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ABSTRACT Most adults experience episodes of gingivitis, which can progress to
the irreversible, chronic state of periodontitis, yet roles of plaque in gingivitis
onset and progression to periodontitis remain elusive. Here, we longitudinally
profiled the plaque metagenome, the plaque metabolome, and salivary cytokines
in 40 adults who transited from naturally occurring gingivitis (NG) to healthy
gingivae (baseline) and then to experimental gingivitis (EG). During EG, rapid
and consistent alterations in plaque microbiota, metabolites, and salivary cyto-
kines emerged as early as 24 to 72 h after oral-hygiene pause, defining an
asymptomatic suboptimal health (SoH) stage of the gingivae. SoH features a
swift, full activation of 11 salivary cytokines but a steep synergetic decrease of
plaque-derived betaine and Rothia spp., suggesting an anti-gum inflammation
mechanism by health-promoting symbionts. Global, cross-cohort meta-analysis
revealed, at SoH, a greatly elevated microbiome-based periodontitis index driven
by its convergence of both taxonomical and functional profiles toward the perio-
dontitis microbiome. Finally, post-SoH gingivitis development accelerates oral
microbiota aging by over 1 year within 28 days, with Rothia spp. depletion and
Porphyromonas gingivalis elevation as hallmarks. Thus, the microbiome-defined,
transient gum SoH stage is a crucial link among gingivitis, periodontitis, and
aging.

IMPORTANCE A significant portion of world population still fails to brush teeth daily. As
a result, the majority of the global adult population is afflicted with chronic gingivitis,
and if it is left untreated, some of them will eventually suffer from periodontitis. Here,
we identified periodontitis-like microbiome dysbiosis in an asymptomatic SoH stage as
early as 24 to 72h after oral-hygiene pause. SoH features a swift, full activation of mul-
tiple salivary cytokines but a steep synergetic decrease of plaque-derived betaine and
Rothia spp. The microbial ecology during early gingivitis is highly similar to that in
periodontitis under both taxonomical and functional contexts. Unexpectedly, exposures
to gingivitis can accelerate over 10-fold the normal rate of oral microbiota aging. Our
findings underscore the importance of intervening at the SoH stage of gingivitis via
proper oral-hygiene practices on a daily basis, so as to maintain a periodontitis-preven-
tive plaque and ensure the healthy aging of the oral ecosystem.

KEYWORDS gingivitis, periodontitis, microbiome, aging, disease prevention

Citation Huang S, He T, Yue F, Xu X, Wang L,
Zhu P, Teng F, Sun Z, Liu X, Jing G, Su X, Jin L,
Liu J, Xu J. 2021. Longitudinal multi-omics and
microbiome meta-analysis identify an
asymptomatic gingival state that links
gingivitis, periodontitis, and aging. mBio 12:
e03281-20. https://doi.org/10.1128/mBio
.03281-20.

EditorMarvin Whiteley, Georgia Institute of
Technology School of Biological Sciences

Copyright © 2021 Huang et al. This is an open-
access article distributed under the terms of
the Creative Commons Attribution 4.0
International license.

Address correspondence to Shi Huang,
huangshi@qibebt.ac.cn, or Jian Xu,
xujian@qibebt.ac.cn.

Received 26 November 2020
Accepted 1 February 2021
Published 9 March 2021

March/April 2021 Volume 12 Issue 2 e03281-20 ® mbio.asm.org 1

RESEARCH ARTICLE

 on M
ay 23, 2021 at U

N
IV

 O
F

 H
O

N
G

 K
O

N
G

http://m
bio.asm

.org/
D

ow
nloaded from

 

https://orcid.org/0000-0003-2144-1991
https://orcid.org/0000-0002-5340-9710
https://orcid.org/0000-0002-0548-8477
https://doi.org/10.1128/mBio.03281-20
https://doi.org/10.1128/mBio.03281-20
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://mbio.asm.org
https://crossmark.crossref.org/dialog/?doi=10.1128/mBio.03281-20&domain=pdf&date_stamp=2021-3-9
http://mbio.asm.org/


Gingivitis, an inflammatory lesion of the tooth-supporting soft tissues, is one of the
most common oral diseases in humans and has been a global health burden for

centuries (1–5). It results from a dysregulated immunoinflammatory response which is
induced by dysbiotic plaque biofilm (6). Manifesting with various clinical signs and
symptoms, the condition of gingivitis is affected by both local and systemic factors (4).
Notably, this inflammatory lesion can be resolved (i.e., reversed) following appropriate
professional care, whereas uncontrolled gingivitis can progress to the irreversible con-
dition periodontitis, which is characterized by destruction of tooth-supporting tissues
and alveolar bone in susceptible individuals, eventually leading to tooth loss (7). As
importantly, periodontal health has been widely associated with an increased risk of
systemic diseases like Alzheimer’s disease, diabetes, and cardiovascular disease (8–10).
Thus, promoting periodontal health and general well-being requires a thorough,
mechanistic understanding of gingivitis initiation and development (11).

However, few studies have systematically characterized gingivitis development from
an integrated view of both the host and oral microbiome (11). In natural human popula-
tions, gingivitis symptoms can be reversible and volatile, as numerous internally or exter-
nally imposed disturbances, including oral-hygiene practices (personal or professional),
or impairment of the immune system, injury, diet, and oral state can all affect disease de-
velopment and confound disease prevention and monitoring (12). Population-wide
microbiome associations have unveiled the compositional shifts of plaque during gingi-
vitis progression (13–17), and the functional potential of oral microbiome in gingivitis
onset has been profiled via metagenomics and metatranscriptomic approaches (15, 18,
19). However, due to the lack of a longitudinal perspective that includes the microbiota,
their metabolites, and the host immune response, the molecular mechanisms underlying
gingivitis onset and progression remain ill defined (13, 19).

As for periodontitis, the irreversible and detrimental stage of gum inflammation
that results from chronic, uncontrolled gingivitis, a distinct phylogenetic structure of
oral microbiota in diseased hosts versus healthy ones, was revealed via 16S rRNA gene
or metagenome sequencing (20–23). In particular, multiple separate cohort studies
have probed the functional potential of the periodontitis-associated microbiota via
metagenome (15, 18, 19, 24, 25) or metatranscriptome (26, 27) analysis. However, the
inherent mechanistic link of gingivitis and periodontitis, which is crucial to clinical pre-
vention and treatment of both diseases, has remained elusive, due to (i) the high
degree of heterogeneity among hosts and the variation in experimental procedures
among the microbiome-profiling endeavors and (ii) the inability to track both micro-
biome and host factor and interrogate their interaction over the full course of gingivi-
tis-to-periodontitis progression within an individual.

To address these key challenges, here we leveraged a longitudinal, multi-omics ex-
perimental design of human cohorts that includes personalized microbial, metabolite,
and host immunoresponse profiles, to provide a high-temporal-resolution, system-
level, mechanism-based landscape of the transition from periodontal health to onset
of gum inflammation and eventually to gingivitis (Fig. 1). These efforts unveil, at just
24 to 72 h after pause of oral-hygiene-practice, a microbiome-defined, asymptomatic
suboptimal health (SoH) stage of gingivitis, which features (i) a swift, full activation of
11 salivary cytokines, (ii) a steep, synergetic decrease of plaque-derived betaine and
Rothia spp., and (iii) a greatly elevated microbiome-based periodontitis index driven by
convergence of taxonomic and functional profiles toward the periodontitis micro-
biome. Intriguingly, gingivitis development greatly accelerates “oral microbiota aging”
(OMA). These efforts revealed that microbiome-defined gum SoH is a crucial link
between gingivitis, periodontitis, and healthy aging.

