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Abstract: Substantial progress has been made in the field of large-area land cover mapping as the
spatial resolution of remotely sensed data increases. However, a significant amount of human power
is still required to label images for training and testing purposes, especially in high-resolution (e.g.,
3-m) land cover mapping. In this research, we propose a solution that can produce 3-m resolution
land cover maps on a national scale without human efforts being involved. First, using the public
10-m resolution land cover maps as an imperfect training dataset, we propose a deep learning based
approach that can effectively transfer the existing knowledge. Then, we improve the efficiency of our
method through a network pruning process for national-scale land cover mapping. Our proposed
method can take the state-of-the-art 10-m resolution land cover maps (with an accuracy of 81.24% for
China) as the training data, enable a transferred learning process that can produce 3-m resolution
land cover maps, and further improve the overall accuracy (OA) to 86.34% for China. We present
detailed results obtained over three mega cities in China, to demonstrate the effectiveness of our
proposed approach for 3-m resolution large-area land cover mapping.

Keywords: land cover mapping; high-resolution imagery; deep learning; urban environment

1. Introduction

Land cover mapping, as a basic process to categorize and describe the surface on Earth, provides
fundamental data for various management and research applications, such as food production forecast,
urban planning, flood control, disaster prevention, biodiversity protection, climate change research,
and other Earth system studies [1]. With the demand of detailed land resource surveys and spatial
planning for optimizing the development and protection of national land space, high-resolution land
cover data is significant and widely used in many sustainability-related applications [2]. Its uses include
modeling un-authorized land use sprawl, monitoring urban changes and surveying the coastline [3].
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The potential of 1–3 m resolution land cover data opens the door to many new applications that require
high geometric precision and roof-top/small-farm level spatial details. Therefore, timely and higher
resolution land cover products are urgently needed [4].

In the past few decades, thanks to the advancement in satellite remote sensing and data processing
technologies, more and more higher resolution land cover products have been produced at the global
and continental scales [2,4]. At the global scale, 1-km spatial resolution land cover products have been
developed using Advanced Very High Resolution Radiometer (AVHRR) data [5,6]. Annual 500-m
resolution global land cover products were developed for several generations [7,8]. In 2008, ESA
delivered the first 300-m resolution global land cover maps for 2005 [9]. Then in 2011, ESA and the
Université catholique de Louvain (UCL) delivered a set of GlobCover 2009 products [10]. The CCI-LC
team produced and released its 3-epoch series of global land cover maps at a 300-m spatial resolution,
where each epoch covers a 5-year period (2008–2012, 2003–2007, 1998–2002) [11]. In 2013, the first
30-m resolution global land cover maps were produced using Landsat Thematic Mapper (TM) and
Enhanced Thematic Mapper Plus (ETM+) data [1]. In 2019, the latest global land cover product, Finer
Resolution Observation and Monitoring of Global Land Cover (FROM-GLC10), developed with 10-m
resolution Sentinel-2 data for 2017, was published [4]. Over the recent decades, these public land cover
datasets have already made significant contributions to the global research community. Taking the
FROM-GLC series of datasets as an example, the 30-m and 10-m results have already been accessed
by over 50,000 users from 183 different countries, with over 30 million file clicks and downloads
(http://data.ess.tsinghua.edu.cn/).

In recent years, with the increased availability of high-resolution remotely sensed data, the
maturing of machine learning techniques (especially deep learning based methods), and the readiness
of computing capabilities, land cover mapping efforts have been further extended to a resolution
of three meters or even one meter [12,13]. However, under the current paradigm of deep neural
networks, one major constraint that stops many researchers from achieving improved results is the
lack of well-labelled training data [14].

If we look at the recent boom in deep learning technologies in the domain of computer vision,
a critical base is the availability of many well-labeled datasets like ImageNet [15]. However, remote
sensing images are more diverse and more difficult to interpret than daily images. Because the
interpretation and labelling of remotely sensed images requires huge human efforts and a high level of
expertise, it is costly and time-consuming to obtain high-resolution land cover maps on a large scale.
Although many efforts have been devoted to developing land cover datasets on a large scale [1,16],
they suffer from a number of limitations, such as point-based or patch-based annotation, diversity or
simplification of the samples and the scenes, variation in the spatial resolution, and hardly accessible
or unpublished datasets. For example, it took 10 months and $1.3 million to label about 160,000 square
kilometers in the Chesapeake Bay watershed in the northeastern United States that included only
four cover types (Water, Forest, Field, and Impervious) [17]. Even with those high-cost and numerous
interpretation datasets, the limited number of land cover types and the specific coverage make it
difficult to use for other land cover studies [2]. Gong et al. [4] transformed a 30-m resolution sample
set, which is a point-based annotation at the global scale, to mapping, at a 10-m resolution, global
land cover with more spatial detail yet found no accuracy improvement. The reason is that the spatial
resolution and point-based annotation of the 30-m land cover dataset presents a strong limitation to
higher resolution land cover mapping.

