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Abstract: Urban land use mapping is critical to understanding human activities in space. The first
national mapping result of essential urban land use categories of China (EULUC-China) was released
in 2019. However, the overall accuracies in some of the plain cities such as Beijing, Chengdu, and
Zhengzhou were lower than 50% because many parcel-based mapping units are large with mixed
land uses. To address this shortcoming, we proposed an area of interest (AOI)-based mapping
approach, choosing Beijing as our study area. The mapping process includes two major steps. First,
grids with different sizes (i.e., 300 m, 200 m, and 100 m) were derived from original land parcels
to obtain classification units with a suitable size. Then, features within these grids were extracted
from Sentinel-2 spectral data, point of interest (POI), and Tencent Easygo crowdedness data. These
features were classified using a random forest (RF) classifier with AOI data, resulting in a 10-category
map of EULUC. Second, we superimposed the AOIs layer on classified units to do some rectification
and offer more details at the building scale. The overall accuracy of the AOI layer reached 98%,
and the overall accuracy of the mapping results reached 77%. This study provides a fast method
for accurate geographic sample collection, which substantially reduces the amount of fieldwork for
sample collection and improves the classification accuracy compared to previous EULUC mapping.
The detailed urban land use map could offer more support for urban planning and environmental
policymaking.

Keywords: area of interest; urban land use; sample collection; building scale; random forest

1. Introduction

Urban areas are the places where humankind has dramatically transformed the surface,
affecting the Earth’s biochemical cycles and climate from local to global scales. With rapid
urbanization, urban areas are playing a more significant role in changing the process,
distribution, and patterns of hydrology, climate, biodiversity, economic development, and
human well-being on Earth. For example, the impervious cover is increased in urban
areas, which funnels accumulated pollutants from buildings, roadways, and parking lots
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into streams, thus changing hydrology. The concentration of transportation and industry
in urban centers means that cities are point sources of CO2 and other greenhouse gases,
affecting Earth’s climate. Urbanization usually reduces both species richness and evenness
for most biotic communities within cities as well as native species diversity at regional
and global scales. The unprecedented rates of urban population growth over the past
century have occurred on <3% of the global terrestrial surface, yet the impact has been
global, with 78% of carbon emissions, 60% of residential water use, and 76% of wood
used for industrial purposes attributed to cities. Urban dwellers depend on the productive
and assimilative capacities of ecosystems well beyond their city boundaries—“ecological
footprints” tens to hundreds of times the area occupied by a city—to produce the flows of
energy, material goods, and nonmaterial services (including waste absorption) that sustain
human well-being and quality of life [1,2]. To better support the development of adaptation
planning to respond to climate change, it is critical to acquire high-quality (accurate and
high resolution) urban land-use data. However, it is difficult to meet the requirements
of efficiency and accuracy of land-use mapping through traditional mapping methods of
visual interpretation and mathematical statistics in rapidly urbanizing areas [3].

Powerful in self-adaptive capability, machine-learning methods are popularly applied
in land-use classification. Random Forests, support vector machines, and artificial neural
networks have made a great contribution to land-cover/land-use classification [4–11]. The
support vector machine (SVM) is applied to reduce the execution time of storing and
processing hyperspectral images [11]. Simple/multiple linear regression, random forest
(RF), and support vector regression (SVR) were used to estimate canopy nitrogen weight of
maize leaves, and the results showed that both machine learning models performed much
better than linear regression [4]. Multisource remote sensing imagery was used to obtain a
wetland species map using an RF classifier [9]. Sentinel-2 and airborne imagery were also
used for the mapping of citrus and other crops in highly fragmented areas [10].

However, land-use classification differs from land-cover classification due to the
fact that land cover focuses on natural attributes, while land use focuses more on social
attributes. Although there are some similarities between these two attributes, in urban
areas, more emphasis is placed on land-use patterns and conditions. Due to the spectral
and textural similarity between different categories of urban land use, remote sensing
imagery cannot adequately reveal the socioeconomic attributes resulting from human
activities. The complexity of socioeconomic attributes makes urban land-use classification
more challenging.