RESULTS
An experimentally tractable model of gingivitis onset and progression. To con-

trol for the many confounding factors (e.g., individuality in initial gum health state or
in oral-hygiene behavior) for host-microbiome dysbiosis during gingivitis (i.e., the
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earlier stage of periodontal disease), we designed a 40-adult cohort as an experimen-
tally tractable model of gingivitis onset and progression (13, 16) (Fig. 1; also, see
Table S1 in the supplemental material). Specifically, on day 221 (natural gingivitis
[NG]), all 40 adults were assigned to one of two groups: high bleeders (15 to 25 sites of
bleeding; 20 subjects) and low bleeders (0 to 10 sites of bleeding; 20 subjects) (see
Materials and Methods; Fig. 1a). These hosts then underwent a rigorous oral-hygiene
regimen (dental scaling) for 3 weeks, resulting in greatly reduced bleeding (median
gingival bleeding of 1) on day 0 (baseline, i.e., a healthy gingival state). Next, the sub-
jects underwent a 4-week program inducing experimental gingivitis (EG), which greatly
and consistently elevated gingival bleeding, until day 28 (P, 0.01 for gingival bleed-
ing; i.e., the diseased state) (Fig. 1b). Notably, the between-group symptomatic differ-
ence for NG (P = 1e222, t test), the basis for the high-/low-bleeding stratification of
hosts with NG (i.e., day 221), is much greater than at any of the subsequent time
points (both before and after baseline) (Fig. 1b). In fact, mild or marginal differences in
bleeding between high and low bleeders were observed at the seven subsequent time
points (P, 0.05, t test), but no such symptomatic difference was found at day 1 or 3
(P. 0.05, t test). This suggested that disease severity in the natural population (i.e.,
NG) is not necessarily deterministic among individual hosts and that high bleeders can
recover almost as rapidly and thoroughly as low bleeders if they follow a proper oral-
hygiene practice.

Integrated longitudinal profiles of both microbial and host immune programs were
obtained by using 275 supragingival plaque samples (simultaneously for taxonomy
and metabolome, via 16S rRNA amplicon sequencing and liquid chromatography-

FIG 1 The longitudinal multi-omics landscape of gingivitis onset and progression in a human population. (a) Experimental design. Among the 40 healthy
adult volunteers that participated, 20 were healthy subjects (with,10 bleeding sites), and the rest of them were unhealthy ones (bleeding sites from 15 to
25) at the start (day 221, or NG). This study yielded clinical measures (at nine time points), oral-microbiome and -metabolome data from supragingival
plaque samples (at seven time points), and host immune response data from salivary samples (at five time points) for each of the 40 subjects. (b) Temporal
changes in the clinical symptoms for volunteers. Boxes represent the interquartile range (IQR), and the lines inside represent the median. Whiskers denote
the lowest and highest values within 1.5� IQR. (c and d) Principal-coordinate analysis (PCoA) based on the genus-level Bray-Curtis dissimilarity of (c)
plaque microbiomes (16S amplicon sequencing) and (d) metabolome profiles (LC-MS/MS). (e) Principal-component analysis (PCA) of the salivary cytokine
profiles. Each dot in PCoA or PCA represents a plaque or saliva sample and is included in an ellipse whose color indicates the time point. Each dot is also
sized based on the severity of symptom (gum bleeding). (f) Comparing the quantitative variation in all measurements explained by the major factors.
PERMANOVA shows that interindividual variation is the largest factor for all measurement types, while time and disease phenotype also capture sizable
variations. FDR-corrected statistical significance: *, P # 0.05; **, P # 0.01; ***, P # 0.001.
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tandem mass spectrometry [LC-MS/MS]-based mass spectrometry, respectively) and
192 matching saliva samples (cytokine profile via multiplexed bead immunoassay) col-
lected by professional dentists. The plaque microbiome, plaque metabolome, and sali-
vary cytokines were profiled at time points that fully spanned the entire 49-day
NG-baseline-EG course (from day221 to day 28), while the transition from baseline (0day)
to the onset of EG (e.g., days 1, 3, and 7) (Fig. 1a; Fig. S1) was densely sampled, so that the
tertiary interplay could be temporally monitored, especially at disease onset.

Symptomatic severity (i.e., bleeding) contributed greatly to the first principal coordi-
nate (PC1) in principal-coordinate analysis (PCoA) of the plaque microbiome or metab-
olome (Fig. 1c and d) (as revealed by the correlation between PC1 and the various fac-
tors, including number of sites of bleeding). For plaque-related measurements,
although interindividual variation accounts for the majority of symptomatic variance
(40 to 45%) (Fig. 1f), disease status (9 to 11%) or time point (16 to 23%) also explains
much of it (Fig. 1c to f). In contrast, no significant correlation was found between
bleeding and salivary cytokine profile (Fig. 1e and f). Notably, time point still explains
9% of the variation in cytokine profile (although the interindividual factor accounts for
54%); in fact, many salivary cytokines respond to gingivitis development only at the ini-
tial time points after baseline, such as day 3 or 7, but did not further increase after-
wards when hosts accumulated even more bleedings. This suggests that the oral host-
microbe interplay is the most intensive at the onset stages of gingivitis.

Therefore, we hypothesized that days 1 to 3 after dental scaling represent the SoH
stage (Fig. 1b). At this stage, we did not detect within-host temporal difference in clini-
cal symptoms (i.e., from day 1 to 3 after dental scaling; P. 0.05, paired t test) (Fig. 2a);
however, the microbiome in the supragingival plaque and even host immune

FIG 2 A plaque-microbiome-defined SoH stage that takes place earlier than the emergence of clinical symptoms. (a) The symptomatic change (i.e., mean
bleeding difference) within hosts (n= 40), between each of the time points (days 221, 1, 3, 7, 14, and 28) and baseline (day 0). The colors of the bars show
FDR-corrected statistical significance; specifically, days 1 to 3 are the SoH stage, when no change in clinical symptoms compared to baseline was observed
within the hosts. The scatterplots show the AUROC (the y axis on the right) of classification models using plaque microbiota, plaque metabolome, or
salivary cytokines between day 0 and each of the other time points (days 221, 1, 3, 7, 14, and 28). For panels b, c, and d, we identified molecular features
from each measurement type that were differentially abundant at a given time point compared to day 0. (b) Heat map for the mean log2 fold change of
microbial responders (threshold Bonferroni P, 0.05) in plaque during the onset and progression of NG. (c) Heat map for the mean log2 fold change of
both early and persistent metabolite responders (threshold Bonferroni P, 0.05) in plaque. On the x axis, “pos” and “neg” indicate acquisition via positive
and negative ionization modes in the nontargeted metabolomic approach, while “TSQ” indicates acquisition from the targeted metabolomic approach. (d)
Heat map for the mean log2 fold change of cytokines at each time point (days 221, 3, 7, and 28) versus baseline (day 0). Blue denotes reduction, while red
shows enrichment (versus baseline). Bonferroni-corrected statistical significance: *, P# 0.05. The absence of an asterisk indicates no significant change.
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molecules might have dramatically changed due to the detrimental environmental dis-
ruptions in EG induction (i.e., poor oral hygiene).