http://data.ess.tsinghua.edu.cn/
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To deal with the above-mentioned issues, many recent studies have focused on training data
collection from readily available land cover products. For instances, Zhang et al. used the random
forest classification method to transfer a 500-m resolution MODIS (the Moderate Resolution Imaging
Spectroradiometer) land cover product to produce 30-m land cover classification results in North
America [18]. Lee et al. applied an improved Bayesian Updating of Land Cover algorithm to
sharpen the results from a 300-m to a 30-m classification [19]. Zhang et al. combined the MODIS
and GlobCover2009 land cover product to produce a 30-m resolution land cover map of China [20].
Although they have demonstrated that refined 30-m resolution land cover maps can be produced
from lower resolution land cover products, the feasibility of transferring the knowledge to a very
high resolution (e.g., 3-m) has never been assessed. Schmitt et al. integrated 10-m resolution images
(Sentinel-1 and Sentinel-2) with low-resolution MODIS land cover (with 250-m to 1000-m resolution) to
produce the higher resolution SEN12MS dataset [21]. This problem was defined as weakly supervised
learning for land cover prediction due to the huge difference in resolution between the MODIS land
cover products and satellite data [22]. However, in this work, we explore the possibility of transferring
a 10-m product to produce 3-m results, in which satellite images and land cover products are both
in higher resolutions and have relatively small resolution gaps. The situation and corresponding
methodology are quite different from the above studies, because of the characteristics of different
resolution satellite imagery and the accuracy of different land cover products.

Open Street Map (OSM) or other open data sources were also used in updating and improving
land cover and land use products [23,24]. Kaiser et al. indicated that the use of large-scale imperfect
labeled training data could replace 85% of high-quality manually labeled data in high-resolution
building and road extraction [23]. An impressive performance in the imperfect label situation has been
achieved, which only drops by 6% in accuracy when the proportion of imperfect labels increases up to
50% [25]. These studies show that in specific scenarios or cases, even though training on imperfect
data, it may still achieve reasonable results [26]. Based on the existing efforts mentioned above, we
propose a deep learning based approach that can intelligently and efficiently “grow” the current 10-m
resolution FROM-GLC land cover product to an improved 3-m resolution land cover product.

The first part of this research focuses on designing a robust and generalized learning method that
can take advantage of the imperfect 10-m resolution product as the training input, and transfer the
knowledge into a network that can produce refined 3-m resolution land cover maps. In recent years,
deep learning-based approaches for high-resolution land cover mapping have been considered as the
state-of-the-art methods [2,12]. High-resolution satellite imagery contains more spatial information
(e.g., texture, contexture, and shape). A deep learning-based semantic segmentation method can
effectively extract the necessary spatial information from the neighborhoods surrounding each pixel. It
enables effective end-to-end segmentation, obtaining superior results to traditional machine learning
methods and the patch-based Convolutional Neural Network (CNN) classification method [27]. For
example, on the ISPRS Vaihingen benchmark (including six types, i.e., impervious surface, building,
low vegetation, tree, car, and background), Audebert et al. [28] achieved an overall accuracy of 89.8%,
which is over 3.9% higher than that with traditional machine learning methods, such as Random Forest
(RF) with a fully connected conditional random field (CRF). Liu et al. [29] proposed a self-cascaded
network based on PSPNet [30] and RefineNet [31], which further improved the overall accuracy to
91.1% for the ISPRS Vaihingen challenge online test dataset in 2017. The latest national-scale 1-m
resolution land cover maps (using aerial imagery from the USDA National Agriculture Imagery
Program) of the US in 2019 applied the U-Net Large model and achieved substantially improved
results (with an overall accuracy increased by 2%–41% in different test regions) compared with a
traditional machine learning method (i.e., RF) [2]. As a result, we apply a deep learning-based semantic
segmentation method for this research.



Remote Sens. 2020, 12, 1418 4 of 21

The second part of this research focuses on improving the computational efficiency of the
proposed method. Recent studies on model compression and acceleration include Quantization [32],
Fast convolution [33], Low rank approximation [34], and Filter pruning [35]. In this study, we apply
filter pruning due to its usability and expansibility. Aiming at producing a continental or even global
land cover product, we carefully prune the resulting segmentation model so that we can process an
area as big as China within a few days rather than a few months. The basic idea of our pruning method
is to remove the redundant or insignificant filters in the network that make little or no contribution
to the final output [29,36]. For example, He et al. proposed the Soft Filter Pruning (SFP) method,
which reduced FLOPs by more than 40.8% on ResNet-110 and even produced a 0.18% accuracy
improvement on CIFAR-10 [37]. Filter Pruning via Geometric Median (FPGM) [3] was proposed
in 2019, and further reduced FLOPS by more than 52% on ResNet-110 and even produced a 2.69%
relative accuracy improvement on the same dataset. In our work, we explored the pruning of a rather
complex architecture (i.e., high-resolution network [38]) compared with ResNet, implemented on a
more complicated dataset compared to CIFAR-10. We apply FPGM for network compression and
acceleration with almost no loss of accuracy. This makes it possible to map large areas.

In summary, we aim to produce a novel 3-m resolution land cover map through efficient learning
from imperfect 10-m resolution maps without any human interpretation. We propose a complete
workflow and a deep learning-based network for this task, which is beneficial to reduce the research
thresholds in this community and serves as an example to similar studies. Furthermore, we exhibit the
3-m resolution land cover mapping results over three cities in China as examples (i.e., Harbin, Taiyuan,
and Shanghai) to demonstrate the effectiveness of our proposed approach for 3-m resolution large-area
land cover mapping.

