cover  

(FROM-GLC) product makes it the first 30 m resolution global land cover product from 

which one can extract a global water mask. However, two major types of misclassification 

exist with this product due to spectral similarity and spectral mixing. Mountain and cloud 

shadows are often incorrectly classified as water since they both have very low reflectance, 

while more water pixels at the boundaries of water bodies tend to be misclassified as land. 

In this paper, we aim to improve the accuracy of the 30 m FROM-GLC water mask by 

addressing those two types of errors. For the first, we adopt an object-based method by 

computing the topographical feature, spectral feature, and geometrical relation with cloud 

for every water object in the FROM-GLC water mask, and set specific rules to determine 

whether a water object is misclassified. For the second, we perform a local spectral unmixing 

using a two-endmember linear mixing model for each pixel falling in the water-land 

boundary zone that is 8-neighborhood connected to water-land boundary pixels. Those pixels 

with big enough water fractions are determined as water. The procedure is automatic. 

Experimental results show that the total area of inland water has been decreased by 15.83% 

in the new global water mask compared with the FROM-GLC water mask. Specifically, 
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more than 30% of the FROM-GLC water objects have been relabeled as shadows, and nearly 

8% of land pixels in the water-land boundary zone have been relabeled as water, whereas, 

on the contrary, fewer than 2% of water pixels in the same zone have been relabeled as land. 

As a result, both the user’s accuracy and Kappa coefficient of the new water mask  

(UA = 88.39%, Kappa = 0.87) have been substantially increased compared with those of the 

FROM-GLC product (UA = 81.97%, Kappa = 0.81). 

Keywords: water; global; FROM-GLC; object-based method; local linear unmixing 

 

1. Introduction 

Land surface water cover information is critical to studies such as climate change, flood monitoring 

and crop yield prediction at the global scale [1,2]. The recent advancement of remote sensing technology 

makes it possible to have sufficient satellite data that provide continuous coverage of the Earth’s surface 

with finer spatial resolution and quality. Some of these data have been used to automatically classify 

global land cover at 30 m resolution [3]. However, the quality of water cover in general purpose  

land-cover classification using remotely sensed data is often contaminated by cloud shadows and land 

background of shallow water surfaces. Therefore, it is necessary to improve existing water mask 

products using alternative approaches. 

There exists a number of datasets of global water masks such as the Global Self-consistent Hierarchical, 

High-resolution Geography (GSHHG) [4], the Global Lakes and Wetlands Database (GLWD) [5], the 

Shuttle Radar Topography Mission (SRTM) Water Body Detection (SWBD), the Boston University  

land–sea Mask [6], and the MOD44W [7]. In addition, general purpose global land-cover maps such as IGBP 

DISCover [8], GLC2000 [9], and GLobCover [10] also contain water layers. The SWBD derived from the 

SRTM digital elevation model (DEM) has a resolution of 90 m, but it only covers the Earth’s surface between 

56°S and 60°N. The MOD44W is a 250 m spatial resolution product derived from the SWBD in combination 

with the MODIS 250 m data [7]. In summary, except for the 90 m and 250 m products, most of the above 

global water masks have a resolution coarser than 500 m. 

However, as more Landsat-level data become freely accessible, it is natural for researchers to consider 

adopting these finer resolution data for global mapping [3]. In 2011, the first 30 m resolution global 

land-cover maps using Landsat Thematic Mapper (TM) and Enhanced Thematic mapper Plus (ETM+) 

data were developed, and this database is known as the Finer Resolution Observation and Monitoring of 

Global Land Cover (FROM-GLC) [3]. The images used to produce FROM-GLC were primarily 

acquired around 2010. In 2014, global water cover maps for two base years, 2000 and 2010 were derived 

using the Landsat TM and China’s HJ-1 satellite images [11]. However, this product is based on the 

classification of image segments whose sizes are greater than 4 × 4 pixels in area or 3 pixels in width. 

Verpoorter et al. developed an approach called the GWEM (GeoCoverTM Water bodies Extraction 

Method) to produce a circa 2000 GLObal Water Bodies database (GLOWABO) [12,13] from Landsat 

data. In 2015, Feng et al. produced a global, circa-2000 inland surface water dataset (GIW) using Landsat 

ETM+ data with a topographic-spectral classification algorithm [14]. In both methods, a Digital 

Elevation Model (DEM) was used to reduce the misclassification between mountain shadow and water. 
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However, they are pixel-based methods that require a highly precise DEM. If the DEM is not well  

geo-referenced or has a coarser resolution, some water pixels in mountainous areas will be missed while 

some other pixels cast by mountain shadows will still be misclassified as water. In addition, the issue of 

spectral mixing over water boundary areas is usually ignored in existing water extraction procedures.  

From the above, it can be seen that the easiest way to obtain a more accurate and more up-to-date 

global surface water mask is to refine the FROM-GLC that employed circa 2010 satellite data. This is 

the objective of this paper. FROM-GLC includes 11 level 1 classes and 29 level 2 classes. Among them, 

water body is a level 1 class that encompasses four level 2 sub-categories, the lake (61), reservoir/pond 

(62), river (63) and ocean (64). Four classifiers were employed, including the maximum likelihood 

classifier (MLC), J4.8 decision tree classifier, Random Forest (RF) classifier and support vector machine 

(SVM) classifier [3]. Among these four, SVM produced the highest overall classification accuracy. In 

this article, we will focus on the water mask produced by the SVM.  