Swift and profound response of plaque microbiota, plaque metabolome, and
salivary cytokines at SoH. To quantitatively measure the shifts in the plaque micro-
biome and host immunity in the emergence of clinical symptoms, we established a
unified metric to measure the temporal changes in multi-omics data from baseline to
EG. Between-time-point classifiers of host gingival status were built from plaque micro-
biota, metabolome, and salivary cytokine profiles, via the random forests (RF) algo-
rithm. In addition to those RF models, we employed a model accuracy metric (area
under the receiver operator characteristic [AUROC]) as a proxy to quantify the temporal
changes of each measurement type at each of the time points (i.e., days 221, 1, 3, 7,
14, and 28) from day 0. Furthermore, to dissect the multi-omics associations, we com-
pared temporal changes in AUROC values of RF classifiers related to plaque micro-
biome, plaque metabolome, and salivary cytokines together with those from the clini-
cal symptoms (Fig. 2a). Unexpectedly, the AUROC of RF classifiers for plaque
microbiota rapidly shifted in the first 3 days (0.75 at day 1 and 0.87 at day 3) from base-
line: it already resembled that of day 28 microbiota (severe gingivitis stage;
AUROC=0.89) as early as day 3 (Fig. 2a) and actually saturated after day 3. Therefore, a
microbial SoH stage occurred earlier than the emergence of clinical symptoms. In con-
cordance with plaque microbiota, the AUROC on the plaque metabolome increased
quickly from 0.58 (day 1) to 0.92 (day 7) within 7 days yet did not plateau until after
14 days (AUROC=0.97), suggesting that the plaque metabolome was persistently shift-
ing toward a gingivitis-like state. However, the most abrupt changes in the plaque
metabolome also took place in the first 3 days after dental scaling (Fig. 2a), indicating
that plaque metabolome change also precedes the development of bleeding symp-
toms, well before they are detectable by dental health professionals. Notably, despite
the concordant changes over time between the plaque microbiota and metabolome,
the saturation of the AUROC of metabolome-based RF classifiers was 7 days later than
that of microbiota-based classifiers (Fig. 2a), suggesting microbiome shift-dependent
changes in the plaque metabolisms during gingivitis onset.

Interestingly, in the SoH stage, the immune response was even more pronounced
than both the plaque microbiota and metabolome shifts (Fig. 2a). The AUROC reached
almost 0.99 at day 3 to 7, while the median gingival bleeding within this period (1 for
day 3 and 2 for day 7) was relatively low. In contrast, the AUROC at day 221 (i.e., natu-
rally occurring gingivitis) and day 28 were all even lower than that in the SoH stage,
while the median gingival bleeding was relatively high (8 for day 28 and 11 for day
221). This suggests that the alterations in the cytokine profiles are not necessarily
associated with disease severity but are a response to the intensity or magnitude of
organismal and metabolite changes in the plaque microbiome.

The longitudinal concurrent metabolomics and 16S amplicon microbial community
profiling from dental plaque samples elucidated the reassembling process of supragingi-
val plaque biofilms after dental scaling (Fig. 2a). A key question then is to identify poten-
tial microbial and metabolic factors that drive the microbial dysbiosis in the plaque.
Thus, to compare the microbiome responses across different stages of disease progres-
sion, we performed differential abundance analysis on the central-log-ratio (CLR)-trans-
formed relative abundances of each genus-level taxon between a given time point (days
221, 1, 3, 7, 14, and 28) and baseline (day 0) and compared the results across the stages
of EG (Wilcoxon rank-sum test with the Bonferroni correction) (Fig. 2b). The microbial
markers that were persistently enriched/depleted with gingivitis progression (such as
Porphyromonas and Rothia) were termed “persistent responders,” while genera that were
transiently enriched/depleted at the early stage of gingivitis progression (i.e., day 1 to 3)
(such as Gemella) were termed “early responders.” Similarly, for the plaque metabolome,
we identified a series of persistent and early responders in gingivitis development: over
50 metabolites were persistently over- or underrepresented during disease development
and therefore provided a clue to pathophysiology of gingivitis (Fig. 2a and d).

Accordingly, time-resolved, differentially abundant cytokines in saliva at days 221,
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3, 7, and 28 were also identified (compared to day 0) (Fig. 2c). Eleven of the 27 salivary
cytokines, such as eotaxin, interleukin 5 (IL-5), MIP-1b , gamma interferon (IFN-g), basic
fibroblast growth factor (FGF), and Granulocyte colony-stimulating factor (G-CSF)
altered early, within 72 h from baseline (i.e., at the SoH stage), yet did not exhibit any
significant difference from baseline at later time points when gingivitis had developed
(e.g., day 28, when the most severe gingivitis states were seen). In fact, the SoH stage
featured prominent activation of both pro- and anti-inflammatory cytokines that stabi-
lized in later stages of EG (Fig. 2a and c). Notably, cytokine alterations are more corre-
lated with particular phases, such as SoH, than with gingivitis severity, which under-
scores the importance of high-resolution temporal views of the host-microbiome
interplay.

Integrated microbiome-metabolome dynamic profiles of oral biofilms underlying
SoH. To identify plaque microbial activities that underlie gingivitis onset and pro-
gression, we constructed a cross-measurement-type association network that incor-
porated both microbial taxa and metabolomes from the 261 plaque samples. To
reveal trends in the data, Procrustes analysis was used to directly compare the dif-
ferent omics data sets (of identical internal structure) on a single principal-coordi-
nate analysis. Overall, strong correlation between microbial taxa and metabolome
of all plaque samples was observed (r = 0.53, P = 0.001; Monte Carlo label permuta-
tion test) (Fig. S3a). Analysis of paired omics measurements at each of seven time
points revealed remarkably high agreement between microbial taxa and metabolo-
mics for all time points along the NG-baseline-EG course (0.6 , r, 0.7, P, 0.01;
Monte Carlo label permutation test) (Fig. S3b), suggesting key roles for microbe-
derived metabolites in this process.

We then built a co-occurrence network from the multi-omics data for biomarker dis-
covery, by calculating the correlation matrix of all features via Spearman’s correlation
analysis. The resulting network contained 27,942 total significant edges (jrhoj . 0.6,
false discovery rate [FDR] P, 0.05) and 1,196 nodes that span features from all three
types of measurement. A filtered subnetwork was further built from 29 bacterial gen-
era, 304 metabolites, and 8 salivary cytokines that were differentially abundant
between day 0 and 28 (Fig. 3a). Between-metabolite associations accounted for the
vast majority (over 99%) of edges, clearly revealing complex and strong association
among metabolites. In addition, 51 strong associations between microbial genera and
metabolites were found, highlighting the impact of gingivitis onset and progression
on microbe-dependent metabolisms in plaque. Among these, the Rothia-betaine link is
one of the most prominent features in the network (red arrows in Fig. 3a). As a bacte-
rial marker that is depleted in gingivitis, Rothia had the most links to metabolites
(n=14) and exhibited the strongest association with the metabolite of betaine (i.e., tri-
methylglycine [TMG]; rho = 0.7) (Fig. 3a), which is also depleted in gingivitis. In fact, the
abundance of betaine and that of Rothia were highly synergic along the full 49-day
course (Fig. 3b); moreover, both were negatively correlated with symptomatic severity
of gingivitis; i.e., they were depleted from NG to baseline and then enriched again
from baseline to EG, with the peaking of betaine and Rothia being coincident with the
maximal healthy state of gingivae at baseline (Fig. 3b). Notably, the depletion rates of
betaine and Rothia during EG induction are not constant: they both steeply decreased
during the SoH stage and then gradually stabilized (Fig. 3b); in particular, at day 3, lev-
els of Rothia dropped to 21% of the peak at day 0, bottomed out at day 7, and stayed
so for the remaining 21 days. These observations suggest that the SoH stage, despite
the lack of clinically observable changes in bleeding (versus baseline), is the most
active and consequential phase in both microbiome structural change and the gingivi-
tis-driving microbial metabolism.