2. Data

2.1. Image Data Source

All satellite images used in this study were acquired from Planet satellites at 3-m resolution with
four bands (R, G, B, NIR). Planet’s constellation of satellites orbits the poles every 90 min, capturing
the entire Earth’s landmass every day. Radiometric correction was applied to the data. Images were
orthorectified and projected to a Universal Transverse Mercator (UTM) projection. Planet satellite
images were downloaded through Planet API (https://www.planet.com/products/platform), which
has a screening function for clouds. Users can easily exclude images whose cloud coverage exceeds a
specified percentage. Planet images of the sample datasets were acquired in June, 2017 with less than
15% cloud cover, matching the time of the 10-m resolution land cover product. Each image tile has a
size of 8000 × 8000 pixels. While the model was trained using 2017 images, we chose to use images in
2018 to produce urban maps in China, so as to provide a more up-to-date land cover product.

2.2. Label Data Source and Classification System

The supervised labeling of the training and validation datasets in this paper was the latest
public global land cover product, Finer Resolution Observation and Monitoring of Global Land
Cover (FROM-GLC10), which maps 10-m resolution global land cover in 2017 [4]. FROM-GLC10
was downloaded through the website (http://data.ess.tsinghua.edu.cn), and each downloaded tile has
22,265 × 22,265 pixels. It includes ten land cover types (i.e., Cropland, Forest, Grassland, Shrubland,
Wetland, Water, Tundra, Impervious, Bare land, and Snow/Ice) and achieves an overall accuracy
of 72.8% at the global scale. FROM-GLC10 was produced by a random forest classifier using the
multispectral Sentinel-2 image with four 10-m resolution visible and near infrared bands, and six 20-m
resolution red-edge and middle infrared spectral bands. The mapping results of FROM-GLC10 in
China were used in this study as the imperfect labels.

https://www.planet.com/products/platform
http://data.ess.tsinghua.edu.cn
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Based on the global land-cover classification system of FROM-GLC [1] and the national land-cover
classification system in China [39], we classified the land cover into seven types in China (i.e., Cropland,
Woodland, Grassland, Water, Impervious, Bare land, and Snow/Ice). As tundra in the global land-cover
classification system are very few in China, they were not included into our classification systems. The
definition of the difference between Forest and Shrubland is whether the height exceeds five meters in
the global land-cover classification system [1]. They are easily confused without rich morphological
information. Thus, we merged Forest and Shrubland into a single class of Woodland. In addition,
wetland is highly variable over time, so using a single date image as in our work would not result in
accurate classification. Due to the relatively low coverage (less than 3% of China’s territory) and high
spectral variability of wetlands in China, this type was also not included in our classification systems.
Wetland and Tundra in FROM-GLC10 were set as background and ignored during the training phase.

2.3. Datasets

The training and validation datasets used in this study were built based on the Planet images and
FROM-GLC10, covering one-third of the territory of China, which was randomly selected from the
whole of China. First, the Planet images were cropped into chips of 1024 × 1024 pixels and matched
with the corresponding FROM-GLC10 result tiles through their geographic coordinates. Thereafter,
the coordinate system of FROM-GLC10 (i.e., the WGS-84 coordinate system) was re-projected onto
the coordinate system of the Planet image (i.e., Universal Transverse Mercator Projection), so that the
FROM-GLC10 tile could be cropped and re-sampled (by nearest neighbor interpolation) to a size of
1024 × 1024 pixels, exactly matching the corresponding Planet image chip. Thus, we could obtain
the paired satellite image and land cover label as the original dataset, as shown in Figure 1. Then,
we randomly selected 100,000 training data and 2000 validation data from the original dataset as
the preliminary dataset. For better usage of FROM-GLC10, it is reasonable to use the portion of
FROM-GLC10 with relatively high accuracy and remove the poor quality portion. Therefore, we
filtered out the poor quality portion of the original dataset according to the preliminary land cover
mapping results. Specifically, we used the original dataset to train a preliminary model, and the model
is described in Section 3.2. Then, we used the trained model to predict the land cover mapping results
for each training image. The similarity between our mapping result and the FROM-GLC10 result of
each image was calculated, which is defined as the number of same classified pixels divided by the
total number of pixels in the image. On the imperfect dataset, lower similarities are more likely to
represent poor quality results instead of samples that are difficult to learn. Therefore, we filtered out
the original dataset whose similarity was below 20%. The remaining data were divided into training
and validation sets. The final size of training and validation datasets are 50,000 and 2000, respectively.
In addition, in order to increase data diversity and match the input size of the network, the input
images were cropped to 513 × 513 pixels in every training epoch.

The test dataset was built based on the published global land cover validation sample in 2015 [40],
which contains 35,011 sample units for ten types at the global scale. We only used 1692 sample units
for seven types (i.e., Cropland, Woodland, Grassland, Water, Impervious, Bare land, and Snow/Ice) in
China, where the sample units of Woodland were obtained by combining the sample units of Forest
and Shrubland. As the number of the sample units for Water and Impervious is rather small, we
supplemented 248 additional sample units of these two types by randomly generating coordinate
points on the published water, building, and road extraction results from Open Street Map. In addition,
as the published sample units were collected from the 30-m resolution satellite images in 2015, we
reinterpreted the test dataset for 3-m resolution satellite images in 2017. It should be noted that the
test dataset is totally different from the training and validation datasets. The test dataset is a reliable
point-based dataset (by human interpretation), while the labels in the training and validation dataset
are imperfect (from the published product with an accuracy of 72.8% at the global scale, as shown in
Figure 1). The total number of test sample units is 1940, and the number of each land cover type is
listed in Table 1. Figure 2 shows the distribution of the test dataset.
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Table 1. The number of samples for each land cover type in the test dataset.