Table 1. Details of the problems in FROM-GLC water mask. 

Description Location 
Acquisition 

Date/Image Size 
TM Image 

FROM-GLC 

Image 

Problem 1: 

Commission errors 

in the mountain 

shadow area 

Alaska, 

USA, 

North America. 

Lat: 62.66° 

Lon: −152.16° 

Date:  

27 September 2011 

Size:  

400 × 400 
  

Problem 2： 

Commission errors 

in the cloud shadow 

area 

Maluku, Indonesia, 

Asia. 

Lat: −3.03° 

Lon: 128.72° 

Date:  

30 January 2008 

Size:  

400 × 400 
  

Problem 3: 

Spectral mixing at 

the boundary area 

Itapua, Paraguay, 

South America. 

Lat: −27.36° 

Lon: −56.32° 

Date:  

7 February 2010 

Size:  

50 × 50 
  

FROM-GLC legend:  

 Cropland      Forest      Grass      Shrub      Water      Impervious      Bareland      

 Snow/Ice      Cloud 

When looking deeply into the FROM-GLC water mask, we find that three major problems exist 

(Table 1): (1) The SVM mistakenly classifies mountain shadows as water. Although topographic 

correction was performed for more than 6700 scenes with SRTM DEM, some topographic effects in 

steep mountain regions may still exist. Moreover, since SRTM DEM only covers the Earth’s surface 

between 56°S and 60°N, more than 1600 scenes located at higher latitudes have not undergone 

topographical correction. In addition, due to the inconsistent formats, 519 scenes over China, which were 

collected from the Chinese Satellite Ground Station, have not undergone topographical correction either. 
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In these images, the reflectance of mountain shadow is much lower than the reflectance of the rest of the 

land area. As a result, mountain shadows are easily misclassified as water by the SVM. (2) Cloud 

shadows are also easily misclassified as water. Based on FROM-GLC results, more than 95% of the 

images have clouds, although only 0.81% of the scenes have more than 30% of cloud cover. Similar to 

mountain shadows, cloud shadows may be classified as water by the SVM. (3) The SVM as a hard 

classifier may fail to deal with the spectral mixing problem in water-land mixing areas. Therefore, in 

this article, we report our efforts to solve these three problems in the FROM-GLC water mask product, 

so as to build a more reliable 30 m resolution water mask for future use. It should be noted that since 

FROM-GLC is a single-date product, our new water mask is also a static water product. 

2. Data Preparation 

Besides the FROM-GLC product, additional data used for this study include the following: 

1. Landsat TM/ETM+ atmosphere corrected data at 30 m resolution for water spectral feature 

extraction and water fraction calculation. Scenes from 56°S to 60°N except for China have had 

topographical correction to alleviate the topographical effect; 

2. ASTER 30 m elevation data and SRTM 90 m elevation data for slope calculation. The ASTER 

DEM is used as supplementary data for areas from 60°N to 80°N where SRTM DEM does  

not cover; 

3. A global validation sample set for validation analysis, which contains 37,711 validation sample 

units, among which 1555 are in the water category. These were initially designed for validating  

FROM-GLC. However, the dataset has been carefully improved through several rounds of 

interpretation and verification, supplemented by MODIS enhanced vegetation index (EVI) time 

series data and high-resolution imagery from Google Earth [15].  

3. Method 

3.1. Spectral and Topographical Characteristics of Water and Land 

3.1.1. Spectral Characteristics 

According to the global land-cover classification system designed in FROM-GLC, the Earth surface 

generally consists of vegetation (including crop, forest, grass, and shrub), impervious, bare land, 

snow/ice and water [3]. One hundred sample units were randomly selected from the validation sample 

set for each of the five land-cover types [15]. The spectral signatures of the five land-cover types are 

plotted in Figure 1a. Vegetation has unique spectral features with a green reflectance peak and “red 

edge” in the visible and near infrared (VNIR) range, while impervious surfaces and bareland follow a 

fairly flat reflectance pattern, with higher reflectance at the short wave infrared (SWIR) wavelength 

range. Both snow/ice and water have higher reflectance at the visible (VIS) bands than at the near 

infrared (NIR) and SWIR ranges. However, the reflectance of snow/ice at VIS is much higher than that 

of water and other objects, which is why it usually appears bright white in true-color images. Overall, 

water has the lowest reflectance, especially in the NIR and SWIR bands, where the reflectance of water 

is close to zero. Therefore, water bodies typically appear dark in the images.  
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Figure 1. Spectral signatures (mean ± standard deviation) of water, vegetation, impervious, 

bareland, snow/ice, mountain shadow and cloud shadow. Signatures of each type in (a) were 

derived from 100 units randomly selected from the validation sample. Signatures for (1) mountain 

shadow covering bareland, (2) mountain shadow covering snow/ice, and (3) cloud shadow 

covering vegetation in (b) were each derived from 100 pixels manually selected from 

Landsat scenes located at (1) path = 155, row = 037, date = 2009.09.06; (2) path = 001, 

row = 008, date = 2006.7.21, and (3) path = 001, row = 058, date = 2008.09.28, respectively. 