Coincidentally, in addition to its synergy with bacteria that are more abundant in
healthy gingivae, such as Rothia, betaine is negatively linked to many that are enriched
in the presence of gingivitis, such as Peptostreptococcus, Prevotella, and Treponema,
etc. (Fig. 3a). This suggests an important, perhaps protective, role of betaine in gingival
inflammation. Accumulating evidence has shown that betaine plays an anti-
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inflammatory role in multiple inflammatory diseases, potentially by balancing hyperos-
mosis and protecting cells from shrinkage and death (28). Similarly, the positive link to
betaine and the negative association with gingivitis severity indicate that Rothia is per-
haps beneficial to gingival health and potentially contributes to betaine metabolism in
plaque.

On the other hand, only three of the 27 cytokines tested are present in the network
(Fig. 3a). MIP-1b is enriched in healthy gingivae, yet IL-9 is enriched in gingivitis and
negatively correlated with MIP-1b (Fig. 3a): in fact, IL-9 is significantly downregulated
at day 3 and day 7 and upregulated at day 28 (versus day 0; Fig. 2d). However, no spe-
cific associations between salivary cytokines and plaque taxa or plaque metabolites
were found during the process of EG induction (Fig. 3a).

Identifying microbiome links between gingivitis-SoH and periodontitis via
meta-analysis. To derive a microbiome-based view of the gingivitis-to-periodontitis
transition (a process that can take decades), we conducted a meta-analysis of pub-
lished microbiomes for gingival plaques, of sufficient sample size (.20 human adults)
and with disease-associated (i.e., case or control labels) or time-revolved metadata (i.e.,
baseline or time point labels) (Table 1). Among the data sets found (all 16S rRNA ampli-
con based), six were publicly accessible; thus, collectively, 1,221 oral-microbiome sam-
ples were reanalyzed from raw sequences (via Parallel-META 3.0 [29] and the Oral Core
microbiota database) (Table 1; Fig. 4a and b) for taxonomic profiles and metabolic
functions (via PICRUSt [29, 30]) (Fig. S5b).

We first tested whether the reported microbiome associations with the oral-disease
states or the anti-gingivitis treatments can be recapitulated (Table 1). To compare such
disease responses of microbiomes across studies, we first grouped all data into 10 data
sets. Each data set could include samples from case and control groups in a cross-sec-
tional study (e.g., UK_Periodontitis) or samples at the baseline and subsequent time
points in a longitudinal study of EG (such as CN_EG_2014) or an anti-gingivitis treat-
ment (such as CN_AntiG_brush_plus_rinse). Next, for each data set, we built a genus-

FIG 3 The interplay of plaque taxa, plaque metabolites, and salivary cytokines during gingivitis retrogression, onset, and progression. (a) Network analysis
of microbial taxa and metabolites in the temporal program consisting of NG-baseline-EG. Negative correlations are shown in green, positive correlations are
in blue, and predictive taxa are in gray. Edge weights represent the strength of correlation. Rothia and betaine have the largest number of connections
(i.e., they are the hub nodes) and are highly correlated with each other. For the metabolite nodes, “pos” and “neg” indicate acquisition by positive and
negative modes in the nontargeted metabolomic approach, while “TSQ” indicates acquisition from the targeted metabolomic approach. (b) Temporal
covariation of betaine and Rothia during gingivitis retrogression and induction. The bar plot indicates the clinical symptoms (i.e., mean bleeding) at each of
the time points (days 221, 0, 1, 3, 7, 14, and 28). The colors of the bars show statistical significance of bleeding between a given time point and baseline
(day 0): blue, significant; gray, not significant.
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FIG 4 Meta-analysis of existing gingival microbiome data sets revealed similar microbial signatures between gingivitis SoH and periodontitis. (a) Most
periodontal disease progression or retrogression shows microbiome alterations, with consistent disease-associated shifts that differ in their extent and
direction. Panels show (from left to right) sample size for each study, area under the ROC curve (AUROC) for the genus-level random forest classifiers
(x axis starts at 0.5, the expected value for a classifier that assigns labels randomly, and AUROC of ,0.5 are not shown), number of genera with q values of
,0.05 (Wilcoxon rank-sum test, Bonferroni correction) for each data set (if a study reveals no significant associations, no points are shown), and direction
of the shifts in microbiome structure, i.e., the percentage of associated genera that are enriched in disease. (b) Cross-prediction matrix reporting prediction
performance as AUROC values obtained using a random forest model on the genus-level relative abundance. Matrix values refer to the AUROC values
obtained by training the classifier on the data set of corresponding row and then applying it to the data set of the corresponding column. The prediction
accuracy between gingivitis and periodontitis is remarkably high, suggesting a strong microbial link between these two periodontal diseases. Moreover, the

(Continued on next page)
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level RF classifier to distinguish disease states (gingivitis or periodontitis) from the
health states longitudinally or cross-sectionally and then compared their AUROC across
data sets.

Surprisingly, periodontal disease status can be classified between hosts or within
hosts (AUROC. 0.7) in all studies (Fig. 4a). Notably, the states of gingivitis and chronic
periodontitis are highly distinguishable by plaque microbiome (AUROC. 0.9) in six
of eight related data sets (Fig. 4a). We then asked whether and to what extent the
microbiome-based RF classifiers of periodontal disease states can be applicable
from one data set to another (Fig. 4b). For gingivitis, we observed very limited deg-
radation in prediction accuracy for the cross-trained RF models from one cohort to
another (AUROC ranges from 0.88 to 0.99 in either self-validation or prediction).
Moreover, an RF classifier trained on periodontitis can be readily applicable to gingi-
vitis or vice versa (AUROC. 0.75 in either self-validation or prediction), despite the
large technical difference (or other non-disease-related biological differences)
between studies/cohorts in the microbiome data that frequently confound such
cross-applications (Fig. S4a). Thus, the gingivitis and periodontitis classifiers share a
large number of microbial markers, suggesting a high degree of similarity in the
underlying microbiome.

Next, the microbial signatures associated with gingivitis or periodontitis were
compared across these data sets (see Materials and Methods). First, we asked
whether the identified microbial response to gingivitis onset (i.e., SoH) or progres-
sion is consistent with reported gingivitis microbiome in these independent cohorts.
Here, 1,023 samples (931 from China and 92 from the United Kingdom) from five
gingivitis-related data sets were compared, each with a longitudinal design that
tracks microbiome dynamics along gingivitis progression or retrogression. For cross-
study comparison of microbial responses, statistical analyses on samples from the
baseline and the last time point in each study were performed (with univariate tests
on genus-level CLR-transformed relative abundances conducted for each data set in-
dependently, and the results were compared across studies (Wilcoxon rank-sum test
with the Bonferroni correction). Notably, the gingivitis-associated microbiomes are
highly reproducible across studies (Fig. 4c). In the EG data sets, microbiome shifts
are characterized by enrichment of a large proportion of “pathogenic” or pathogen-
associated genera and depletion of a few commensal oral bacteria (consistent across
studies) (Fig. 4c). The EG-associated microbiome identified from our previous study
(i.e., CN_EG_2014) harbored the broadest spectrum of microbial shifts (n= 41),
among which .60% of microbial markers (e.g., Rothia, Haemophilus, Actinomyces,
Streptococcus, Selenomonas, Prevotella, Leptotrichia, uncultured Lachnospiraceae,
and TM7) actually overlapped those identified in other gingivitis progression studies
(including the present gum SoH study) (Fig. 4c). Moreover, the two antigingivitis
treatments of brushing alone and brushing plus rinsing (16)) are both characterized
by enrichment of health-associated bacteria and depletion of pathogenic bacteria;
in fact, the microbial taxa shifted toward the healthy state during gingivitis retro-
gression and largely overlapped markers of the EG studies (e.g., Lautropia, Rothia,
Granulicatella, TM7, and Leptotrichia) (Fig. 4c) but in the opposite direction of abun-
dance change.