Land Cover Type Cropland Woodland Grassland Water

Number of samples 336 437 303 97

Land Cover Type Impervious Bare land Snow/Ice Total Number

Number of samples 191 566 10 1940
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3. Methods

3.1. Overview of the Proposed Method

In this research, we propose a novel deep learning-based semantic segmentation approach to
transform an imperfect 10-m resolution land cover product into preferable 3-m resolution land cover
maps. The proposed approach integrates an improved high-resolution network (HRNet) with instance
normalization, adaptive histogram equalization, and a pruning process that reduces the complexity
and improves the efficiency of the model. Considering the dependence on the spatial information of
high-resolution remote sensing applications, the improved HRNet can maintain strong high-resolution
representations through keeping and fusing different resolution features, which will be described in
more detail in Section 3.2.

To improve the generalization of our proposed approach, we replace the Batch Normalization
(BN) [41] layer behind the first convolution layer with the Instance Normalization (IN), with more
details shown in Section 3.2. In addition, we design a post-processing strategy with adaptive histogram
equalization to improve the robustness of our proposed approach for the impervious type, which
will be described in more detail in Section 3.3. It can effectively mitigate the problem that the road
segmentation results (belonging to the impervious type) are always continuous, and the building
segmentation results (belonging to the impervious type) are predicted in pieces without details.

To reduce the complexity and improve the efficiency of the model for the national-scale land cover
mapping, we apply Filter Pruning via Geometric Median to compress the neural network based on the
above resulting segmentation model. It can calculate the contribution of each filter to the network and
remove the redundant filters with minor contribution. It is notable that we only use the pruned model
for the inference in the large-scale land cover mapping. The overall workflow is shown in Figure 3.
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3.2. Neural Network Model

The commonly used segmentation models in recent land cover mapping studies, such as U-Net, use
a decoder part and skip connection to recover high-resolution segmentation results from low-resolution
representations, which are extracted from a high-to-low encoder part. The design of such a network can
reasonably extract deep semantic features in the existing works. However, the encoder-decoder-based
architecture may lose spatial details in the encoder part and introduce coarse features from shallow layers
in the decoder part. Therefore, we implement a neural network model based on the high-resolution
network (HRNet) [38] to maintain the rich high-level spatial information and repeatedly use the
extracted deep semantic information. It can be divided into four stages, as represented by different
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colors of the background. Every branch denotes a different resolution, as represented by each row.
Specifically, we down-sample the input image by a 2-strided 3 × 3 convolutional layer at first, which can
effectively improve the efficiency without much image information loss. Then, the first stage contains
4 residual units (denoted by a green rectangle), and each unit is formed by a bottleneck module with a
width of 64, the same as with the ResNet-50 [42]. In the transform block (denoted by a cyan rectangle),
a horizontal arrow denotes a 1-strided 3 × 3 convolutional layer. An obliquely downward arrow
in the transform block (denoted by a pink rectangle) denotes a 2-strided 3 × 3 convolutional layer,
which transforms the input channels to 2 × input channels and down-samples the input. The second,
third, and fourth stages contain 1, 4, and 3 multi-resolution blocks, respectively. A multi-resolution
block (denoted by a black dotted box) is defined as the extraction and fusion of different resolution
features. Each multi-resolution block consists of several single-resolution convolution blocks and a
multi-resolution fusion block. A single-resolution convolution block (denoted by yellow rectangle)
contains 4 residual blocks, each formed by two 3 × 3 convolutional layers. A multi-resolution fusion
block (denoted by a purple rectangle) resembles the multi-branch fully-connection manner using
up-sample and down-sample convolution layers. The transform blocks in the second, third, and fourth
stages are similar to the first stage, and the only difference is the number of the output channels. The
widths of the feature maps in the four stages are C, 2C, 4C, and 8C, respectively (C equals 24 in this
paper). Finally, the merged output from the four different resolutions, which is rescaled through
bilinear up-sampling, is resized to the same size with the input. The Softmax layer is applied to obtain
the final segmentation map.

Due to the difference in acquisition time and image quality of satellite images, improving the
generalization of our model can effectively reduce the potential errors caused by the variations in
image qualities and increase the model robustness. In general, Batch Normalization (BN), calculating
the mean and variance of each batch of training data, is applied in deep learning networks to normalize
the data distribution for the stabilized training. However, facing the highly-possible variations in data
quality in the original satellite images, Instance Normalization (IN) is more suitable. IN calculates
the mean and variance of each single image rather than of the images of each batch, reducing the
dependency on image quality. Therefore, we make a simple yet effective modification by replacing the
BN layer behind the first convolution layer with the IN, which can effectively increase the generalization
of the model. In addition, in order to solve the problem of sample imbalance, for the impervious
type with relatively small proportion and complex targets (such as road and building), increasing the
corresponding weight in the loss function (i.e., cross entropy loss) can effectively improve the detection
of this type and improve the training efficiency and precision.

The architecture of the neural network is shown in Figure 4. The size of the input image is
513 × 513 pixels, which is an empirically optimal size considering the receptive field and GPU memory.
We empirically improve the weight of the impervious type to 3 in the loss function. We train our model
for 120 epochs with a total batch size of 32 using the Pytorch framework, with the job processed in
parallel by 16 GPUs. The initial learning rate is set to 0.01 and a stochastic gradient descent (SGD) is
applied with a momentum of 0.9.
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Figure 4. The architecture of the neural network. Different colors of the background represent four
stages. Each row represents each branch with different resolution. Red rectangle denotes Instance
Normalization. Green rectangle denotes 4 residual units, each formed by a bottleneck module with a
width of 64. Horizontal arrow in the transform block (denoted by cyan rectangle) denotes a 1-strided
3 × 3 convolutional layer. Obliquely downward arrow in the transform block (denoted by pink
rectangle) denotes a 2-strided 3 × 3 convolutional layer. Yellow rectangle denotes 4 residual blocks,
each formed by two 3 × 3 convolutional layers. Purple rectangle denotes multi-resolution fusion block
with up-sample and down-sample convolution layers. Multi-resolution block (denoted by black dotted
box) is defined as the extraction and fusion of different resolution features.

