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Abstract: China has the greatest afforestation area in the world, mainly due to the implementation of
various ecological restoration projects, which have taken place over several decades. However,
the progress of these restoration projects has rarely been evaluated through sapling growth
monitoring. In this research, we assessed the potential of eighteen spectral indices derived from
time-series Landsat data to characterize the different stages of afforestation over the Loess Plateau
region. First, we obtained data for the afforestation area from 1997 to 2010. Then we estimated the
average year of afforestation that could be uniquely identified and the sensitivity to growth exhibited
by each of the indices. The results show that the first shortwave infrared band (SWIR1) of the Landsat
Thematic Mapper and the Brightness index from the tasseled cap transformation (TCB) had the fastest
response to sapling growth. It takes 4.2 and 4.3 years on average for the saplings to be detected as
forest by SWIR1 and TCB, respectively. However, these two indices saturate too soon to allow better
distinction of the various stages of sapling growth but are better for monitoring the over-reporting
situation. By contrast, the disturbance index (DI), and the normalized burnt ratio (NBR) and the
normalized burnt ratio 2 (NBR2) respond slowly to sapling growth and can detect forest at 7.4 years
on average. Unlike SWIR1 and TCB, these indices do not saturate early and can provide more detail
on the level and structural condition of sapling growth.
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1. Introduction

Although a decline in forest-covered areas has occurred over several decades throughout the world [1],
there has also been a decreasing trend of natural forest felling and the introduction of more man-made
forests and conservation, due to the initiation of new forest policies [2]. In order to eradicate a series of
environmental problems, such as soil erosion and desertification, China has implemented many ecological
restoration projects and, as a result, China now has the largest afforestation area in the world [3,4]. With a
large amount of investment and considerable national effort, these afforestation projects have increased
vegetation coverage [5] and improved environmental conditions [6,7] in China. Because afforestation is a
gradual process and it can take several years or decades for saplings to grow into forest, it is necessary
to continuously monitor the process of sapling growth in order for forest managers and various other
stakeholders to be well informed of the growth conditions of newly planted trees and their environmental
impact, as well as the effectiveness of afforestation at different stages. Due to incomplete policies over
the execution of compensation for afforestation projects and local demands for land for development,
in some parts of the country forest plantation areas have been converted to other land-use types [8].
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Therefore, continuous monitoring of afforestation is not only necessary for assessing the accomplishment
and condition of plantation growth at different stages but is also a reliable source of information for
consolidating achievements and forming suitable compensation policies. Although many methods have
been proposed to obtain the actual distribution of afforestation at regional and national levels [9–11], little
research has been done to monitor the process of sapling growth at various stages.

Landsat provides openly available remotely sensed data. It has the longest data archives at over
40 years, and analysis-ready production covering the entire world. In China, the greatest intensity of
afforestation was carried out after the year 2000, and so the long time series provided by Landsat is a
good choice for monitoring afforestation. In addition, time series Landsat images have been widely
applied to monitor gradual and abrupt forest changes [12–14]. Most of these methods are based on the
temporal trajectory of spectral indices (e.g., the normalized difference vegetation index, and tasseled
cap indices) extracted from time series Landsat data. Even under the same circumstances, spectral
indices can vary largely in their capacity for capturing and describing forest change dynamics [15–20].
Different spectral indices have different sensitivities to changes in green vegetation. Choosing a
suitable index for monitoring different types of forest change can help to better describe the change
dynamics. Some efforts have been made to study different spectral indices in Landsat time series
for monitoring forest disturbance and recovery [15–20]. However, those studies have focused on
forest disturbance and subsequent recovery, and the transition of forest between natural growth and
disturbance. Little research has concentrated on afforestation implemented according to restoration
policy, especially in places with sparse vegetation like China’s Loess Plateau.

The objectives of this study are to compare eighteen spectral indices widely used in forest monitoring
with Landsat time series data over a long period of time and to find their strengths and weaknesses in
characterizing afforestation especially the process of sapling growth in afforestation over the Loess Plateau.