Second, we tested whether or to what extent the stage-specific plaques of gingivitis
are linked to those of periodontitis. Specifically, 260 samples were collected from two

FIG 4 Legend (Continued)
prediction accuracy between antigingivitis treatments is higher than that between EG experiments, suggesting that antigingivitis treatments often result in
very similar microbiome responses, regardless of the difference in cohorts. (c) Heat map for log2 mean fold change of all plaque genera between the last
day of treatments and baseline in each of the longitudinal studies (or between case and control groups in the cross-sectional studies). Blue denotes a
reduction in relative abundances of genera (red indicates enrichment) versus baseline. Significant fold changes (Bonferroni-corrected P, 0.05) are marked
by asterisks, while nonsignificant changes (Bonferroni-corrected P. 0.05) are indicated as blanks in the heatmap. The colors of the genus names indicate
those showing highly consistent enrichment (red) or reduction (blue) in the periodontal disease state across data sets. (d) A random forests classifier of
periodontitis was built based on the subgingival microbiomes in a U.S. periodontitis cohort and then applied to all the other data sets in the meta-
analyses, so as to model the estimated probability of periodontitis for the gingivitis patients. FDR-corrected statistical significance: *, P # 0.05.

Huang et al. ®

March/April 2021 Volume 12 Issue 2 e03281-20 mbio.asm.org 10

 on M
ay 23, 2021 at U

N
IV

 O
F

 H
O

N
G

 K
O

N
G

http://m
bio.asm

.org/
D

ow
nloaded from

 

https://mbio.asm.org
http://mbio.asm.org/


case-control studies (United Kingdom, n=92; United States, n=178) on periodontitis
microbiomes: the UK_Periodontitis data set was from a study in which Kistler et al. pro-
filed plaque microbiome of chronic periodontitis (15), and the US_Periodontitis data
set was from a study in which Griffen et al. compared subgingival plaque microbiota
from 29 periodontally healthy controls and 29 subjects with chronic periodontitis
(including periodontally healthy and diseased sites) from a U.S. cohort (23). Notably,
the periodontitis microbiomes feature a large number of genera that overlap those
identified in the EG or even the SoH stage of gingivitis (Fig. 4b and c; Fig. S4). The
microbiome shifts responding to chronic periodontitis in the U.S. or UK cohorts were
characterized by an enrichment of gingivitis-enriched genera (such as Porphyromonas,
Leptotrichia, Selenomonas, TM7, Prevotella, uncultured Lachnospiraceae, Campylobacter,
Fusobacterium, and Tannerella) and a depletion of gingivitis-depleted ones (such as
Rothia, Haemophilus, Actinomyces, Streptococcus, and Kingella). Importantly, those gin-
givitis-associated microbes were all identified as such in the Chinese cohorts.
Considering the potential heterogeneity between cohorts (i.e., different geographic
locations) or technical interstudy batch effects (such as a 454 versus Illumina sequenc-
ing platform, different primer sets, etc.), the very limited variation in microbial response
to periodontal diseases across the two UK/U.S. periodontitis cohorts and the China gin-
givitis cohort is remarkable.

To validate the similarity in microbiome signature between gingivitis and periodon-
titis, we built an RF classifier of the chronic periodontitis on the plaque microbiome
and applied this model to a given sample from any of the gingivitis stages for estimat-
ing its microbiome-based probability of periodontitis (which we designated the micro-
biome-based periodontitis index [MPI]) (Fig. 4d). In the training data set (i.e.,
US_Periodontitis), MPIs of the healthy controls are on average only 10%, while they av-
erage as high as 99% in periodontitis patients. In our present study, MPIs increased
progressively along the EG process, a pattern that is consistent with the other EG data
sets. In particular, the MPI at day 7 (end of the gum SoH stage), with a median of
;62%, is significantly higher than that at day 0, suggesting the emergence of a perio-
dontitis-like microbiome at this stage, due to the aforementioned profound changes in
plaque microbiome, plaque metabolome, and host immunity that take place at the
SoH stage.

Temporal dynamics of microbiome in the development of gingivitis and
periodontitis. To characterize the temporal shifts in both species-level taxonomic di-
versity and functional diversity during periodontal disease development, we performed
a meta-analysis of the published SoH, UK_EG, UK_Periodontitis, and US_Periodontitis
data sets (Table 1). We classified the disease status (or time points) using RF models
based on either the species-level taxonomic profile or the predicted functional profile
(by PICRUSt) through the stages of disease development in all studies (Fig. 5a).
Surprisingly, AUROC of species-level-taxonomy based RF classifiers for plaque at day 3
reached 0.85 (function-based classifiers, 0.81), which is already quite close to the value of
0.88 at day 28 (function-based classifiers, 0.85). Thus, plaque functional profiles already
resemble that of the severe gingivitis stage within 24h after dental scaling (Fig. 5a) and
actually saturate after 24h. The discriminative power of this function-based classifier
(AUROC=0.78) is nearly equivalent to that distinguishing chronic periodontitis patients
from healthy individuals from the UK cohort (AUROC=0.82; DAY0_VS_DD), suggesting
an ultrarapid assemblage of functional components in the plaque biofilm that closely
resemble those in periodontitis patients.

Moreover, to test whether microbiome successions are concordant between the de-
velopmental stages of these oral chronic inflammations, we quantitatively compared
the microbial differential abundance profiles between time points or disease severities.
For each data set, the differential abundance (i.e., mean log2 fold change) of microbial
features in the plaque microbiome from healthy baseline to a given developmental
stage of disease was measured (Fig. 5a and b; Fig. S5a). For two given microbial signa-
tures (e.g., day 0 versus day 221 and day 0 versus day 28 in the SoH study), we first
ranked the features by the degree of differential abundances in each of them and then
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FIG 5 Comparing temporal microbiome shifts along the stages of periodontal disease. (a) Most oral-disease progression shows microbiome alterations,
with consistent disease-associated shifts that differ in their extent and direction. Panels (left to right) show sample size for each study, area under the ROC
curve (AUROC) for the species-level RF classifiers (the x axis starts at 0.5, the expected value for a classifier that assigns labels randomly; those with AUROC
of ,0.5 are not shown), number of species with q values of ,0.05 (Wilcoxon rank-sum test, Bonferroni correction) for each data set, and direction of the
shifts in microbiome structure, i.e., percentage of associated species that are enriched in the disease state; the last three panels show results of similar
analyses conducted on the imputed functional profiles from 16S rRNA sequencing data. (b) Heat map for log2 mean fold change of bacterial species
between a (pre)diseased state and the healthy baseline in each. Blue denotes reduction in relative abundances of species (red indicates enrichment) versus
baseline. Significant fold changes (Bonferroni-corrected P, 0.05) are marked by asterisks, while nonsignificant fold changes (Bonferroni-corrected P. 0.05)
are blank in the heat map. We next performed PCoA based on the mean log2 fold change data of species (c) or predicted functional pathways (d) that are
associated with two oral diseases. Each dot in the PCoA plots represents a process of microbiome alterations from health to the onset or progression stage
of a given oral disease. The dots are colored by disease. The lines with arrows represent the path along which microbial alterations occurred during
disease development.