3.3. Contrast Limited Adaptive Histogram Equalization Post-Processing

Impervious is an important yet imbalanced and indistinguishable type in our study. As the
supervised label generated from the 10-m resolution land cover product is relatively coarse in the
city area with many mixed types, the road (belonging to Impervious) segmentation results are not
always continuous, and the building (belonging to Impervious) segmentation results are predicted in
pieces without details. Therefore, contrast limited adaptive histogram equalization (CLAHE) [43] is
applied to enhance the local contrast of the impervious type for stronger discrimination. The adaptive
method redistributes the lightness values of the image based on several histograms, each histogram
corresponding to a different portion of the image. The size of the block processed each time is set
to 512 × 512 in a predicted image with a size of 8000 × 8000, which is an experimental best size in
large-scale land cover mapping.

In the specific implementation, first, we extract the probability map of impervious type after the
Softmax layer. The probability map is mapped from [0, 1] to [0, 255] so that the CLAHE can be applied.
After the CLAHE processing, the prediction mask of impervious type can be obtained by setting a
threshold. We use the impervious mask to weight the original probability values. The probability
value is doubled, where the value is positive on the impervious mask. Otherwise, the probability value
is halved. Note that only the probability values of impervious type are weighted and the values of
other types are not changed. Finally, the prediction results can be obtained by the Argmax function.

3.4. Filter Pruning for Feature Dimension Reduction and Neural Network Acceleration

To reduce the model storage space and speed up the inference in large-scale land cover mapping,
we apply Filter Pruning via Geometric Median (FPGM) [44] to the modified HRNet obtained in
Section 3.2. It compresses the neural network by pruning redundant filters, and the process is
summarized in Algorithm 1. The HRNet model trained in Section 3.2 is used as the pre-trained
model. He et al. applied FPGM for VGG and ResNet as examples [44], while the architecture of our
modified HRNet is more complex, with increased multi-resolution feature fusions. Therefore, all the
convolutional layers of the model, except for the latest layers before the multi-resolution fusion block,
are pruned by a ratio of 40%. The main idea of the FPGM is that if some filters are the same or similar
to the other filters in the same layer, these filters can be represented by the other filters and cropped
without a great influence on the model performance. Specifically, we calculate the sum of the 2-norms
of each filter with the other filters in the same layer, sort the sums from small to large, and set the
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parameters of the first 40% filters to zero. We perform the pruning in such a way because the smaller
values indicate that they are more similar to other filters, as shown in Equation (1):

Fi, j∗ ∈ argmin
j∗∈[1, Ni]

∑
j′∈[1, Ni]

||x− Fi, j′ ||2 (1)

where Fi, j∗ are the filters needing to be pruned, which represent several jth filters in the ith layer. We
use Ni to represent the number of the filters of the ith layer.

Then, the pruned model parameters are updated to the previous model as the pre-trained model
in the next training epoch. The model is continuously trained in a regular way, and we repeat the
above pruning process until the end of the iteration. Finally, the compact model is obtained by deleting
the filters with zero.

Algorithm 1. Algorithm Description of FPGM

Input: training data: X.
1: Given: pruning rate 40%
2: Initialize: model parameter W =

{
W(i), 0 ≤ i ≤ L

}
3: for epoch = 1; epoch ≤ epochmax; epoch ++ do
4: Update the model parameter W based on X
5: for i = 1; i ≤ L; i ++ do
6: Find 40% ×Ni filters that satisfy Equation (1)
7: Zeroize selected filters
8: end for
9: end for
10: Obtain the compact model W∗ from W

Output: The compact model and its parameters W∗

4. Experimental Results

4.1. The Quantitative Results of the 3-m Resolution Land Cover Maps of China

In this section, we quantify the 3-m resolution land cover mapping results and compare them
with their 10-m resolution counterparts on the test dataset in China. The 10-m resolution land cover
mapping results are from the public product for 2017 [4]. We matched the corresponding coordinate
points to get 10-m resolution classification results. Tables 2 and 3 show the confusion matrices derived
from the 10-m resolution map and the 3-m resolution test sample set, respectively.

Table 2. The confusion matrix obtained from the 10-m resolution land cover product in China.

Name Cropland Woodland Grassland Water Impervious Bare Land Snow/Ice SUM UA (%)

Cropland 263 34 32 3 36 1 0 369 71.27
Woodland 27 373 30 0 2 0 0 432 86.34
Grassland 32 17 188 1 12 32 0 282 66.67

Water 0 3 1 89 1 3 2 99 89.90
Impervious 9 1 2 2 132 1 0 147 89.80
Bare land 5 9 49 2 8 526 3 602 87.38
Snow/Ice 0 0 1 0 0 3 5 9 55.56

SUM 336 437 303 97 191 566 10 1940
PA (%) 78.27 85.35 62.05 91.75 69.11 92.93 50.00 81.24 *

* The value denotes the Overall Accuracy (OA).
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Table 3. The confusion matrix obtained from the 3-m resolution land cover product in China.