With the development of big data, many new data sources were introduced into the
land-use classification field. Mobile phone record data, floating car data, social media
data, and other big data have shown their importance in land-use classification [3,12–18].
Although the inclusion of socioeconomic data can improve the accuracy of land-use classi-
fication, studies combining image data and multiple-source Internet open data to classify
urban land use are relatively rare, and few studies have been conducted in large cities.
Urban areas in Europe were predicted by means of Open Street Map (OSM) with artificial
neural networks and genetic algorithms [19]. Land use maps of Vienna, Austria were
obtained with OSM through a hierarchical GIS-based decision tree approach [20]. Land
use maps for the United States were produced based on Census data sets of housing,
employment, and infrastructure, as well as satellite imagery [21]. Land use patterns of
Toronto, Canada were identified using OSM [22]. Built-up areas of Sub-Saharan African
were extracted via OSM with a supervised classification method, and results suggested
that automated supervised classifications based on OSM provided performances similar
to manual approaches [23]. Urban land use mapping at the street block level in Dakar
and Ouagadougou was conducted using OpenStreetMap and RF [24]. The essential urban
land use categories (EULUC) in China conducted classification with the help of random
forest and multisource data [15], dividing the urban land use into 5 Level I and 12 Level
II categories. The mapping of EULUC was implemented based on parcels partitioned by
road networks from the OSM. EULUC classified features of each parcel extracted from
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multi-source geospatial data and social data with an RF classifier. The overall accuracy of
the Level I and Level II classification, evaluated using samples collected from 27 typical
Chinese cities, were 61.2% and 57.5%, respectively [15]. However, in plain cities such as
Beijing, Chengdu, and Zhengzhou, their overall accuracies were lower than 50%.

Traditional land-use mapping is time-consuming and requires accurate land use
sample data, which are difficult to collect. During sample collection, data inconsistency
arises due to the subjective criteria of different sample collectors in different cities [15]. In
this study, we propose to use AOI data collected from the Baidu map as training and test
samples for classification, reducing labor-intensive sample collecting work and offering
purer training samples. Compared with traditional polygon data without prior knowledge,
the AOI data has an accurate extent of actual land use. The high purity of the land use
category within the polygon makes it more suitable as a training sample.

In EULUC-China, the OSM road network was used to generate land parcels. However,
it is not an ideal data source for some Chinese cities. The road network of OSM in China
is relatively sparse, especially in the urban fringe areas. These land parcels generated are
too large for only one category. To address the issue of mixed land uses in large parcels,
we superimposed smaller grids ranging from 300 m to 100 m in 100 m intervals onto
the original parcels larger than 200,000 m2 to generate a smaller classification unit. Next,
multiple features were derived from satellite images and social data. AOI data served as the
main training sample. With an RF classifier, these units were classified into 10 categories,
including residential, business, commercial, industrial, administrative, medical, cultural,
greenspace and park, educational, and village. In addition to using the AOI data as
samples, we also superimposed the AOI layer onto the classification units to obtain the
map of EULUC-AOI.

2. Study Area and Data Sets
2.1. Study Area

Beijing is the capital city of China, located on the northwestern edge of the North
China Plain (Figure 1). It is surrounded by mountains on three sides to the west, north, and
northeast, with a terrain high in the northwest and low in the southeast. The southeast is a
plain that slowly slopes to the Bohai Sea. By 2018, Beijing had 16 jurisdictions with a total
area of 16,411 km2, an artificial impervious surface area of 4403 square kilometers, and an
artificial impervious surface coverage rate of 26.8% [25]. Beijing is the political, cultural,
technological, and international communication center of China. Adjacent to Tianjin and
Hebei Province, Beijing is an important part of the Beijing-Tianjin-Hebei city cluster. In
addition, Beijing is the third most populous city and the most populous capital in the
world, having a significant international influence. In the mapping result of EULUC-China,
the overall accuracy in Beijing was lower than 50%. In this study, we chose Beijing as our
study area to assess the improved mapping method and improve classification accuracy.

2.2. Data Sets
2.2.1. Sentinel-2 Optical Imagery

We used the Sentinel-2 L2A level product to obtain the reflectance value at the bottom
of the atmosphere [26]. Four bands of red (R), green (G), blue (B), and near-infrared (NIR)
with a ground resolution of 10 m were used. The data were integrated from 1 January to
31 December 2018 as mean composites. It was freely calculated and downloaded from the
Google Earth Engine platform (https://code.earthengine.google.com/).