Huang et al. ®

March/April 2021 Volume 12 Issue 2 e03281-20 mbio.asm.org 12

 on M
ay 23, 2021 at U

N
IV

 O
F

 H
O

N
G

 K
O

N
G

http://m
bio.asm

.org/
D

ow
nloaded from

 

https://mbio.asm.org
http://mbio.asm.org/


calculated the Pearson’s correlation between these two feature ranking lists. To reveal
the patterns driving the temporal difference in microbiome across diseases, we next
performed PCoA via the correlation-based distance metric of all pairs of feature ranking
lists, with each dot in PCoA corresponding to a pattern of microbial alteration between
the healthy baseline and a particular disease developmental stage (instead of a micro-
biome sample) (Fig. 5c and d).

Intriguingly, at the species level, the microbiome differences during gingivitis de-
velopment are more pronounced than those from periodontitis (Fig. 5c). During gin-
givitis progression, along PC1, the profile of microbiome alteration between the
baseline (day 0) and a given time point increasingly resembled that between health
and periodontitis in either the U.S. or the UK cohort. Notably, the microbial taxonomi-
cal response to severe gingivitis (e.g., day 0 versus day 221 and day 0 versus day 28
in the SoH study) is highly similar to that of chronic periodontitis. Thus, taxonomic
perturbations during dysbiosis are highly consistent between gingivitis and chronic
periodontitis (Fig. 5c). Notably, during gingivitis development, functional potential of
microbiome is relatively conservative over time, particularly after the SoH stage
(Fig. 5d). In fact, the gingivitis-associated community in dental plaque biofilm actually
assembles rather rapidly in the very early stage (i.e., the SoH stage), to form a “cli-
max”-like community configuration that is very similar to the periodontitis-associated
community (Fig. 5d).

Gingivitis onset and development greatly accelerate oral microbiome aging.
“Healthy” aging in humans is accompanied by increased incidence of periodontal dis-
ease (31, 32). We previously showed that, in 4- to 6-year-old children, the supragingival
plague microbiome, which defines a personalized oral microbiome age (OMA), is corre-
lated with human chronological age in heathy (i.e., caries-free) children (33) but devi-
ates from the latter upon caries onset; moreover, we found that, for healthy adults 18
to 63 years old, the oral microbiome can predict human chronological age with a
mean absolute error of 2.44 years (34). These observations revealed and underscore
the significance of a healthy oral-microbiome-aging process.

To test whether and how such a process is linked to the temporal change of the
microbiome from healthy gum to gingivitis and then to periodontitis, we benchmarked
the microbial signatures associated with gingivitis, periodontitis, and healthy host
aging. The membership and enrichment directionality of key microbial features
involved in these phenotypic changes were systematically investigated. We respec-
tively trained the RF models for predicting healthy aging (regression), gingivitis (classi-
fication) in the SoH study, and periodontitis (classification) in the US_Periodontitis
study using the abundance profiles of shared species across the three data sets. Then
we ranked the microbial features by their importance estimated by built-in RF impor-
tance score and compared the ranking relevance across machine learning models
(Fig. 6a). Comparison of the ranking lists revealed related yet distinct roles that each
oral bacterium plays in healthy mouth aging, experimental gingivitis, and chronic
periodontitis (Fig. 6a). Intriguingly, a number of features emerged that consistently
showed high importance ranking in predicting the three processes (Fig. 6a): e.g.,
Streptococcus sanguinis, Rothia dentocariosa, and Rothia aeria are depleted with healthy
host aging and with gingivitis and periodontitis; in contrast, Porphyromonas gingivalis
increased with aging and was also enriched in patients with severe gingivitis and
periodontitis.

Next, we contextualized the gingivitis-associated microbiome change, which takes
place within a short time frame, with oral microbiome changes in the decades-long
aging process of human adults. Given the intrinsic technical effect between studies, we
retained 61 commonly shared features in the training and test data sets for model
application. These 61 species can account for 54% of features in the training data and
40% of species in the test data. We retrained the oral microbiome aging model using
these 61-species abundance profiles. The prediction accuracy of this reduced model
(mean absolute error [MAE] = 2.44 years) can still achieve an accuracy level similar to
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that using the full set of microbial species, suggesting that the most important features
have been retained. OMA was then calculated for each of the subjects in the longitudi-
nal study design. Interestingly, OMA is strongly correlated with the number of sites of
bleeding, which is the main symptomatic measure of gingivitis (r=0.46, P, 1e214). In
fact, every 10-bleeding-site increment would result in at least 1 additional year of oral
microbiome age (Fig. 6b).

Furthermore, projecting OMA onto this NG-baseline-EG data set suggested that the
metric reliably reflects the temporal dynamics of gingivitis symptoms within hosts over
time (Fig. 6c). For example, in the NG phase and at day 28 of EG, every subject’s OMA
peaked; however, dental scaling dramatically reduced OMA to the lowest level at day 0
and 1. In particular, the cessation of oral hygiene elevated OMA by one year on aver-
age over the 28-day experiment, i.e., an acceleration of oral microbiome aging by at

FIG 6 Gingivitis development greatly accelerates oral microbiome aging. (a) The ranking relevance of each species in the random forest models for
predicting oral aging, gingivitis, and periodontitis and identification of a minimal microbial signature for them. Only species (n= 61) appearing in all data
sets are reported. (b) The scatterplot shows the correlation between oral microbiota age predicted and bleeding in the SoH study. (c) The linked dot plot
shows the temporal dynamic of oral microbiota age (OMA) within participants in the experimental gingivitis study. FDR-corrected statistical significance: *,
P # 0.05; **, P # 0.01; ***, P # 0.001.
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least 1 order of magnitude of chronological aging. Such poor-hygiene-induced acceler-
ation of oral microbiome during its already fast aging highlights the importance of oral
hygiene in maintaining healthy aging of the oral ecosystem.

DISCUSSION

Despite the technological challenges, integrating the human dental plaque micro-
biota and metabolomics profiles enables an in-depth and mechanistic understanding
of periodontal disease etiology. Simultaneous analysis of dental plaque samples via
DNA sequencing and LC-MS/MS has been hindered by (i) the low biomass of dental
plaque sampled with high temporal resolution from each host and (ii) the difficulty of
reconciling the distinct sample preprocessing procedures for DNA sequencing and LC-
MS/MS on a plaque sample (e.g., the organic solvent extraction in LC-MS/MS can
reduce the DNA quality for sequencing). Therefore, in our new strategy, two dental pla-
que samples (up to 14 teeth each) were collected (for each subject) from quadrants 1
and 3 (plaque A) or 2 and 4 (plaque B) for sequencing and LC-MS/MS, respectively (ran-
domly assigned, to eliminate potential bias). This is particularly enabling for recording
the integrated metagenome-metabolome choreography of plaque when sampled at
high temporal resolution and particularly during the SoH phase (just 0 to ;3 days
away from baseline, with especially low plaque biomass).