Name Cropland Woodland Grassland Water Impervious Bare Land Snow/Ice SUM UA (%)

Cropland 282 27 20 3 20 1 0 353 79.89
Woodland 21 391 26 2 6 0 1 447 87.47
Grassland 22 10 223 1 7 19 0 282 79.08

Water 1 1 0 84 2 2 0 90 93.33
Impervious 8 1 2 4 150 2 0 167 89.82
Bare land 2 7 32 3 6 542 6 598 90.64
Snow/Ice 0 0 0 0 0 0 3 3 100.00

SUM 336 437 303 97 191 566 10 1940
PA (%) 83.93 89.47 73.60 86.60 78.53 95.76 30.00 86.34 *

* The value denotes the Overall Accuracy (OA).

The User’s Accuracy (UA) is the fraction of retrieved instances that are relevant, and the Producer’s
Accuracy (PA) is the fraction of relevant instances that are retrieved [45]. We also calculate the Overall
Accuracy (OA), which represents the number of correctly classified sample sets divided by the total
number of sample units [46]. The overall accuracies of the 10-m resolution map and the 3-m resolution
test sample set are 81.24% and 86.34%. The transformed 3-m resolution land cover classification result
using our proposed approach improved the OA by 5.1% from the 10-m resolution land cover mapping
result. For the types of cropland, woodland, grassland, impervious and bare land, the 3-m resolution
land cover maps improved the PA by 5.65%, 4.12%, 11.55%, 9.42%, and 2.83%, respectively, compared
to the 10-m resolution land cover maps, benefitting from the high-resolution satellite image and the full
use of the spatial information in the 3-m data. The PA of the water type declined from 91.75% (10-m
resolution) to 86.60% (3-m resolution). We think that this is largely due to there being fewer bands in
the 3-m resolution image. The spectrum features, as demonstrated in previous work [45], can play a big
role in determining the water bodies. However, if we look at the UA for the water type, our approach
with 3-m resolution data improves the result from 89.90% (10-m resolution) to 93.33% (3-m resolution).
The better UA for the water type demonstrates that the extra spatial information can effectively help
remove the false detection results (more detailed discussion is given in Section 4.2). The results of the
snow/ice type are similar to those of the water type (more detailed discussion is given in Section 5.4).

4.2. Examples of Land Cover Mapping in China

To evaluate the effectiveness of our proposed approach for large-scale land cover mapping, we
present the 3-m resolution land cover maps over three mega cities in China (i.e., Harbin, Taiyuan, and
Shanghai). These three cities represent different characteristics of landforms in China. The detailed
comparison results of 3-m resolution and 10-m resolution land cover products are shown for both
rural and urban areas. We analyze the comparison results through Figures 5–7. In general, owning to
the effective extraction of spatial information, our proposed method can reduce the incorrect pixel
predictions in the 10-m resolution land cover map caused by the pixel-based classification method.
From Figure 5e–j, and Figure 6e–g, we can see that Cropland tends to be confused with Woodland in
FROM-GLC10, while our proposed approach can effectively reduce the confusion and hence obtain
higher accuracies for these two types. From Figure 5b–d, Figure 5h–j, and Figure 7h–j, the impervious
classification results of FROM-GLC10 tend to be underestimated. Our proposed approach reduces
the confusion between Impervious and Water, and obtains more accurate impervious segmentation
results compared with FROM-GLC10. In addition, owing to the higher resolution satellite image and
the post-processing, our proposed method can better capture linear and small objectives (e.g., road
and narrow river). The road segmentation results (belonging to the impervious type) have clearly
outperformed FROM-GLC10, as shown by Figure 5e–j, Figure 6b–d, and Figure 6h–j. Figure 7e–g show
the improved capturing of narrow river (belonging to the water type). Consequently, our proposed
approach achieves an effective improvement of transferring the imperfect 10-m resolution land cover
maps to the 3-m finer resolution land cover maps in China.
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Figure 5. The 3-m resolution land cover maps of Harbin and visual comparison of 3-m resolution and
10-m resolution land cover mapping results. (a) 3-m resolution land cover mapping results of Harbin.
(b) Planet image. (c) 3-m resolution land cover mapping results. (d) 10-m resolution public land cover
product. (e) Planet image of rural area. (f) 3-m resolution land cover mapping results of rural area.
(g) 10-m resolution public land cover product of rural area. (h) Planet image of urban area. (i) 3-m
resolution land cover mapping results of urban area. (j) 10-m resolution public land cover product of
urban area. The locations of (b–d), (e–g), and (h–j) are (126◦35’58.9”E, 45◦44’0.6”N), (124◦28’39.1”E,
45◦8’34.3”N), and (126◦31’25.2”E, 45◦43’37.2”N), respectively.
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Figure 6. The 3-m resolution land cover maps of Taiyuan and visual comparison of 3-m resolution and
10-m resolution land cover mapping results. (a) 3-m resolution land cover mapping results of Taiyuan.
(b) Planet image. (c) 3-m resolution land cover mapping results. (d) 10-m resolution public land cover
product. (e) Planet image of rural area. (f) 3-m resolution land cover mapping results of rural area.
(g) 10-m resolution public land cover product of rural area. (h) Planet image of urban area. (i) 3-m
resolution land cover mapping results of urban area. (j) 10-m resolution public land cover product of
urban area. The locations of (b–d), (e–g), and (h–j) are (112◦29’33.7”E, 37◦35’21.1”N), (112◦7’38.3”E,
37◦52’49.4”N), and (112◦27’37.5”E, 37◦38’14.8”N), respectively.
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Figure 7. The 3-m resolution land cover maps of Shanghai and visual comparison of 3-m resolution and
10-m resolution land cover mapping results. (a) 3-m resolution land cover mapping results of Shanghai.
(b) Planet image. (c) 3-m resolution land cover mapping results. (d) 10-m resolution public land cover
product. (e) Planet image of rural area. (f) 3-m resolution land cover mapping results of rural area.
(g) 10-m resolution public land cover product of rural area. (h) Planet image of urban area. (i) 3-m
resolution land cover mapping results of urban area. (j) 10-m resolution public land cover product of
urban area. The locations of (b–d), (e–g), and (h–j) are (121◦18’25.2”E, 30◦59’49.2”N), (121◦0’21.2”E,
30◦59’22.2”N), and (121◦14’14.7”E, 31◦9’24.1”N), respectively.
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5. Discussion