2.2.2. Baidu Map Point of Interest (POI) and AOI

POI data were obtained from the Baidu map API (http://api.map.baidu.com/place/
v2/search) in 2019, and AOI data were obtained via web crawlers from the website (http://
map.baidu.com/?reqflag=pcmap&coord_type=3&from=webmap&qt=ext&ext_ver=new&
l=18&uid=?&key=?/) in 2019. Each POI and AOI record contained attribute information
such as name, urban function, and geographic information such as location coordinates

https://code.earthengine.google.com/
http://api.map.baidu.com/place/v2/search
http://api.map.baidu.com/place/v2/search
http://map.baidu.com/?reqflag=pcmap&coord_type=3&from=webmap&qt=ext&ext_ver=new&l=18&uid=?&key=?/
http://map.baidu.com/?reqflag=pcmap&coord_type=3&from=webmap&qt=ext&ext_ver=new&l=18&uid=?&key=?/
http://map.baidu.com/?reqflag=pcmap&coord_type=3&from=webmap&qt=ext&ext_ver=new&l=18&uid=?&key=?/
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and polygons. All POIs and AOIs were originally labeled with 17 categories. After cleaning
and selection, POIs were classified into 11 categories: Residential, business, commercial,
industrial, administrative, medical, cultural, greenspace and park, educational, industrial
park, and companies with a total number of 1,419,530 records in our study area. AOI
records were classified into 9 categories, including residential, business, commercial, indus-
trial, administrative, medical, cultural, green space and parks, and educational, with a total
number of 26,035 records.

Figure 1. Map of the study area. The blue line shows the boundary of the administrative area of
Beijing, China. The artificial impervious surface areas within Beijing are indicated by an orange
boundary.

2.2.3. Luojia-1 Nighttime Lights

Luojia-1 nighttime lights (NTL) data were at a ground spatial resolution of 100 to
150 m [27]. NTLs, recorded by satellite-based remote sensing sensors, detect nighttime
light emissions at the surface. The nighttime data reflects the development level of the area
and the intensity of human activity. It can be freely downloaded with a registered account
from the official website of Luojia-1 (http://59.175.109.173:8888/index.html).

2.2.4. Easygo Crowdedness Data

Easygo crowdedness data are commercial data products provided by Tencent. Based
on the user’s mobile-phone locating-request data collected by Tencent, it describes the
spatial distribution of relative congestion in real-time [28]. Typical applications include
querying the current degree of congestion in a scenic spot or business district for users’
reference. Easygo crowdedness data were collected via the application programming
interface (http://c.easygo.qq.com/) from 6 September to 7 September 2019, which is no
longer available. In subsequent studies, the WorldPop data (https://www.worldpop.org/),
with a spatial resolution of 100 m, can be used to replace Easygo Crowdedness data. Each
record contains attribute information such as time and value of relative congestion at that
time and geographic information like location coordinates. It is used to replace Tencent
mobile-phone locating-request (MPL) data [29] in the EULUC-China, reducing resolution
from 1 km to 27 m.

http://59.175.109.173:8888/index.html
http://c.easygo.qq.com/
https://www.worldpop.org/
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3. Method

We developed a classification system of urban land use categories suitable for Beijing,
which can be easily cross-walked to EULUC-China. Table 1 presents the classification
system at the classification unit and the AOI level. The unit-level system includes resi-
dential, business, commercial, industrial, administrative, medical, cultural, greenspace
and park, educational, and village, while the classification system at the AOI level drops
the village category because of the lack of village information in AOI data. Residential
land refers to land for living in urban areas and its ancillary facilities, excluding land for
commercial services and other facilities. Business land refers to land for business services
and office, including office buildings, commercial office, financial activities, and other office.
Commercial land refers to land for commercial retail, service, and entertainment functions,
including retail stores, markets, restaurants, hotels, theaters, concert halls, and land for
other commercial and service. Industrial land refers to land for industrial production,
manufacturing, machinery and equipment repair, etc. Administrative land refers to land
for governments, social groups, mass self-government organizations, military, diplomacy,
etc. Educational land refers to land for all types of education, including higher education
institutions, secondary professional schools, secondary schools, elementary school, kinder-
gartens, and their ancillary facilities, schools for the deaf, dumb, blind, etc., as well as
independent student living space for schools. Medical land refers to land for health care,
epidemic prevention, rehabilitation, emergency facilities, etc. Cultural land refers to land
for public cultural facilities, including public libraries, museums, art galleries, exhibition
halls, etc. Greenspace and park land refers to the land for public sports venues, parks, zoos,
landscaping and protection, and vegetation such as woodland, grassland, farmland and
bare land in the urban fringe areas. Village land refers to land for the villagers’ settlement
in the urban fringe areas, which mainly consists of villagers’ self-built houses.

Table 1. The redefined classification system of essential urban land use categories-area of interest
(EULUC-AOI).