The link and distinction temporal dynamics among host symptoms, immune fac-
tors, plaque structure, and plaque metabolome unveiled how plaque the microbiota
drives gingivitis onset and progression. Most importantly, an asymptomatic SoH state
of gingivae, from 0 to 3 days after dental prophylaxis and pause of oral hygiene, was
uncovered, when the most intense host-microbiome interactions take place, i.e., rapid
and consistent alterations in plaque microbiota, metabolite pool, and salivary cyto-
kines. In particular, during this preclinical-symptom, very transient gingival state of
SoH, plaque residents (e.g., Rothia spp.) and metabolites (e.g., betaine) that are strongly
negatively correlated with gum bleeding (over the entire 49-day NG-baseline-EG pro-
cess) undergo a steep decrease, while at least 11 salivary cytokines dramatically change
in response (six upregulated and five downregulated compared to day 0) and then rap-
idly plateau. In contrast, such alterations were not seen in subsequent phases of gingi-
vitis development (e.g., from day 7 to 28), even for those with much higher sympto-
matic severity.

Betaine was not previously linked to gingivitis development, despite its being rec-
ognized as maintaining cell osmotic pressure, which can promote cell survival under
the high hyperosmotic pressure potentially due to inflammation and diseases (28).
Interestingly, it is at present an ingredient in toothpaste for relieving dry mouth (35). In
our plaque samples, betaine consistently and continuously declined as the gingivitis
developed (particularly in the SoH stage), suggesting a protective role against gum
inflammation. Notably, its concentration in the plaque was highly correlated with pla-
que residents, such as Rothia spp., that were enriched in healthy gums and depleted in
patients with gingivitis. Therefore, the health-associated members of plaque might
have served as a source of betaine that possibly to protect the gum from gingivitis,
which underscores the importance of maintaining a healthy plaque.

Notably, although taxonomic shift in plaque took place as early as 24 h after den-
tal prophylaxis (by acquiring microbial colonizers from saliva [11, 20]), it was accom-
panied by a delayed functional shift, as revealed by plaque metabolome analysis.
This suggests that establishment of primary colonists in plaque alters the plaque
metabolome within 48 h (i.e., at or by day 3), which then elicits both gingival inflam-
mation and subsequent plaque development, starting a detrimental cycle: periodon-
tal tissue destruction by plaque dysbiosis provides nutrients for bacterial growth,
which further promotes dysbiosis and tissue inflammation (11). Therefore, despite its
apparent baseline-like characteristics, the SoH phase is a transient yet crucial time
window to prevent or abolish the start of such vicious circles.

In the co-occurrence network analysis, no association was observed between
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cytokines and the microbial taxa that become prevalent during EG. There are two
potential explanations. First, temporal dynamics of microbiome features and cytokines
were quite distinct throughout this EG experiment. The proinflammatory cytokines
drastically changed only in the first 3 days and plateaued afterward, whereas most dis-
ease-associated plaque microbial features continuously shifted toward a periodontitis-
like community configuration throughout the 28-day experiment. This result may
imply that innate (inflammatory) immunity and acquired immunity are coordinated to
modulate the homeostasis of periodontal tissue (36). In the initial stage of gingivitis
(i.e., SoH), a group of cytokines act in the first wave of the inflammatory response to
dental plaque accumulation and stimulation. If such short-term periodontal inflamma-
tion is not resolved, chronic pathology may occur, where the adaptive immune
response is activated. At this stage, hosts can tolerate the plaque microbiome, i.e., the
inactivation of those cytokines. Second, in this study, we collected salivary samples for
cytokine measurement rather than the gingival crevicular fluid (due to the technical
challenges associated with the latter). This can also result in the apparent lack of asso-
ciations between salivary cytokines and the EG-associated microbes.

Surprisingly, implication of this SoH stage is supported by our meta-analysis of past
oral-microbiome studies, which reveals a microbiome-mediated link between the very
early stage (i.e., SoH of gingivitis) and very late stage (periodontitis) of periodontal dis-
ease. Gingivitis and periodontitis patients share a significant number of bacteria genera
(18–20, 23), and periodontal treatments can result in depletion of disease-associated
bacteria and enrichment of health-associated ones in plaque (16, 17, 37). However, sys-
tematically tracking microbial associations across different stages for chronic periodon-
tal diseases remains a challenge, since it is impractical to create or modulate advanced
disease states directly in humans, while clinical studies can only induce mild or moder-
ate disease states (notably, this holds true for many chronic diseases). Moreover,
technical variations such as interstudy differences in the sequencing protocol, 16S
databases, or statistical methods prevent comparison of microbial associations across
studies (38). For example, microbiome data are compositional (39); however, in many
past studies, traditional statistical methods such as the t test or Wilcoxon rank-sum
test were widely and inappropriately used on the raw abundance data for microbial
marker discovery; in fact, once the compositionality issues in statistical analysis are
accounted for, it is far less clear whether the reported microbial associations can be
recapitulated (39).

To tackle these issues, we reanalyzed from raw data all published and accessible
microbiome data sets with consistent parameters and RF models. Our results pro-
foundly relate gingivitis to periodontitis via the plaque microbiome. Specifically, (i) the
oral-microbiome responses to a disease state, either gingivitis or periodontitis, can be
highly consistent across human populations, while this is not the case for most of the
other chronic diseases (33, 38), and (ii) the plaque residents specifically responding to
periodontal inflammation are quite consistent between the very early stage of gingivi-
tis (i.e., SoH) and the eventually irreversible and detrimental state of periodontitis, de-
spite their decades-long temporal gap and the large host- or technology-related varia-
tion among cohorts/studies. This is in contrast to early childhood caries (ECC), where
plaque microbiomes at the new-onset stage are very distinct from those at the late
stage (33, 40). The patterns and nature of such microbiome changes underlying
chronic disease development, whether conserved or divergent among the many
chronic inflammations at oral or other human body sites, can shed new light on dis-
ease etiology and help refine diagnosis, prevention, and treatment.

Intriguingly, the change of plaque microbiome within the 28-day baseline-to-EG
segment resembles the oral microbiome shifts in the decades-long aging process of
healthy adults. Such similarity is underpinned by (i) a progressive decline in the
immune functions during normal aging, exacerbating the inflammatory responses to
oral bacterial infection and potentially causing the pathogens residing the oral mucosa
to proliferate; (ii) the aging-related changes in the host immunity, which drastically
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modified the ecological niches of oral residents, so those enriched (or depleted) in peri-
odontal disease (e.g., Porphyromonas gingivalis and Rothia spp.) became more (or less)
abundant during normal aging. Therefore, EG can perhaps serve as a personalized, lon-
gitudinal research model for oral-ecosystem development and aging in humans (which
would otherwise take decades to track). On the other hand, gingivitis development
accelerates oral microbiota aging (OMA) by 10-fold, with both featuring dramatic
depletion of Rothia spp. and elevation of levels of Porphyromonas gingivalis (brain colo-
nization by which can result in amyloid plaques, a hallmark of Alzheimer’s disease [8]).
This novel microbiome link between gingivitis onset/development and healthy aging
of the oral ecosystem sheds new light on the significance of daily oral hygiene and
raises intriguing hypotheses on maintaining or reversing healthy oral-ecosystem aging
by targeted manipulation of gingivitis-induced oral-microbiota members or metabo-
lites (such as betaine).