5.1. Analysis of Accuracies between 3-m and 10-m Resolution Land Cover Maps

We analyze the reliability of the accuracy comparison between the 3-m and 10-m resolution land
cover maps. First, we discuss the construction of the test dataset with seven types, based on the test
dataset with ten types [1]. According to the definition of Woodland in our classification system, we
combined the results of Forest and Shrubland and use the sample units of those two types for the
accuracy calculation for Woodland in the 10-m resolution land cover map. As the numbers of Tundra
and Wetland sample units were only 1 and 26 in China, the removal of these two types of sample
unit would not have much impact on the accuracy comparison. It should be noted that we only
compare the seven types in common. In addition, as the number of original sample units of Water and
Impervious is only 18 and 50 in China, we supplemented sample units for these two types for more
reliable accuracy assessment.

We also further discuss the impact of original product accuracy and resolution on the
high-resolution land cover mapping. We assume that excessive resolution differences (e.g., more
than 10 times) between products and high-resolution images are not suitable for supervised deep
learning methods. By contrast, it can be regarded as a weakly supervised learning problem as defined
in [22]. However, more accurate products could help more effective learning, but the improvement
also depends on the amount of information contained in the high-resolution images.

5.2. The Effectiveness of Our Proposed Network and Post-Processing

In this section, we analyze the effectiveness of the network (introduced in Section 3.2) and
the post-processing (introduced in Section 3.3) in this application. First of all, we compare the
high-resolution network (HRNet) with commonly used and stable CNN architectures in the deep
learning domain (e.g., fully convolutional densenet (FC-DenseNet) and U-Net). The comparison
experiments use the same dataset and the same set of strategies for pre-processing, training (such as
the learning rate and the number of GPUs), and post-processing. All models have been fully trained
and converged for valid comparison. The FC-DenseNet64 is implemented following [47] and the
U-Net is implemented following [48]. The maximum receiving field sizes of U-Net, FC-Densenet64,
and HR-Net (in this work) are 130 × 130, 695 × 695, and 1439 × 1439, respectively. Note that due to the
padding process, the actual receptive field is lower than the theoretical value. The comparison results
are shown in Table 4. The high-resolution network outperforms FC-DenseNet and U-Net by 2.47% and
2.94% in OA, respectively, owing to the maintenance of strong high-resolution representations and the
combination of different resolution representations by our network. Therefore, we can conclude that
the high-resolution network is more suitable for this task.

Table 4. Comparison results for the test dataset between the high-resolution network and other CNN
architectures (i.e., FC-Densenet and U-Net).

Models
PA (%)

OA (%)
Cropland Woodland Grassland Water Impervious Bare Land Snow/Ice

10-m
resolution map 78.27 85.35 62.05 91.75 * 69.11 92.93 50.00 * 81.24

U-Net 73.21 88.79 70.96 86.60 75.92 95.05 20.00 83.40
FC-DenseNet 81.55 91.08 * 68.32 84.54 68.59 94.52 0.00 83.87
HRNet (ours) 83.93 * 89.47 73.60 * 86.60 78.53 * 95.76 * 30.00 86.34 *

* The values denote the best results.

The generalization and robustness of the model is important for remote sensing applications,
especially when facing images with a wide variety of sensor and image qualities. In our approach,
the instance normalization part is an important module for achieving that. To better identify the
generalization and robustness of our model, we test images from different satellite sources. We show
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an example from the Gaofen Image Dataset (GID) [16] to analyze the effectiveness of our Instance
Normalization (IN) module. The image in Figure 8a was acquired from the Gaofen-2 satellite at a
4-m resolution with a size of 7200 × 6800 pixels. The classification system of the GID contains five
major types (e.g., Farmland, Forest, Meadow, Water, and Built-up), which substantially match five
types (e.g., Cropland, Woodland, Grassland, Water, Impervious) in our classification system. We train
another model without IN for comparison. Note thatthe models are trained on the dataset described in
Section 2.3 and that the GID data are only for testing. The comparison results are shown in Figure 8.
From the red rectangles, the result of the model with IN is significantly better than the result of the
model without IN, as the former can effectively reduce confusion among different types. The usage of
IN does not bring the accuracy improvement with our test dataset, as the images in our test dataset were
acquired from the same satellite sensor and within a similar time frame. However, when applying our
model to land cover mapping for large-scale areas in different years, the generalization and robustness
of the model with IN can effectively reduce the errors caused by the variations in image quality and
satellite source.
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Figure 8. The comparison results of using Instance Normalization (IN) or Batch Normalization (BN)
after the first convolution layer on a Ganfen-2 image. (a) Gaofen-2 image. (b) Ground truth. (c) Result
without IN. (d) Result with IN.