Unit Level AOI Level

01 Residential 01 Residential
02 Business 02 Business

03 Commercial 03 Commercial
04 Industrial 04 Industrial

05 Greenspace and park 05 Greenspace and park
06 Administrative 06 Administrative

07 Medical 07 Medical
08 Cultural 08 Cultural

09 Educational 09 Educational
10 Village

In this study, the artificial impervious surface areas of Beijing were used as the study
area. Some rural land use categories existed in the fringe areas, including villages and
vegetation land. Villages are complex, with residences, hospitals, schools, police stations,
commercial stores, and factories all mixed together. In addition, there was a lack of
sufficient data to support separating these categories, thus we added a separate village
category. AOI data were mostly distributed in the urban center area, lacking the village
category. Therefore, we manually interpreted villages at the unit level, which was easily
distinguishable from Sentinel-2 images (Figure 2).

Figure 3 presents the workflow of this mapping scheme. The mapping process mainly
consisted of 6 sections, including the generation of units, the interpretation of training units,
the generation of the AOI layer, feature extraction, training using the RF classifier, and the
interpretation of validation units. The mapping result consisted of 2 parts, unit classification
results and final mapping results with AOIs superimposed on the unit classification results.
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Figure 2. Examples of manually interpreted land-use/land-cover categories from remote sensing
imagery, indicated with orange boundaries. (a) Rural vegetation. (b) Urban greenspace. (c) Villages.
(d) Residence.

Figure 3. The workflow of the mapping scheme.

3.1. Generation of Units and Interpretation of Added Training Units

As the road network in Beijing is horizontal and vertical (running north-south or east-
west, Figure 4), the grid was firstly rotated to roughly matching the road network direction.
Land parcels generated by OSM road network were sometimes too large, especially in
suburbs and urban fringe areas. Parcels larger than 200,000 m2 were heavily land-use
mixed, resulting in low classification and requiring further decomposition. We created grids
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of different sizes ranging from 300 m to 100 m in 100 m intervals and further superimposed
each grid on the original parcels larger than 200,000 m2 to generate classification units.

Figure 4. The road network of central Beijing.

Due to the lack of rural greenspace (vegetation such as woodland, grassland, farmland,
and bare land in the urban fringe areas) and village categories in the AOI data, we manually
collected sample units of these 2 categories from optical remote sensing images. As these
2 categories were easily distinguishable from Sentinel-2 images, it was easy to obtain
sufficient sample units. 351 units of village category and 123 units of greenspace category
were collected.

3.2. Generation of AOI Layers

The AOI data obtained from the Baidu map contains attribute information related to
functional categories. In this study, we mainly used attributes of “name” and “functional
category” of AOI records and classified them into 9 target categories. Considering that
industrial and business units were mutually exclusive, we conducted a simple cleaning on
the classified AOI data. We used AOI records of the industrial park and industrial-mining
categories to update the business AOI records within a radius of 1.2 km. If AOI records of
office buildings category were widely distributed within the radius, then the AOI retains
the business category. If office buildings are sparse, then the business category will be
updated to the industrial category. Then we get the classified AOI data.

Table 2 presents an overview of the AOI data. The total area of AOIs was 966 km2.
Without the greenspace and park, the area of AOIs was 702 km2. After eliminating spa-
tial duplication, the total area of AOIs was about 881 km2, which was about 1/5 of the
impervious surface area (4400 km2). Residential AOIs have 9525 records occupying an
area of 398 km2 and a proportion of 41.20%. Greenspace and park AOIs rank second
with 929,264 km2 and 27.33% in turn. Areas were 95 km2 (9.43%), 48 km2 (4.97%), 39 km2

(4.04%), 15 km2 (1.55%), 11 km2 (1.14%), 11 km2 (1.14%), and 85 km2 (8.80%) for busi-
ness, commercial, industrial, administrative, medical, cultural, and educational classes,
respectively.

In this study, the artificial impervious surface was used as the urban area, and the
land use classifications were conducted within it. Figure 5 shows the distribution of AOIs
across the impervious surface. The AOI data were mainly distributed in the center of
the impervious surface. Residential AOIs were the most widely distributed, followed by
greenspace and park AOIs. Educational AOIs have a distinct concentration in the north-
west. In addition, industrial AOIs have a clustered distribution in the southeast. The AOIs
used as training samples were simply filtered. We dropped AOIs without the POI of the cor-
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responding category inside. After cleaning, numbers were 9004, 2867, 3078, 574, 1204, 610,
217, 627, and 2972 for residential, business, commercial, industrial, administrative, medical,
cultural, greenspace and park, and educational categories, respectively. We performed a
replication operation on categories of small data size. The times of replication operation
were 1, 1, 2, and 1 for industrial, medical, cultural, and greenspace categories, respectively.
We also conducted a once replication operation on units collected from Sentinel-2 images
in the previous step. Finally, numbers were 9004, 2867, 3078, 1148, 1204, 1220, 651, 1500,
2972, and 702 for residential, business, commercial, industrial, administrative, medical,
cultural, greenspace and park, educational, and village classes, respectively. There were
24,346 units (AOIs) used for training the RF classifier.