The shadows also have a relatively low reflectance as has that of water. In a Landsat image, there are 

two major types of shadow, mountain and cloud shadow. To show the spectral overlaps between water 

and shadow, we manually selected 100 pixels on each of three Landsat images for mountain shadows 

covering bareland and snow/ice, and cloud shadows covering vegetation. The spectral signatures are 

plotted in Figure 1b. One can find that both water and shadow have very low reflectance in all six bands 

with strong spectral overlaps (the only exception is for the reflectance of shadow over bareland in the 

two SWIR bands). As a result, there is a high probability that many classifiers misclassify them as water. 

As demonstrated in the FROM-GLC water mask, many pixels with mountain and cloud shadows have 

been incorrectly classified as water.  

However, comparing the mean spectra of shadows with those of the corresponding land-cover types 

in Figure 1a, we can see that shadows can preserve the spectral shapes of the corresponding ground 

objects. For example, the cloud shadow pixels covering vegetation also have the green peak and “red 

edge” in the VNIR range. This spectral feature of shadow is helpful to distinguish it from water.  

3.1.2. Topographical Characteristics 

According to a report on the geographical characteristics of China’s wetland for 2000, wetlands with 

slopes less than 3° and 8° occupy 93.85% and 99.17% of the total wetland areas, respectively [16]. In 

this report, wetland includes river, lake, reservoir/pond and urban/entertainment water. That is to say, 

water bodies are usually distributed on flat terrain. Many researchers have tried to apply topographic 

slope data to eliminate the shadow at mountainous regions on different types of images [11,17,18]. Typically, 

they create a slope mask by setting a proper threshold to filter out potential mountain shadows before water 

mapping. Although the method is simple, their experimental results indicate that it is effective in removing 

mountain shadows whose spectral characteristics are difficult to distinguish from those of water. 

(a) (b) 
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Next, we will first discuss the object-based algorithm for reduction of misclassification between water 

and shadow. Both spectral and topographical differences between water and shadow are utilized to find 

out shadows misclassified as waters. Then, a local unmixing method is introduced to solve the spectral 

mixing problem at the water-land boundary. 

3.2. Object-Based Method to Remove Misclassification in Mountain and Cloud Shadows  

3.2.1. Mountain Shadow Object 

FROM-GLC is the result of a per-pixel classifier using six bands only, without incorporating any 

spatial context. However, the water body is usually spatially compact, and pixels within a water body 

are relatively homogeneous both spectrally and topographically. Thus, water objects are directly 

extracted from the classification results of FROM-GLC instead of performing image segmentation as 

done elsewhere [19]. On the other hand, other related objects, such as cloud, snow/ice, and shadow also 

have similar features. Therefore, in this study, we first adopt the object-based method to improve the 

accuracy of the FROM-GLC water mask. 

The basic idea is that by calculating the spectral and topographical statistics of each water object from 

the FROM-GLC water mask, and the geometric relationship between a water object with a cloud object, 

we can identify whether a water object comes from a mountain or cloud shadow. A mountain shadow 

that is misclassified as water, usually has a greater slope than that of a real water object. Therefore, we 

can compute the probability of an object located on a mountain slope as follows: 

𝑝w_topo = 𝑛w_topo/𝑁 (1) 

where N is the total number of pixels in a water object, and nw_topo is the number of pixels with a slope 

≥Tw_topo
 (Tw_topo is a threshold). According to findings in other studies [11,16,17], we set Tw_topo to 8°. 

However, the SRTM DEM has a coarser spatial resolution (90-m) than FROM-GLC, so some small 

water bodies in mountainous areas may also have a large pw_topo. As a result, these water objects may be 

filtered out by the threshold method using pw_topo only. From Figure 1, we can find that the biggest 

spectral feature of water versus vegetation, impervious and bareland is that it has higher reflectances in 

the VIS bands than in the NIR and SWIR bands. Therefore, we define a simple water index (WI) by: 

WI = {
0,   if max {band1, band2, band3} ≤ max {band4, band5 band7}
1,   if max {band1, band2, band3} > max {band4, band5 band7} 

 (2) 

where band1–5, 7 refer to the 1st–5th, 7th band of the TM/ETM+ image. Compared to other water 

indices, such as MNDWI [20] and AWEI [21], WI is more straightforward, as it requires no additional 

threshold parameter, and has lower computational cost. Next, we can construct the probability of an area 

identified as water in FROM-GLC actually being water using spectral features as follows: 

𝑝w_spec = 𝑛w_spec/𝑁 (3) 

where nw_spec is the number of pixels with WI = 1. Although some water pixels with vegetation may have 

WI = 0, most real water objects will have high pw_spec. Mountain shadows, whether covering vegetation 

or bare land, will have low pw_spec.  
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However, like other water indices, such as MNDWI and AWEI, WI in Equation (2) is not able to distinguish 

water from snow/ice [22]. As shown in Figure 1, snow/ice and the mountain shadow pixels covering snow/ice 

also have higher reflectance in VIS, so their WIs will also be equal to 1. Since the reflectance of mountain 

shadows covering snow/ice is also low (see Figure 1b), the SVM classifier will misclassify them as water. As 

a result, the misclassified snow/ice shadow object will also have high pw_spec. Therefore, for misclassified 

mountain shadows covering snow/ice, pw_spec does not work, and pw_topo is the only effective parameter to 

distinguish them from water. To judge whether a shadow object is covered by snow/ice, we first dilate the 

FROM-GLC snow/ice mask with 100 pixels in all directions to generate a potential snow/ice shadow layer. 