A significant improvement in road extraction (belonging to the impervious type) is obtained
in large-scale land cover mapping through the post-processing, and urban areas benefit more from
this strategy. We show an example in Figure 9. The left red rectangle in Figure 9a represents a dense
impervious area, and the rectangle on the right represents a sparse impervious area. It can be found
that different responses exist between the dense impervious area and the sparse impervious area in
Figure 9b. By analyzing the heat map of this type, it is found that the response is higher in the dense
impervious area, while it is lower in the sparse impervious area. The responses are not distinguishable
enough between the impervious type and other land cover types, which causes road (belonging to
the impervious type) prediction results to be discontinuous and the vegetation between buildings to
be difficult to identify. As shown in Figure 9c, the responses are almost consistent both in the dense
impervious area and in the sparse impervious area from the post-processing, and more distinguishable
between impervious and other land cover types. Note that the post-processing strategy provides more
spatial details for the impervious type, although the overall accuracy is the same as for the results
without the post-processing strategy.
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5.3. The Computational Efficiency of Our Proposed Method in Large-Scale Land Cover Mapping

In order to make it possible to produce the China land cover map, we apply filter pruning for
network compression and acceleration with almost no loss of accuracy. The specific overall accuracy,
reduced parameters, and theoretical acceleration in our proposed network are shown in Table 5. The
realistic acceleration varies from different deep learning platforms. Non-tensor layers, such as batch
normalization (BN), are not pruned and still need the inference time on the GPU, which influences
the realistic acceleration. In addition, the IO delay and efficiency of BLAS libraries also influence
the realistic acceleration. In this work, it takes about 1.2 s to predict two 1024 × 1024 images on a
single GPU using two prediction tasks. Therefore, taking into account the overhead of overlapping
predictions, the entire China land cover model inference could be done in 5 h on 64 GPU cards. Note
that our best model reaches 86.34% OA for China. The pruned model achieves a slightly lower OA of
86.04%, but provides the option to process the images of the whole of China in a more efficient way.

Table 5. Comparison of the baseline model and the pruned model in terms of overall accuracy, number
of parameters, model size, and theoretical acceleration.

Models Overall
Accuracy (%)

Number of
Parameters

Model Size
(MB)

Theoretical
Acceleration (%)

Baseline model 86.34 16,812,946 130 -
Pruned model 86.04 9,720,660 39 52.63

5.4. Shortcomings with 3-m Resolution Land Cover Map and Potential Strategies for Further Research

The first issue is the slight traces of stitching in large-scale land cover mapping. Due to the
inconsistent acquisition date of each image tile, there are slight radiation differences between Planet
image tiles, as shown in Figures 5b and 7b. We applied Instance Normalization (IN) in the network to
normalize the extracted features by calculating the mean and variance of each single image. Although
this can reduce the dependency on image quality and hence reduce the traces of stitching, the land
cover maps could still be further improved by carefully integrating Instance Normalization (IN) and
Batch Normalization (BN) to improve the generalization capacity of the network.

The second issue is that the results of water and snow/ice types in the 3-m resolution land cover
maps are not effectively improved. This results from the limited spectral information of the 3-m
resolution data (with four bands) compared with the 10-m resolution data (with ten bands). It has a
huge negative impact on the identification of water and snow/ice types, which greatly benefits from
spectral information. Multi-source data fusion is a potential strategy. The 3-m resolution land cover
mapping results could be further improved if 10-m resolution satellite images with rich spectral and
temporal information were utilized in our proposed method. In addition, as the satellite images are
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acquired in summer, there are only a few sample units of the snow/ice type and the prediction results
for this type are less than normal. These issues should be addressed in future research.

The third issue concerns the cloud coverage of single temporal image. Cloud coverage has a greater
impact on the land cover mapping results, even though we have selected the images with the least
cloud coverage. These issues should be improved by using multi-temporal images in future research.

The fourth issue is related to the level of thematic detail that could be further expanded with 3-m
resolution data. In future work, more detailed land cover types will be experimented with to take
advantage of the high spatial resolution of the data and the better use of spatial contexts offered by the
deep-learning algorithms.

6. Conclusions

In this paper, we transfer 10-m resolution land cover mapping results to 3-m resolution land
cover mapping for China. We have explored a possible solution for completing this work without
human efforts. With our proposed land cover mapping approach, a higher accuracy than with the
10-m land cover data is obtained by 3-m land cover classification owing to the robust deep learning
based neural network with maintained high-resolution representation. We further adopt Instance
Normalization (IN) after the first convolution layer to improve the generalization and robustness of
the model. More spatial details of the impervious type are obtained owing to the post-processing
strategy, which fully utilizes the heat maps obtained from the neural network and greatly reduces the
impact of the coarse supervised labels generated by the 10-m resolution data. More efficient inference
is obtained owing to the compressed model by filter pruning via geometric median. Therefore, we can
effectively and efficiently obtain a more promising 3-m resolution land cover map (an improvement
of 5.1% in OA over the 10-m resolution land cover product) should similar 3-m resolution satellite
images be used to map the whole of China. Our approach demonstrates the possibility of scaling
from existing lower resolution mapping products to higher resolution mapping products and can
significantly reduce the cost and human efforts required for performing such large-scale mapping
projects. In future research, we will further improve the robustness of our proposed approach in the
presence of noisy labels. We will also explore the combination of other open data sources (e.g., OSM)
for building a better training dataset.
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