Table 2. Overview of the AOI data.

Category Area (km2) Proportion of Area Count of AOI

01 Residential 398 41.20% 9525
02 Business 95 9.83% 4198

03 Commercial 48 4.97% 3376
04 Industrial 39 4.04% 1242

05 Administrative 15 1.55% 1432
06 Medical 11 1.14% 798
07 Cultural 11 1.14% 535

08 Greenspace and park 264 27.33% 929
09 Educational 85 8.80% 3782

Total 966 100% 25,817

After processing, the AOI records were randomly selected and manually interpreted
to assess the classification results with an overall accuracy of 98%, and Table 3 shows the
result of the accuracy assessment. Figure 6 reveals that it is typical for some industrial
records to be classified as business records (e.g., the “name” and “functional category”
is the company, but it is a material manufacturing plant). Nevertheless, the accuracy
assessment result shows using the attribute information to classify the AOI data were
reliable. We used the producer’s accuracy and user’s accuracy to assess the classification
results. The producer’s accuracy was the class accuracy from the point of view of the
mapmaker (the producer). This is how often real features on the ground are correctly
shown on the classified map or the probability that a certain land use of an area on the
ground is classified as such. The producer’s accuracy was calculated by taking the total
number of correct classifications for a particular class and dividing it by the known total
into the validation data. The user’s accuracy was the class accuracy from the point of view
of a map user, not the mapmaker. The user’s accuracy essentially tells users how often the
class on the map will actually be present on the ground. This was referred to as reliability.
The user’s accuracy was calculated by taking the total number of correct classifications
for a particular class and dividing it by the classified total. Using the confusion matrix
of Figure 6 as an example, the producer’s accuracy of residential was 51/51 = 1, and the
user’s accuracy of residential was 51/52 = 0.98.
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Figure 5. Maps of AOI data. (a) The map of AOI data; (b) a zoomed-in view of (a).

Table 3. Summary of AOI classification results. UA, PA, and Support donate user’s accuracy,
producer’s accuracy, and the number of validation AOIs.

Category UA PA Support

01 Residential 0.98 1 51
02 Business 0.86 0.97 39

03 Commercial 1 1 22
04 Industrial 0.98 0.89 66

05 Administrative 1 1 59
06 Medical 1 1 61
07 Cultural 1 1 60

08 Greenspace and park 1 1 59
09 Educational 1 1 39

Total OA = 98%, Kappa = 0.98 456

In addition to serving as training and validation samples, these AOI data of 9 cat-
egories classified in the first step were produced as the AOIs layers, which would be
integrated with the RF classified units to provide details to the scale of buildings.
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Figure 6. Confusion matrix for the accuracy assessment of AOI classification results.

3.3. Feature Extraction

Features extracted are presented in Table 4. Mean values and standard deviations of B,
G, R, NIR bands, NDVI, and normalized difference water index (NDWI) were calculated
based on the greenest composite obtained in the previous step [30]. We calculated the total
number of each category within each parcel. The mean values and standard deviations
of the Luojia-1 nighttime light imagery within each unit were also calculated. Figure 7
presents histograms of these features derived from remotely sensed data. We divided the
Eaygo data from 24 h into 4 sessions for aggregation, which were 4 a.m. to 10 a.m., 10 a.m.
to 4 p.m., 4 p.m. to 10 p.m., and 10 p.m. to 4 a.m. the next day, and calculated in the 4 time
periods, the total amount of crowdedness data on each grid point, and then calculated
the total, standard deviations and maximum 3 statistics of the aggregate crowdedness of
each grid point within each unit to obtain 16 features. These features were prepared for RF
classification.

Table 4. Summary of features.

Data Source Features Count

Sentinel-2 Mean of B, G, R, NIR bands, NDVI, and NDWI 6
Standard deviation of B, G, R, NIR bands, NDVI, and NDWI 6

Baidu POIs Total number of each types of POIs 11
Luojia-1 Mean of DN values 1

Standard deviation of DN values 1
Easygo Sum of crowdedness values during the four sessions of a weekday 4

Standard deviation of crowdedness values during the four sessions of a weekday 4
Sum of crowdedness values during the four sessions of a weekend 4

Standard deviation of crowdedness values during the four sessions of a weekend 4



Remote Sens. 2021, 13, 477 11 of 22

Figure 7. Histograms of features in remotely sensed data. The x-axis represents the value of features.
The y-axis represents the probability density. The total number of bins for each graph is 100. Data
less than the 1st quartile and greater than the 99th quartile are not shown. (a) Histograms of Mean
of B, G, R, and NIR bands. (b) Histograms of the standard deviation of B, G, R, and NIR bands.
(c) Histograms of features of NDVI and NDWI index. (d) Histograms of features of luojia nighttime
light imagery.