Then, we define another probability to determine whether an object is a snow/ice shadow by 

𝑝w_snow/ice = 𝑛w_snow/ice /𝑁 (4) 

where nw_snow/ice is the number of pixels located in the potential snow/ice shadow area.  

Taking these together, if a water object from the FROM-GLC water mask satisfies either of the 

following conditions, it will be modified as a mountain shadow. The first condition is to remove mountain 

shadows that cover snow/ice, while the second is to remove those covering bare land or vegetation. 

(1) 𝑝w_snow/ice ≥ 𝑇snow/ice and 𝑝w_topo > 𝑇topo  (5) 

(2) 𝑝w_snow/ice < 𝑇snow/ice and 𝑝w_topo > Ttopo and 𝑝w_spec < 𝑇spec (6) 

3.2.2. Cloud Shadow Object 

Cloud shadow, followed by a cloud object in the FROM-GLC product, is often misclassified as water. 

One possible way to identify cloud shadow is to predict its location based on its geometric relationship with 

the cloud as long as the view angle of the satellite sensor, the solar zenith and azimuth angle, and the relative 

height of the cloud are known. The last parameter, cloud height, is unknown in most cases, and can range 

from 200–12,000 m [23]. Zhu et al. proposed a method to calculate this parameter by iterating cloud base 

height from a predicted minimum to maximum height [23]. However, that is time consuming. For simplicity, 

we first predict the projected direction of the cloud shadow using the view angle of the sensor, the solar zenith 

and azimuth angle [24]; then, calculate the potential shadow layer by moving the cloud object along a 

projected direction from 1–100 pixels. This range is empirically determined and can cover most of the cases. 

All pixels that intersect with the moving cloud object are considered as the potential cloud shadow area. 

Similarly, we define a probability to determine an object being cloud shadow by 

 𝑝w_cloudshadow  = 𝑛w_cloudshadow /𝑁 (7) 

where nw_cloudshadow is the number of pixels located in the potential cloud shadow area. Since the potential 

cloud shadow area is larger than the actual cloud shadow, some real water bodies may also fall into this area. 

Therefore, the spectral information is added here to pick out the real cloud shadows in the potential cloud 

shadow region. Any water object that satisfies the following condition will be relabeled as cloud shadow: 

 𝑝w_cloudshadow  > 𝑇cloudshadow and 𝑝w_spec < 𝑇spec (8) 

Ttopo, Tcloudshadow and Tspec, are manually set for all images. By visually comparing FROM-GLC with 

the Google Earth image for several scenes, we set Ttopo = 0.75, Tspec = 0.6 and Tcloudshadow = 0.9. Details 

on the object-based method to remove mountain and cloud shadows are shown in Figure 2. The right 
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side shows the steps to remove misclassified mountain shadows while the left shows the steps to remove 

misclassified cloud shadows. The two results are combined to derive the potential water mask. Next, 

local unmixing is applied to solve the spectral mixing problem. 

 

Figure 2. Flow chart of object-based method for removing misclassification in mountain and 

cloud shadow. Water objects are derived from the FROM-GLC water mask. 

3.3. Solving the Spectral Mixing Problem Using Local Spectral Unmixing 

Owing to limited spatial resolution, a large number of mixed pixels exist, especially at the boundaries 

of different land covers. Many studies show that water bodies are highly dynamic, and a large number 

of mixed pixels exist, particularly near the water boundaries [25–27]. The FROM-GLC water mask is 

derived from a hard classifier, which assigns each pixel to one of the defined land-cover types. Therefore, 

water-land mixed pixels exist everywhere along water boundaries in the potential water mask  

(Figure 2). Here, we reinvestigate the water-land mixing phenomena by soft classification techniques 

based on fractions of primitive land cover types along the boundary mixed pixels. Their fractions are 

estimated with a spectral unmixing technique. As illustrated in Figure 3a, a water-land mixing model 

assumes that a mixed pixel is a linear combination of water and land endmembers weighted by their 

corresponding fractions, which satisfy the abundance sum-to-one constraint (ASC) and abundance 

nonnegative constraint (ANC) [28], 

𝐫 = cw𝐞w + cL𝐞L (9) 

𝑐w + 𝑐L = 1
 

(10) 

𝑐w, 𝑐L ≥ 0
 

(11) 

pw_spec

TM 6 bands 

image

FROMGLC Snow/Ice 

layer

Expanded Snow/Ice layer

pw_snow/ice

DEM: SRTM, 

ASTER

Slope layer

pw_topo

FROMGLC 

Cloud layer

Potential cloud 

shadow layer

pw_cloudshadow

pw_cloudshadow>0.9

 and pw_spec <0.6
(pw_snow/ice≥ 0.9 and

 pw_topo>0.75) or (pw_snow/ice<0.9 

and  pw_topo>0.75

andpw_spec<0.6)

Potential water mask

WI layer

Water 

object

YES YES

Cloud 

shadow
Mountain 

shadow

Relabel  as shadow
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where r is the spectrum of the mixed pixel, eW and eL correspond to the water and land endmembers, 

and cW and cL represent the fractions of water and land endmembers.  

The endmembers can be extracted from the Landsat images using the common endmember extraction 

algorithms [28–33]. However, these algorithms often assume that all pixels in the image are constructed 

by the same mixing model. Therefore, in most cases, only one water endmember will be extracted. 