2. Study Area

The Loess Plateau is located in north-central China, and is one of many ecologically fragile regions
in China vulnerable to soil erosion and other environmental problems. In 1999, the Grain for Green
project, which converted cropland to forest land on steep slopes, was initiated to help eradicate these
problems [21]. Currently, the Loess Plateau is one of the core regions for implementing ecological
restoration projects. To serve the purposes of this study, we concentrated on the southeastern portion
of the Loess Plateau where forest is the dominant land cover type [22,23] (Figure 1).
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3. Data and Method

3.1. Data

It required eleven Landsat scenes (path/row: 126/33, 125/33, 126/34, 125/34, 127/35,
126/35, 125/35, 128/36, 127/36, 126/36, 125/36) to cover the southeastern part of the Loess
Plateau (Figure 1). Landsat Surface Reflectance Level-2 science products, downloaded from
USGS (https://earthexplorer.usgs.gov), were used in this research. Due to the possible impacts
caused by different spectral ranges and surface reflectance algorithms between Landsat 7 and
8 (https://landsat.usgs.gov/landsat-surface-reflectance-data-products), we chose only those scenes
acquired by Landsat 5 and Landsat 7 during the growing season from June to September from 1997 to
2010 with less than 80% cloud cover to reduce seasonal effects. All Landsat Surface Reflectance Level-2
science products on the website had been atmospherically corrected using Ecosystem Disturbance
Adaptive Processing System (LEDAPS), and include a cloud, shadow, water, and snow mask
(https://landsat.usgs.gov/landsat-surface-reflectance-data-products). All images in the same year
were mosaicked to generate one complete and cloud-free image per year from the time series Landsat
images between 1997 and 2010 based on the best-available-pixel (BAP) composites method [24].

3.2. Spectral Indices Chosen for the Experiment

In this study, the criterion used to choose the experimental indices is that the index has been
widely used in monitoring forest change dynamics with Landsat time series data [12]. All the indices
summarized in the review paper around forest monitoring using Landsat time series data [12] have
been chosen. In our study, eighteen indices (Table 1) were chosen.

We generated a time series of these eighteen spectral indices based on time series Landsat image stacks
from 1997 to 2010. A Savitzky-Golay filter was applied to smooth these time series indices [25]. The typical
afforestation curve characteristics displayed by each of the eighteen time series indices are shown in the
following table (Table 1). These indices can be divided into two groups: in one group the values of the
indices rise gradually and in the other they decrease gradually with the growth of forest plantation.

Table 1. Typical time-series curves of afforestation displayed by various indices.

Indices Description Time–Series Curve of Afforestation

SWIR1 Short-wave infrared (1.55–1.75 µm) spectral range in
micrometers [26]
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Table 1. Cont.

Indices Description Time–Series Curve of Afforestation

IFZ Integrated Forest Z-score [29]
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Table 1. Cont.

Indices Description Time–Series Curve of Afforestation

TCA Tasseled Cap Angle [28]
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Table 1. Cont.

Indices Description Time–Series Curve of Afforestation

WBDI Wetness brightness difference index [39]
WBDI = TCW − TCB
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3.3. Characteristics of an Ideal Sapling Growth Index Curve

During the process of plantation growth, different stages of saplings have different levels of
ecological benefits based on their structural condition. The ability of soil and water conservation,
carbon fixation, oxygen release, nutrient accumulation, and air purification functions can vary greatly
between various sapling growth stages. Detailed information on the sapling growth process can
help evaluate the ecological benefits more comprehensively. China’s afforestation policy usually
provides subsidies to participating farmers or workers through local governments. As an example,
the Grain for Green Project (GGP) offers 5- and 8-year subsidies for economic forest and ecological
forest, respectively [40]. In 2014, the central government decided to provide subsidies in the first,
third and fifth year after the year of plantation [41]. Therefore, it is vital to continuously monitor
sapling growth to assess the effectiveness of afforestation. The amount and length of compensation can
be altered based on the specific stage of sapling development and growth condition. An ideal index
needs to provide more information at various stages of sapling growth and over a longer timespan to
characterize the growth condition of forest plantation.