3.4. Training RF Classifier

The RF model was an integrated learning algorithm proposed by Breiman in 2001 [3,31].
It can increase the diversity of classification trees and improve the performance of a single
classification tree or regression tree by putting back sampling and randomly changing
the combination of predictor variables during the evolution of the different trees. The
modeling steps were as follows. First, Xi training sets were extracted from the original
dataset using bootstrap sampling technique, each training set was about 2/3 of the size
of the original dataset, and the remaining (X-Xi) samples form the out-of-bag (out-of-bag,
OOB) data. Second, the regression tree for each Xi training set was not pruned and al-
lowed to grow freely. At each node, m predictor variables were randomly selected, and
among these random variables, the optimal features were selected for node segmentation
according to the principle of minimum Gini coefficient. Third, new data were predicted by
the feedback information about the Xi regression trees, and the classification result was
determined by voting on the output of each classification decision tree. In the process of
random forest classification, 3 custom parameters were defined to optimize the model:
The number of spanning trees (n_estimators), the number of predictors used to split at
each node (max_features), and the minimum number of leaves (min_samples_leaf). These
3 parameters can be determined by the error rate of OBB data.

The RF classifier was used to classify units. As a popular machine learning algorithm,
RF was widely used in land-cover/land-use classification [12,32,33]. Training samples
were prepared in step 2.70% of samples were used for training and 30% for optimization.
Features extracted in step 3 were fed into the RF classifier. The ‘GridSearchCV’ was used
for tuning parameters with a 5-fold stratified cross-validation. Units obtained in step 1
were classified into 10 categories with the classifier. In this study, the optimal parameters of
‘n_estimators’, ‘max_depth’, ‘min_sample_split’, and ‘min_sample_leaf’ for the RF model
were set to 1100, 110, 3, and 2, respectively. Superimposing the AOIs layers on the classified
units, we obtained the final mapping results.

3.5. Interpretation of Validation Units

First, 30 sample units were randomly selected in each predicted category, for a total of
300 units in 10 categories. Then invalid units, which could not be interpreted into the target
categories (e.g., road units, undersized units), were eliminated. Categories with too few
validation units will be randomly selected again and interpreted. With these validation
units, the accuracy of the classification results was assessed.
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4. Results
4.1. Mapping Results

Figure 8 shows most of the units were classified as a residential category with the
original OSM units. Comparing Figure 8 with Figure 9, we can see that the proportion of
the residential area was substantially reduced after a further decomposition of units. Many
units at the urban fringe were classified as greenspace and village categories. Compared
with the mapping results in Figure 9, the distribution pattern was increasingly detailed in
Figures 10 and 11, but the overall difference was small.

4.2. Accuracy Assessment of Mapping Results

Over 300 valid units were randomly selected and manually interpreted to conduct
the accuracy assessment of the mapping results in each method. All validation units were
surveyed through high resolution satellite image, Baidu Street View Service, and fieldwork.
Table 5 shows the exact number of validation units used for each method, as well as the
accuracy assessment results, including the overall accuracy (OA) and Kappa coefficients
(Kappa). As the grid became smaller, both OA and Kappa increased. After integrating
the AOIs layers, both OA and Kappa increased substantially. Using OSM and 200 m grid
to generate classification units, we got the highest OA of 77% and Kappa of 0.74 after
integrating the AOIs layers. Figure 12 presents the number of validation units in each
category of the four methods. The least validation units used were in the commercial
category of OSM methods with 14 sample units. The most validation units used were in
the residential category of OSM methods with 69 units. Mostly, for a defined plan, the
number of validation units in each category was no less than 20.

Figure 8. Map of EULUC-AOI (OSM) in Beijing, 2019.
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Figure 9. Map of EULUC-AOI (OSM+300 m grid) in Beijing, 2019.

Figure 10. Map of EULUC-AOI (OSM+200 m grid) in Beijing, 2019.
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Figure 11. Map of EULUC-AOI (OSM+100 m grid) in Beijing, 2019.

Table 5. Accuracy assessment. OA, Kappa, and Support donate overall accuracy, Kappa coefficients,
and the number of validation units, respectively.