However, different water types may have different optical properties. For example, turbid water 

generally has higher reflectance in VIS bands [22]. An unmixing error could be introduced if all the 

water-land mixed pixels use only one water endmember in Equation (9). Therefore, for each mixed pixel, 

the nearest pure water and land pixels are selected as endmembers. The specific steps are as follows: 

first, the water-land mixing area in the potential water mask is searched. Here, we define pixels that are  

8-neigherhood connected to the water-land boundary as the mixing area (green pixels in Figure 3a). 

Second, water and land endmembers are searched within a 5 × 5 pixel window. To ensure that water and 

land endmembers are pure pixels, we select the lowest and the highest reflectance for water and land 

endmembers, respectively. Next, spectral unmixing is performed with the ASC constraint. Though fully 

constrained spectral unmixing [34] can obtain fractions strictly in [0,1], it is very time consuming and 

the local optima problem exists. Thus, we only perform the ASC spectral unmixing in this study. Finally, 

pixels with a water fraction greater than 50% are labeled as water. Details for the unmixing method are 

shown in Figure 3b. The procedure follows the object-based analysis in Section 3.2.  

Finally, inland water is distinguished from sea water by applying the Global Self-consistent 

Hierarchical High-resolution Shorelines (GSHHS) [4] version 2.3.4, which is distributed in shapefile 

format in five different resolutions. The shoreline polygons at full resolution are used here. The algorithm 

was implemented using the Interactive Digital Languages (IDL). Some procedures that come with the 

Environment for Visualizing Images (ENVI) software were also utilized, such as the file input/output, 

map projection conversion, and image mosaicing.  

   

Figure 3. Illustration (a) and flow chat (b) of water local unmixing. 

  

mixing area

land

water

water-land
boundary

(k,l)

Potential water  mask

Local unmixing

Water fraction

cw ≥ 0.5

YES

Final water mask

Mixing area

(a) (b) 
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4. Results and Validation 

4.1. Results from the Object-Based Method 

The proposed object-based method is applied to the FROM-GLC water mask to modify the 

misclassified mountain- or cloud-shadow objects. An example is shown in Figure 4. From the false color 

image, it can be found that water areas (in blue in Figure 4b) in the FROM-GLC are actually mountain 

shadows. Since snow/ice exists in this region, Equation (5) is utilized to pick out those misclassified 

water objects. The result is presented in Figure 4c, where the modified water objects are coloured in red. 

By utilizing Equation (5), 99.93% of the misclassified water pixels in this area have been corrected. 

   

Figure 4. (a) False color composite image (R: band4, G: band3, B: band2; path: 148, row: 31, 

date: 23 October 2009); (b) classification result of FROM-GLC (blue: water, cyan: snow/ice); 

(c) result of the object-based method (red: water object relabeled as mountain shadow). 

As mentioned in Section 3.2, owing to the coarse spatial resolution of SRTM, small areas of water 

between mountains, may also have a high pw_topo. For instance, the pw_topo of the lake in Figure 5 is 0.77, 

greater than the threshold value for Ttopo. Clearly, this is a snow/ice free region, so if only pw_topo ≥ Ttopo 

(0.75) is used, this lake object would be mistakenly marked as mountain shadow. However, the pw_spec 

of the lake is 0.62, greater than Tspec (0.6). That is to say, if the spectral constraint condition,  

pw_spec ≥ Tspec, is added, this lake object will be correctly preserved (Figure 5c). Therefore, to distinguish 

water from mountain shadow in areas without snow/ice, neither topographical nor spectral constraint 

conditions should be neglected. However, small water objects cut from the main lake in FROM-GLC, 

were mistakenly recognized as mountain shadows by our method (Figure 5c). This is because the 

majority of pixels in these small lakes are spectrally mixed with the neighboring land. Therefore, they 

have low values of pw_spec, and our method fails in this case.  

Similarly, using both spatial and spectral constraints as Equation (8), most cloud shadows that have 

been incorrectly classified into water in FROM-GLC can be recognized by our method (Figure 6). 

However, if a lake is covered by aquatic plants or thin cloud, its pixels become mixed, where WI may 

be 0. For example, the lake marked by an arrow in Figure 6a is covered by thin clouds. The spectral 

shape in Figure 6d indicates that it contains vegetation. As a result, the pw_spec of this lake is low (=0.02). 

Our method also fails in this case. 

(a) (b) (c) 
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Figure 5. (a) False color composite image (R: band4, G: band3, B: band2; path: 120,  

row: 39, date: 10 April 2009); (b) classification result of FROM-GLC (blue: water); (c) result 

of the object-based method (red: water object relabeled as mountain shadow, blue: water  

object unchanged). 

   

Figure 6. Cont. 

(a) 

(b) (c) 

(a) (b) (c) 

small water object, pw_spec=0.10 

small water object, pw_spec=0 
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Figure 6. (a) False color composite image (R: band4, G: band3, B: band2; path: 121,  

row: 16, date: 23 June 2010); (b) classification result of FROM-GLC (blue: water, white: 

cloud); (c) result of the object-based method (red: water object relabeled as cloud shadow, 

blue: water object unchanged); (d) spectrum for a pixel in the lake marked by an arrow. 