The time series curves of spectral indices chosen for the experiment all changed gradually. We took
as an example an index that gradually rises with vegetation growth to discuss the characteristics of an
ideal index for different forest change and monitoring purposes. The simplified time series curves for
different indices are shown in Figure 2.
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Figure 2 shows two kinds of indices. One, as in Index 2, has a fast response to vegetation change.
The other, as in Index 1 has a relatively slow response and change trend. In Figure 2a, Index 2 reaches
the spectral index value of tree faster than Index 1. The value range for forest will be defined in the
following section. Index 2 is more sensitive to vegetation growth but saturates quickly. By contrast,
Index 1 has a more gradual pattern and takes longer to reach saturation. It can provide a longer period
of information on the sapling growth process and matches more closely to the length of the plantation
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growth. Thus, Index 1 is more suitable for describing sapling growth. In other words, the ideal index
for sapling growth monitoring is the one that takes longer to saturate with a slower change trend and
longer time from the planting year to the year when the sapling meets the spectral index value of tree.

Detecting the actual area of afforestation requires a different index. The traditional method
for estimating an afforestation area relies on on-site visits. It takes three field visits over three
consecutive years to determine the area of afforestation [42]. However, this method is subjective
and time-consuming. Additionally, there is a tendency for both local government and participating
farmers to report a larger afforestation area in order to obtain more compensation money from central
government [9]. Meanwhile, it is difficult to distinguish forest plantations at early stages of growth
from other land cover types. A central government needs to obtain accurate information on the actual
areas of plantation as quickly as possible. For this purpose, Index 2 can be used to determine the
afforestation area sooner than Index 1. Therefore, Index 2 is more desirable for monitoring afforestation.

For monitoring gradual forest disturbance, it is crucial to get accurate disturbance information as
quickly as possible. Therefore, Index 2 would also be useful to monitor forest disturbance.

3.4. Calculating the Year When Saplings from Afforestation were Recognized as Forest

Since the objective of this study is to assess the potential of various spectral indices in evaluating
afforestation, we only focus on afforestation areas (areas from non-forest to forest). Finding out how
many years the saplings take to mature as forest in different spectral indices is a direct way to evaluate
afforestation and growth in these indices. However, newly planted saplings are usually hard to
distinguish from other vegetation types. This makes it difficult to accurately obtain the precise year the
saplings were planted by participating farmers. In this study, we calculated the year when the saplings
from afforestation were recognized as forest by different spectral indices.

We first generated afforestation maps from 1997 to 2010. Then, a comparison among the eighteen
spectral indices was carried out on all the obtained afforestation pixels. The afforestation area was
obtained using the method developed in a previous study [9] and the method of vegetation change
tracker (VCT) [29]. We chose the united results from both methods.

Additionally, most of the GGP was implemented on steep slopes. Croplands are usually located
at low elevations and on flat ground. Therefore, Digital Elevation Model (DEM) data was used to
modify the afforestation results. The DEM is SRTM30 (near-global digital elevation model comprising a
combination of data from Shuttle Radar Topography Mission, downloaded from https://earthexplorer.
usgs.gov). With the help of interpretation and Google Earth images, we masked out non-afforestation
pixels caused by cropland, undetected clouds, cloud shadow or other noises to ensure the accuracy of
obtained afforestation pixels. For validation, we collected 930 afforestation sample points (Figure 1) in
all eleven Landsat scenes according to a stratified sampling scheme. Visual interpretation based on
high-resolution historical images in Google Earth (for this area, the high resolution images in Google
Earth are mostly Quickbird images) and time series Landsat images were used to label these test
sample pixels. The overall accuracy was 92% (Table 2).

In this study, we used the dark object method [43] to generate forest samples for each year
separately to reduce possible influences caused by images in different years. Moreover, the land cover
map of 2010 [23] was used to mask out non-forest areas in the annual forest sample set. Using the forest
sample in each year to calculate a mean and a standard deviation value of forest, we determined that if
the index value of an afforestation pixel fell within the range ±1.96 standard deviation to the mean,
the plantation pixel could be recognized as forest. If the afforestation pixel was recognized as forest,
the pixel in that year was set to 1, otherwise, it was set to 0. Since, we accepted as afforestation area all
the land cover changes from non-forest into forest and discarded all areas where the land cover change
was from forest into non-forest, once the plantation matured as forest, the process was not reversible
during the period from 1997 to 2010. With this basic rule, we filtered those afforestation results using a
temporal consistency check method [44] to generate the final results of the year when saplings from
afforestation were recognized as forest. This was done for each of the eighteen spectral indices.

https://earthexplorer.usgs.gov
https://earthexplorer.usgs.gov
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Table 2. Summary of correctly identified afforestation sample pixels.