Method
Before AOI Layer After AOI Layer Support
OA Kappa OA Kappa

OSM 48% 0.40 70% 0.66 377
OSM+300 m gird 50% 0.45 72% 0.68 345
OSM+200 m grid 62% 0.58 77% 0.74 323
OSM+100 m grid 57% 0.53 76% 0.74 340

Figure 12. The number of validation units in each category of the four methods. Support donates the
number of validation units.
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Comparing the two corresponding graphs above and below of Figure 13 we can see
that integrating the AOIs layers resulted in a considerable rectification to classification
results. From Figure 14, we found that after integrating the AOIs layers, UA and PA
increased considerably.

Figure 13. Confusion matrix for accuracy assessment of mapping results of EULUC-AOI in Beijing,
2019. (a–d) The confusion matrix before integrating the AOI layers of OSM, OSM and 300 m grid,
OSM and 200 m grid, and 100 m grid in turn; (e–h) The confusion matrix after integrating AOIs
layers of OSM, OSM and 300 m grid, OSM and 200 m grid, and OSM and 100 m grid in turn.

Figure 14. Accuracy assessment of mapping results of EULUC-AOI in Beijing, 2019. UA and PA
donate user’s accuracy and the producer’s accuracy, respectively.

4.3. Accuracy Assessment for Various Sample Size

Searching for the minimum sample size of stable classification accuracy, we used
different numbers of AOIs as training samples. For each sample size, we repeated the
experiment 20 times. The accuracy assessment was conducted using the same set of vali-
dation samples. We randomly selected AOIs of different numbers ranging from 5 percent
to 95 percent in 5 percent intervals of all AOIs (24,346). Figure 15 illustrated the results.
When the sample size reached 65 percent (15,824) of all AOIs, the classification results after
integrating the AOIs layers reached stability.



Remote Sens. 2021, 13, 477 16 of 22

Figure 15. Overall accuracy assessment of classification results after integrating AOIs layers. The two black whiskers extend
from the first quartile to the smallest value and from the third quartile to the largest value. The median is shown with an
orange line. Extreme values are indicated with symbol of I. The horizontal red dashed line shows the value at which the
overall accuracy has stabilized, and the vertical red dashed line represents the first experiment in which the overall accuracy
is stable.

4.4. Comparison of Mapping Results before and after Integrating AOIs Layers

Comparing the differences between the update of Figure 16f to Figure 16c and the
update of Figure 16e to Figure 16b, we found that the AOIs layers added much richer
rectification and details to the urban centers than to the urban fringe area. It can be seen
from Figure 16g–i, that a large number of units classified as residential at the urban fringe
contained extensive area of greenspace and village categories. A comparison of Figure 17
with Figure 16 revealed similar results at the center, but Figure 17 provided more detailed
information. For example, in Figure 16, the entire unit was marked as an administrative
category, but in Figure 17, the whole unit was marked as a residential category, and the
extent of the administrative category was marked more precisely with the help of AOIs
layers. At the urban fringe, the classification in Figure 16 was more accurate and detailed.
Figures 18 and 19 offered more detailed information on the urban fringe area. Some
administrative and medical units were scattered around the urban fringe. Administrative
units mark the location of village committees and police stations, etc. Medical units mark
the location of the village health center.

4.5. Comparison with EULUC Mapping Results

We compared the mapping results in this study with that in EULUC-China. Figures 20
and 21 show the comparison for two locations at two scales, respectively. A large amount of
administrative land is included in EULUC-China. In our results, the administrative extent
is usually displayed with AOI data, only occupying the area as it is. Marking the whole
unit as administrative category results in the loss of much valid information. When the
same unit contains multiple educational, administrative, medical, and cultural categories,
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EULUC cannot handle it anymore, while our approach can still capture the results as
they are.

Figure 16. Comparison and zoomed-in views of EULUC-AOI (OSM) in Beijing, 2019. (a) The
mapping results before overlaying the AOIs layers; (b,c) zoomed-in views of (a); (d) the mapping
results after overlaying the AOIs layers; (e,f) zoomed-in views of (d); the zoomed-in views with
solid lines outside shows details in the solid box in the lower-left corner of the mapping results. The
zoomed-in view with dashed lines outside shows details in the dashed box near the middle of the
mapping results. (g–i) The results of (b) with the removal of residential, greenspace, and village units
in turn, with Sentinel II optical images in the background.



Remote Sens. 2021, 13, 477 18 of 22

Figure 17. Comparison and zoomed-in views of EULUC-AOI (OSM+300 m grid) in Beijing, 2019.
(a) The mapping results before overlaying the AOIs layers; (b,c) zoomed-in views of (a); (d) the
mapping results after overlaying the AOIs layers; (e,f) zoomed-in views of (d); the zoomed-in views
with solid lines outside shows details in the solid box in the lower-left corner of the mapping results.
The zoomed-in view with dashed lines outside shows details in the dashed box near the middle of
the mapping results. (g–i) The results of (b) with the removal of residential, greenspace, and village
units in turn, with Sentinel II optical images in the background.