Next, we compute the percentage of water objects in FROM_GLC being globally modified as 

mountain and cloud shadows. If a water object only satisfies condition Equation (5) or (6), it is relabeled 

as mountain shadow, and the corresponding percentage is defined as pW-MS in Equation (12). On the 

other hand, if the water object only satisfies Equation (8), it is relabeled as cloud shadow, and the 

percentage is defined as pW-CS in Equation (13). However, mountain shadow and cloud shadow are not 

mutually exclusive, because clouds can appear in mountainous areas. Therefore, the water object that 

satisfies both Equations (5) and (8) or both Equations (6) and (8) is relabeled as mountain/cloud shadow, 

and the percentage is defined as pW-MCS by Equation (14). The result is tabulated in Table 2, and it can 

be seen that more than a quarter of the global water objects (pW-MS = 25.62%) have been modified to 

mountain shadows by our method. For clarity, we plot the distribution of these three modifications in 

Figure 7. It can be seen that most water-to-mountain-shadow modifications happen in China and in the 

alpine regions and also in high-latitude mountain regions. Images taken in the alpine regions have 

undergone topographical correction whereas those in China and the high latitude areas have not. 

Therefore, it can be speculated that topographical correction can be effective to exclude confusion with 

mountain shadow in water mapping at the sub-alpine regions, but may not work well at the alpine 

regions. The reason why the topographical correction algorithm fails over alpine regions may be due to 

the coarser resolution of the DEM data. 

Comparatively, the percentage of water objects relabeled as cloud shadow is much smaller. This can 

be attributed to the fact that when producing FROM-GLC, the authors tried to choose images with as 

little cloud as possible. From Figure 4, it can be seen that the modifications are mostly located in Russia, 

Northern European, Northern Canada and Amazon region. 2.51% of water objects have been modified 

as both mountain and cloud shadows. Except for the case where cloud shadows actually lie on mountain 

slopes, another possibility is snow/ice on mountain peaks misclassified as clouds in FROM-GLC, as 

shown in Figure 4b. To sum up, a total of 33.65% of the global water objects have been revised as 

shadows by our object-based method. 

(d) 
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 𝑝w−MS =
Number of water objects satisfying Equation (5)or (6)

Number of water objects
× 100% 

 

(12) 

 𝑝w−CS =
Number of water objects satisfying Equation (8)

Number of water objects
× 100% 

 

(13) 

 𝑝w−MCS

=
Number of water objects satisfying both Equations (5)and (8)or (6)and (8)

Number of water objects

× 100% 
 

(14) 

 

Figure 7. Distribution of FROM-GLC water objects relabeled as mountain shadow (red), 

cloud shadow (green) and mountain/cloud shadow (blue). 

Table 2. The percentage of water objects relabeled as mountain, cloud,  

mountain/cloud shadows. 

The Water Objects Relabeled As Percentage (%) 

Mountain shadow, pW-MS 25.62% 

Cloud shadow, pW-CS 5.52% 

Mountain/cloud shadow, pW-MCS 2.51% 

Total 33.65% 

4.2. Results from Local Spectral Unmixing 

After we derive the potentional water layer using the proposed object-based method, local spectral 

umixing is performed to derive the water fraction at the water-land boundary areas. Unlike the above 

object-based method, local unmixing is a per-pixel procedure. Since the ANC is not applied, the water 
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fraction may have values that are smaller than 0 or greater than 1. For simplicity, corresponding zero 

and one forcing are performed to make all water fractions fall into the 0–1 range. FROM-GLC water 

pixels in the boundary area with fractions smaller than 0.5 will be modified as land, while land pixels 

with greater than 0.5 water fractions will be modified as water. From Figure 8d, we can see that compared 

with the FROM-GLC water mask (red line), the new water mask (green line) has expanded the water 

area by including those mixed pixels with greater water fractions. 

 

Figure 8. (a) False color composite image (R: band4, G: band3, B: band2; path: 224, row: 

77, date: 25 May 2002) with the FROM-GLC water layer (black lines), (b) water fraction 

with FROM-GLC water layer (red lines), (c) water fraction with our result (green lines), and 

(d) water fractions with both FROM-GLC and our result. 

For a comprehensive investigation, we calculate the percentage of relabeled water and land 

pixels according to Equations (15) and (16), and note them as pW-L and pL-W, respectively. The 

results are listed in Table 3. Close to 8% of land pixels in water boundary areas have been changed 

to the water class, while fewer than 2% of water pixels have been changed. These statistical results 

agree with the example in Figure 8. This may be due to the fact that there are more land training 

samples than water ones. 

 𝑝w−L =
Number of water pixels relabeled as land

Number of water pixels in the mixing area
× 100% 

 

(15) 

 𝑝L−w =
Number of land pixels relabeled as water

Number of land pixels in the mixing area
× 100% (16) 

Table 3. The percentage of water pixels relabeled as land to the total water pixels in  

water-land mixing areas and the percentage of land pixels relabeled as water to the total land 

pixels in the same areas. 