Class
Reference of Afforestation Truth Pixels

125033 125034 125035 125036 126033 126034 126035 126036 127035 127036 128036 Other Total

125033
afforestation 80 0 0 0 0 0 0 0 0 0 0 9 89

125034
afforestation 0 76 0 0 0 0 0 0 0 0 0 8 84

125035
afforestation 0 0 46 0 0 0 0 0 0 0 0 6 52

125036
afforestation 0 0 0 88 0 0 0 0 0 0 0 5 93

126033
afforestation 0 0 0 0 65 0 0 0 0 0 0 10 75

126034
afforestation 0 0 0 0 0 94 0 0 0 0 0 6 100

126035
afforestation 0 0 0 0 0 0 93 0 0 0 0 3 96

126036
afforestation 0 0 0 0 0 0 0 36 0 0 0 5 41

127035
afforestation 0 0 0 0 0 0 0 0 93 0 0 7 100

127036
afforestation 0 0 0 0 0 0 0 0 0 94 0 6 100

128036
afforestation 0 0 0 0 0 0 0 0 0 0 92 8 100

total 80 76 46 88 65 94 93 36 93 94 92 73 930
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4. Results

Because it is usually difficult to obtain an accurate year when participating farmers plant saplings,
instead of getting the exact years of all the afforestation pixels needed to fall into the forest range, we
calculated the time when these afforestation pixels would reach the forest stage based on the above
method. Then, we counted the cumulative percentage of the afforestation area that matured as forest
in each year for each of the eighteen indices from 1999 to 2010, during the Green for Grain Project
period. The cumulative percentage reaching 100% faster indicates that the index took a shorter time to
detect the afforestation pixels as forest. At the same year, a higher cumulative percentage implies a
relatively faster trend detected by the index.

Here we show the summarized results of all eleven Landsat scenes and the top five Landsat scenes
with the greatest afforestation area (Figure 3). It can be seen that, under the same conditions, different
spectral indices have different capabilities in characterizing the process of afforestation. The increased
trend varies differently among these eleven indices.

Tasseled Cap Greenness (TCG) performs differently compared with the remaining indices. TCG
indicated there were over 40% afforestation pixels of mature forest in 1999. This does not agree with
fact. The Grain for Green project only started in 1999, and the new plantations were only small saplings.
There is a high possibility that TCG cannot distinguish forest from other vegetation types such as
cropland and shrubland. Therefore, in the subsequent discussions we drop this index.

The results were consistent among the eleven Landsat scenes. Under the same amount of
afforestation, the SWIR1 and Tasseled Cap Brightness (TCB) indices show that the cumulative
percentage of forest area maturing from the same afforestation reaches 100% earlier and is relatively
higher at each year than the remaining indices. This means these two indices took the shortest time
to detect the afforestation pixels as forest. The Wetness Brightness Difference Index (WBDI) is in the
second tier. Soil Adjusted Vegetation Index (SAVI), Normalized Difference Vegetation Index (NDVI),
Tasseled-Cap Angle (TCA), Atmospherically Resistant Vegetation Index (ARVI), Normalized Burned
ratio(NBR), Normalized Burned ratio2 (NBR2), and Disturbance Index(DI) are quite similar. They hold
the lowest cumulative percentage in every year and the longest time for all the afforestation.
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Figure 3. Cumulative percentage of afforestation area maturing into forest in each year for typical
Landsat scenes. ((a) Results for all eleven Landsat scenes; (b–f) Results for different Landsat scenes).