Figure 18. Comparison and zoomed-in views of EULUC-AOI (OSM+200 m grid) in Beijing, 2019.
(a) The mapping results before overlaying the AOIs layers; (b,c) zoomed-in views of (a); (d) the
mapping results after overlaying the AOIs layers; (e,f) zoomed-in views of (d). The zoomed-in views
with solid lines outside show details in the solid box in the lower-left corner of the mapping results.
The zoomed-in view with dashed lines outside shows details in the dashed box near the middle of
the mapping results. (g–i) The results of (b) with the removal of residential, greenspace, and village
units in turn, with Sentinel II optical images in the background.
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Figure 19. Comparison and zoomed-in views of EULUC-AOI (OSM+100 m grid) in Beijing, 2019s.
(a) The mapping results before overlaying the AOIs layers; (b,c) zoomed-in views of (a); (d) the
mapping results after overlaying the AOIs layers; (e,f) zoomed-in views of (d); the zoomed-in views
with solid lines outside shows details in the solid box in the lower-left corner of the mapping results.
The zoomed-in view with dashed lines outside shows details in the dashed box near the middle of
the mapping results. (g–i) The results of (b) with the removal of residential, greenspace, and village
units in turn, with Sentinel II optical images in the background.

Figure 20. Comparison of the mapping results in this study with that in EULUC-China. (a,c) Zoomed-in views of the
mapping results of EULUC; (b,d) zoomed-in views of the mapping results in this study.
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Figure 21. Comparison of the mapping results in this study with that in EULUC-China. (a,c) Zoomed-in views of the
mapping results of EULUC; (b,d) zoomed-in views of the mapping results in this study.

5. Discussion

Using AOI data as the training sample significantly reduced labor-intensive sample
collection work. The AOI data also provide a large number of the accurate extent of pure
land uses. The mapping scheme proposed here is fast and stable to operate. After obtaining
the nationwide AOI data with web crawlers, this scheme can be easily applied to cities
across China.

In regions outside China, there is a lack of AOI data from the Baidu map used here.
This makes it difficult to use AOI data as training samples. However, it is still possible
to manually supplement the training sample by field survey or image interpretations.
WorldPop data and OSM POI data can be used to replace Easygo Crowdedness data and
Baidu map POI data, respectively. In this way, it is still feasible to classify urban land use
with multi-source geospatial data and social data.

There are some limitations in our study that need to be improved in future works.
First, we have a limited number of AOIs. The AOI data are mainly distributed in the
urban centers but sparsely distributed in urban fringe areas. Image segmentation could be
used [14] to extract building contours and assign them category information. In addition,
the AOI data are prone to misclassification between business and industrial categories
resulting in confusion between business and industrial categories in the mapping results.
It is worth exploring how to classify the AOI data more accurately. In addition to the
limitations of AOI data, the mixture of units needs to be addressed. Since most parcels
are composed of mixed land uses, it is crucial to expand the classification from the current
dominant-class only to multiple-class per parcel classification.

Choosing only Easygo Crowdedness data to represent people’s daily behavior is
another limitation of this study. Further research is planned to include taxi GPS data, bus



Remote Sens. 2021, 13, 477 21 of 22

data, and subway data. In addition, there are some shortcomings in using geospatial big
data to classify urban land use. For example, the activity frequency is closely related to the
population density, which may be daily activities or noise caused by special events. There-
fore, in future research, the classification of urban land use will be based on multisource
data such as demographic data.

6. Conclusions

In this study, we overlaid the 300 m grid, 200 m grid, and 100 m grid to further divide
the original OSM-based units of EULUC. Thus, units with more appropriate spatial sizes
were obtained. AOI data were used as training samples, whose size was huge, and land use
within the same unit was purer. This also eliminates data inconsistency in the crowdsourced
collection due to subjective sample collection. After obtaining the classification results
from the RF classifier, the AOIs layers were integrated with the classification results. Up to
this step, we rectified some of the misclassification results and supplemented the land-use
details to the building scale. As a result, we reached an overall accuracy of up to 77%
with a Kappa coefficient of 0.74. We proposed a mapping scheme, which offers more
detailed and accurate land-use information to the building scale, and significantly reduces
labor-intensive sample collection work as compared to our previous EULUC mapping
procedure. In addition, the scheme can be easily applied to cities across China.
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