 Percentage 

water pixel relabeled as land, pW_L 1.70% 

land pixel relabeled as water, pL_W 7.91% 

4.3. Validation Using the Global Validation Sample 

A global validation data set, with a total of 38,664 sample units, was used to validate the new 30 m 

water mask. In total, 1555 sample units are water bodies, including lakes, reservoirs/ponds, rivers and 

offshore ocean [15]. The producer’s accuracy (PA), user’s accuracy (UA), overall accuracy (OA) and 

(a) (b) (c) (d) 
0.66 

0.56 
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Kappa coefficient are calculated for the original FROM-GLC water mask and the new water mask. The 

confusion matrices are presented in Table 4. After performing the object-based method and local 

unmixing, all three indices have been raised, especially for the UA. The PA is the probability that true 

pixels are correctly classified and thus includes only errors of omission, whereas the UA is the 

probability that classified pixel labels are correct and thus includes only errors of commission [13]. In 

the FROM-GLC water mask, 293 land sample units were misclassified as water, while in the new water 

mask, only 173 sample units remain misclassified. This is because most of the mistakenly classified 

mountain and cloud shadows in the commission errors have been corrected by our method, and thus the 

UA of the new water mask has been considerably increased, from 81.97%–88.39%. The PA has 

increased by only 0.51%, which can be attributed to the modification of the misclassified water pixels 

in water boundary areas. Since only 1.7% of the water pixels have been modified (see Table 3), only 

eight of the 223 water sample units that were misclassified as land were corrected by the local unmixing 

method. The Kappa coefficient of our new water mask is 0.87, which is also greater than that of the 

FROM-GLC water mask (0.81). 

Table 4. The accuracy of FROM-GLC and the new 30 m water mask. 

 

FROM-GLC New 30 m Water Mask 

Reference Reference 

Land Water UA(%) Land Water UA(%) 

Classification 

Land 35，863 223 99.38 35，980 215 99.41  

Water 293 1332 81.97 176 1340 88.39 

PA(%) 99.19 85.66 98.63 99.51 86.17 98.96 

  

Figure 9. (a) The overall accuracy, (b) the kappa coefficient of FROM-GLC and the new  

30 m water mask when using 1555 water and 1555 randomly selected land sample units after 

20 experiments. 

  

(a) (b) 
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In Table 4, it can be seen that the OAs for both water masks are high (the OA for FROM-GLC and 

the improved water mask is 98.63% and 98.96%, respectively). This is because the size of validation 

sample for land is much greater than that for water. For a fairer comparison, we randomly selected 1555 

land sample units from the total land sample. We then used the 3110 land and water sample units to 

calculate the overall accuracy and kappa coefficient. This process was repeated 20 times and the results 

are plotted in Figure 9. It can be seen that the results are very stable when different land sample units are 

used. The OAs and Kappa coefficient of both water masks have been reduced. However, the new water 

mask always produces a greater OA (the mean OA for FROM-GLC and the new water mask is 92.34% 

and 92.83%, respectively). The situation is the same when using the Kappa coefficient as a metric. The 

new water mask always produces a higher Kappa coefficient (the mean Kappa coefficient of  

FROM-GLC and the new water mask is 0.847 and 0.857, respectively). 

4.4. Overall Distribution of the New Water Mask 

Finally, the inland water areas of FROM-GLC and the new water mask for the six continents were 

estimated. For the overlapping pixels at adjacent Landsat images, the “maximum water area” principle 

was followed. Though some high-frequency noise may exist as small water objects, we did not perform 

spatial filtering to remove them. The main reason for this is to keep as many small water bodies  

as possible.  

The new water mask produces a total of 406.86 × 104 km2 of inland surface water in circa-2010. The 

proportions of all continents are: North America (37.05%), Asia (35.84%), South America (8.77%), 

Europe (8.53%), Africa (8.53%), and Oceania (1.29%). On the other hand, the FROM-GLC water mask 

has 483.40 × 104 km2 of total inland water. Comparatively, the inland water area of the new water mask 

has decreased by 15.83%. This is mainly because 33.65% (see Table 2) of the misclassified shadow 

objects in the FROM-GLC water mask have been filtered out. From Table 5, we can see that the biggest 

decrease in water area is in Asia (41.72 × 104 km2), followed by North America (11.0 × 104 km2),  

South America (9.82 × 104 km2), Europe (8.74 × 104 km2), Africa (3.14 × 104 km2) and  

Oceania (2.12 × 104 km2). This is in accordance with the spatial distribution of FROM-GLC water 

objects relabeled as shadow by our method (Figure 7). 

When producing the FROM-GLC product, the authors followed a “what you see is what you get” 

principle to prevent subjective inference of image information from apparent land use [3]. Lakes in 

tropical and subtropical areas may exhibit totally different cover types ranging from bare land, 

vegetation, to water surface in different seasons due to large fluctuations of water levels (e.g., Poyang 

Lake in China [35]). Since only single-date images were used in this study, the new water mask may not 

be able to capture the maximum water area of those lakes. On the other hand, if a lake or river in a 

Landsat image is frozen, it will be classified as snow/ice. Therefore, frozen water at the high latitude 

areas of Asia, Europe and North America may not be included in the new water mask. This issue could 

be solved by using the multi-temporal data in the future. 
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Table 5. The water areas for the six continents of FROM-GLC and the new 30 m  

water mask. 