5. Discussion

In order to analyze and prove our results, we randomly chose 147 afforestation sample pixels
(Figure 1) and visually interpreted them with the help of high-resolution historical Google Earth
images (mostly Quickbird images) and Landsat time series data to determine the year of plantation.
We used these afforestation samples with the planted year information to estimate exactly how many
years the saplings needed to grow to meet the forest threshold value for each index. The results are
shown in Figure 4.

The results of Figure 4 are quite similar to Figure 3. TCB and SWIR1 are similar and they took the
shortest time to identify afforestation as forest. They both showed great sensitivity to green vegetation.
They are in accordance with the characteristics of the best index for detecting the actual afforestation
area. As mentioned above, due to the incomplete compensation policy and development requirement
of local governments, some afforestation areas have been converted back to their former land use types
or converted to construction land. The shorter than 5-year capability of the SWIR1 and TCB indices to
identify afforestation allows for prompt detection of over-reporting and destruction of afforestation.
Furthermore, TCB and SWIR1 may be helpful for forest disturbance monitoring, especially in cases of
disease, infestation, or drought. Often these disturbances are not detected until the damage reaches a
serious state. It would be better to capture the disturbance as soon as the disease or infestation first
breaks out so that protective action can be taken in time and damage can be minimized. Additionally,
these indices can be helpful for illegal forest thinning.

It takes more than seven years for the NDVI, TCA, NBR, NBR2, SAVI, and DI methods to identify
when saplings have converted into forest. The longer duration of information on various stages
of afforestation before saplings reach forest can provide more detail on afforestation progress and
influence on the environment. This is helpful for continuous monitoring of the growth of saplings
during the period of compensation. A comprehensive and full assessment of the achievements and
effectiveness of afforestation at different stages can benefit from the types of index that do not saturate
quickly. They meet the ideal sapling growth index requirements. Therefore, NBR, NBR2, and DI are
more suitable for characterizing the process of plantation growth and different afforestation stages.
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Additionally, reforestation is quite similar to afforestation. They are both gradual forest changes.
Those indices suitable for monitoring afforestation can also be applied to monitoring the process
of forest recovery. Pickell et al. only compared SWIR1, TCG, NDVI, and NBR to estimate forest
recovery. They found that NBR took the longest mean year to recover and TCG took the shortest [19].
Frazier et al. used trajectories of all tasseled cap indices to understand the forest recovery process and
found that tasseled cap wetness (TCW) contained more detail on vegetation structure and growth [17].
Their results are similar to ours to some extent, as the ranking of various spectral indices is similar,
but different in plantation or recovery growth trend for the same index. The results of the same index
can vary greatly under different conditions and location. They can be influenced by temperature,
moisture and other geographical conditions. The plantation of different species can also mean different
results. Indices for studying forest change dynamics should be analyzed for each specific region.
Our results can be used to provide guidance in semi-arid areas in other parts of the world.

6. Conclusions

We assessed the potential of eighteen spectral indices in determining the earliest year when
afforestation can be identified. We also compared their capability in characterizing afforestation
growth processes at various stages. The results indicate that under the same conditions, different
spectral indices have different sensitivity and capability in characterizing afforestation processes.

DI, NBR, and NBR2 took longer to saturate when monitoring the process of newly planted saplings
turning into matured forest during afforestation, which provide a capability to distinguish different
sapling growth stages. Additionally, these indices showed the slowest sapling growth trend, taking
about 7.4 years on average to detect forest from saplings. This matches well with the compensation
duration of 5–8 years. It can help improve our understanding of sapling growth condition and provide
more information during and after the period of government subsidies. Meanwhile, it allows us to
better evaluate the achievement of various stages of afforestation during the 10-year Green for Grain
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program (1999–2010). These indices are the most suitable indices for continuously monitoring the
progress of sapling growth. Conversely, SWIR1 and TCB showed great sensitivity to green vegetation
and saturated quickly with the growing vegetation. These indices can be applied to find cases of
over-reporting of afforestation and for early detection of forest disturbance. Moreover, these can help
monitor the loss of land due to reversal of afforestation. Through careful selection of spectral indices
and monitoring using satellite remote sensing, the government can more precisely adjust subsidies
according to the process of sapling growth to help relieve the concerns of participating farmers and
protect afforestation from being destroyed.
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