Continent 
Water Area (×104 km2) 

FROM-GLC Water Mask The New Water Mask 

Asia 187.54 145.82 

Europe 43.43 34.69 

Africa 37.84 34.70 

North America 161.73 150.73 

South America 45.50 35.68 

Oceania 7.36 5.24 

Total 483.40 406.86 

5. Discussion 

The object-based method proposed in this study is mainly used to reduce the commission errors in 

the FROM-GLC water mask, which is to exclude mountain and cloud shadows that have been 

misclassified as water in FROM-GLC. The result is quite promising. Compared with the per-pixel 

method, the object-based method has a loose requirement for the accuracy of DEM. For instance, small 

geometrical mismatches between TM images and the DEM will have little influence on the pw_topo of 

large water bodies. However, this method may lose its advantage when the water object is connected 

with mountain or cloud shadow in the FROM-GLC water mask [13]. If the water area is smaller than 

the shadow area, this water body will be mislabeled as shadow by our method. On the contrary, if the 

water area is larger than the shadow area, the shadow may not be filtered out. One possible way to solve 

this problem is by initially splitting the water objects in FROM-GLC according to the topographical, 

spectral or other attributes. However, this may require a series of trials before reaching a satisfactory 

result. Another possible solution is to perform dynamic water mapping with multi-temporal  

scenes [25,36,37], because the chances of being covered or shadowed by clouds in multiple images 

would be significantly lower for certain pixels where the number of cloudy days is small. By fusing 

multi-temporal images, the cloud issue should be easily overcome for those pixels. However, around the 

world, many places can be covered by cloud frequently. For those places, our method can be applied in 

the same way to each single-date image of the multi-temporal dataset. This can exclude the 

misclassifications between water and shadows, so as to improve the final results. While multi-temporal 

image analysis focuses more on the process in the time domain, our method concentrates on analyses in 

the spatial domain. 

Though our proposed method is used as a post-classification/detection procedure in this study, it can 

also be applied directly to the segmentation result in object-based image classification. It should be noted 

here that the proposed method is not specifically designed to solve the water classification problem in 

FROM-GLC. The idea presented here can also be employed for other land cover types with obvious 

spatial characteristics, such as cropland, snow/ice, and cloud.  

Local spectral unmixing is used to estimate a reliable water fraction in water boundary areas, so that 

pixels containing fewer land components are determined as water. This seems to be a more reasonable 

way. It is an automatic process, and does not require additional inputs. It is not limited to two endmember 

mixture models, and can be used for other land cover types as well.  
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Since the image selection criterion when producing FROM-GLC is to select images with the least 

cloud cover in inland areas during the growing season, the probability of inland water covered by thick 

cloud is low. That is, the omission error of the inland water is small. Therefore, in this study, we did not 

do any extra work to exclude cloud covers on inland water. However, cloud distribution on the ocean is 

not considered when choosing the FROM-GLC images, so the omission error in the ocean regions is 

much larger. Clouds on the ocean are often misclassified into impervious, bareland or snow/ice, as shown 

in Figure 10. Some land–ocean masks, such as MOD44W, GSHHG, could be used to filter out the 

clouds. However, because of geometrical mismatching, the difference in spatial resolution and the 

difference in image acquisition time, some small islands and shoreline details may be modified 

incorrectly. Therefore, a method to derive a land-ocean mask for TM/ETM+ image should be the subject 

of future studies. 

  

Figure 10. (a) False color composite image (R: band4, G: band3, B: band2; path: 17,  

row: 44, date: 19 December 2000), and (b) the classification result of FROM-GLC (refer to  

Table 1 for more detailed legend information). 

From Table 4, it can be seen that both the PA and UA of our new water mask is greater than 85%, so 

it can be regarded as a reliable water-land mask for other research. Though it is a single time water mask, 

it can serve as a base map when studying the temporal change of surface water regionally or globally. 

Moreover, it can also be used to produce training or validation samples for water mapping or for water 

fraction derivation from coarser spatial resolution data, such as MODIS images. Using water mapping 

as an example, the target detection method [22] only requires one input parameter, the spectrum of the 

target, which can be generated from our new water mask. As a result it is possible to use our water mask 

for water mapping on TM or coarser resolution images automatically in the future.  

In addition, during the course of reducing misclassifications of water, our method created many 

shadow objects (mountain and cloud shadow) in FROM-GLC. For these shadows, further classification 

would be needed. Our current method only has the ability to classify shadows into four classes: 

vegetation, impervious, bare land and snow/ice. However, FROM-GLC includes 11 level 1 classes and 

29 level 2 classes. Therefore, well-designed rules are required for further classification. This falls outside 

the scope of this study. 

6. Conclusions  

The FROM-GLC water mask is improved by first applying an object-based method to remove the 

commission errors, and then performing local spectral unmixing at water-land boundary areas. By 

Cuba 

cloud 

(b) (a) 



Remote Sens. 2015, 7 13525 

 

 

displaying the locations of FROM-GLC water objects modified as mountain shadow, we found that 

topographical correction, even when using a coarser resolution DEM, is useful to reduce the confusion 

between mountain shadows and water bodies, but may fail in high mountain areas. By comparing local 

unmixing results with FROM-GLC, we found that when the number of training sample units for water 

is smaller than that for land, some hard classifiers (e.g., SVM) tend to classify the water-land mixed 

pixels more favorably as land even when the water fraction is greater than that of land.  

The new water map has a producer’s and user’s accuracy of 86.17% and 88.39%, respectively. Both 

are higher when compared with those for the original FROM-GLC (85.66% and 81.97%, respectively). 

We therefore conclude that the new map has improved the water mask in the FROM-GLC. The new 

water product is suitable for use in applications that require finer resolution, and can serve as a base map 

for water mapping with coarser spatial resolution. 

However, there still exist some omission errors in water areas covered by clouds. Clearly, the use of 

multi-temporal images has the potential to remediate the cloud effect. This is our next research target. 
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