In summary, by tracking the choreography of plaque microbiome structure, plaque
metabolome, and host immune response during gingivitis onset and progression, we
unraveled a microbiome-defined SoH stage of gingivitis, i.e., the 24 to 72 h after a
pause in oral hygiene. Although transient and asymptomatic, SoH is a crucial phase
when the most intensive changes in plaque structure and metabolism as well as host
immune factors take place, and it exhibits a microbial signature highly similar to that
of periodontitis. Prevention or treatment of SoH would eliminate the risk of dramati-
cally accelerated oral microbiome aging by avoiding full gingivitis development. In
light of the epidemic of periodontal disease (1–5) and the insufficient public health
awareness of the importance of oral hygiene (a significant portion of the world’s popu-
lation still fails to brush teeth daily [3, 4]), our findings underscore the importance of
intervening at the SoH stage of gingivitis via proper oral-hygiene practices, so as to
maintain a healthy, periodontitis-preventive plaque, plus a healthy aging process of
the oral ecosystem. On the other hand, the host- or microbiome-associated factors
that influence key features of such a gingival SoH stage (e.g., its timing, duration, etc.)
are not yet clear, and it would be intriguing to probe whether diet (or lifestyle changes
of the human race over the past few centuries) may play a role. Finally, since SoH
appears to be a shared stage that carries disease-specific microbial, metabolomic, and
immunological features, defining and comparing the SoH states of various types of
chronic polymicrobial inflammations will be of great interest and should introduce
new opportunities for predictive and personalized medicine.

MATERIALS ANDMETHODS
Overall design of the study. The notion of experimental gingivitis was established as a noninvasive

model in humans for the pathogenesis of gingivitis (13). This single-center, examiner-blind, controlled
clinical trial was conducted at the Procter & Gamble (Beijing) Technology Co., Ltd., Oral Care
Department, with approval from the P&G Beijing Technical Center (China) institutional review board and
in accordance with the World Medical Association Declaration of Helsinki (1996 amendment). ICH guide-
lines for good clinical practice were followed. All participants gave written informed consent prior to the
study.

Overview of the human cohort. A total of 40 volunteers who met all inclusion criteria participated
in this study, and all completed it (Table S2). Clinical examination of gingival tissues using the Mazza
index was conducted at all of the visits by a qualified dental examiner (Fig. 1a). For each subject, supra-
gingival plaque and salivary samples were collected by professional dentists at day 221 (NG), day 0
(baseline), day 1 (EG), day 3 (EG), day 7 (EG), day 14 (EG), and day 28 (EG), in a longitudinal manner
(Fig. 1a). The optimal gingival health state on day 0 was achieved through dental prophylaxis and rigor-
ous oral hygiene during the oral-hygiene phase prior to baseline. Dental prophylaxis, including supra-
and subgingival whole-mouth cleaning on a total of 28 teeth, was performed on day 221, day 214, and
day 27. Subjects were instructed to brush with a sodium fluoride dentifrice 3 min each time twice daily
in the oral-hygiene phase. In contrast, in the EG phase (day 0 to day 28), only rinsing with purified water
was allowed for each of the subjects.

Clinical assessment. A qualified dental examiner performed oral-tissue assessments on the study
participants at day 221, day 214, day 27, day 0, day 1, day 3, day 7, day 14, and day 28. Assessment of
the oral soft tissue was conducted via a visual examination of the oral cavity and perioral area. The struc-
tures examined include the gingiva (free and attached), hard and soft palate, oropharynx/uvula, buccal
mucosa, tongue, floor of the mouth, labial mucosa, mucobuccal/mucolabial folds, lips, and perioral area.
Assessment of the oral hard tissues was conducted via a visual examination of the dentition and

Suboptimal Health Stage of Gingivitis ®

March/April 2021 Volume 12 Issue 2 e03281-20 mbio.asm.org 17

 on M
ay 23, 2021 at U

N
IV

 O
F

 H
O

N
G

 K
O

N
G

http://m
bio.asm

.org/
D

ow
nloaded from

 

https://mbio.asm.org
http://mbio.asm.org/


restorations. Gingivitis was assessed based on the Mazza index (13): sampling was performed on the
mesiofacial and the distolingual part of each tooth, for a maximum of 56 sites.

Saliva sample collection. At the day 221, day 0, day 1, day 3, day 7, day 14, and day 28 visits, sub-
jects were asked, prior to plaque sampling, to expectorate approximately 10ml of unstimulated saliva
into a labeled tube (Fig. 1a). The samples were frozen at 220°C immediately after collection until use for
cytokine profiling.

Plaque sample collection. Gingival plaque from each of the 40 subjects was collected at day 221,
day 0, day 1, day 3, day 7, day 14, and day 28 (Fig. 1a). Specifically, subjects refrained from oral-hygiene
practices, including toothbrushing, flossing, or mouth rinsing, on the morning of sampling, and supra-
gingival plaque samples along the gingival margin were collected after gingival index examination using
a Gracey curette by a qualified dentist. At each time point, to ensure a sufficient amount of plaque for
analysis, samples were taken from each subject’s maxillary right and mandibular left quadrants or maxil-
lary left and mandibular right quadrants alternatively. All samples were stored at 270°C until use.

Plaque microbiome structure analyses. Genomic DNA was extracted from the plaques. Barcoded
16S rRNA amplicons (V1-V3 hypervariable region) of all the 261 samples were sequenced with an
Illumina MiSeq system. All 16S rRNA raw sequences were preprocessed following the standard QIIME
(v.1.9.1) pipeline (41). Downstream bioinformatics analysis was performed using Parallel-META 3 (29), a
software package for comprehensive taxonomical and functional comparison of microbial communities.
Clustering of operational taxonomic units (OTUs) was conducted at the 97% similarity level using the
OralCore database (42). Taxonomically assigned sequences were further agglomerated at the genus
level for structural comparison of microbiomes.

LC-MS/MS data acquisition for plaque metabolome. Prior to LC-MS/MS analysis, plaque samples
were prepared using the following procedures. For extraction, 1ml (40:40:20 [by volume]) methanol
(MeOH)/acetonitrile (ACN)/water was added to the preweighted supragingival plaque in a 2-ml polypro-
pylene (PP) tube and vortexed for 1 min. Plaque pallets in the extraction solvent were incubated in 95°C
water bath for 1 h, centrifuged at 3,000 rpm, and subsequently transferred to another 2-ml PP tube. For
complete extraction, 500ml extraction solvent was added as described above to the original tube, vor-
texed for 10 s, and centrifuged at 3,000 rpm for 10 min. Each of the final extraction solutions was com-
bined with the one obtained in the last step. Each liquid extraction was dried completely with nitrogen
and then stored in a 280°C freezer until use.

Nontargeted metabolomic analysis was performed using a Q Exactive Orbitrap spectrophotometer
(Thermo Fisher, CA). After resuspension of the dried extract, each of the samples (1ml supernatant) was
loaded onto a normal-phase chromatography column and then eluted to the Orbitrap mass spectrome-
ter with an aqueous phase containing 5mM ammonium acetate as the eluent from 1% to 99% within
15min. The stationary phase was 95% acetonitrile with 5mM ammonium acetate. Data with a mass
(m/z) range from 100 to 1,500 was acquired in the positive ion mode using data-dependent MS/MS ac-
quisition. The full scan and fragment spectra were collected with resolutions of 70,000 and 17,500,
respectively. The source parameters are as follows: spray voltage, 3,000 V; capillary temperature, 320°C;
heater temperature, 300°C; sheath gas flow rate, 35 arb.; auxiliary gas flow rate, 10 arb. Metabolite identi-
fication was based on Tracefinder search with a home-built database containing 529 compounds.

Targeted metabolomic experiments were performed on a TSQ Quantiva mass spectrometer (Thermo
Fisher, CA). C18-based reverse-phase chromatography was utilized with 10mM tributylamine–15mM ace-
tic acid in water (pH ;6) and 100% methanol as mobile phases A and B, respectively. This analysis
focused on tricarboxylic acid (TCA) cycle, glycolysis pathway, pentose phosphate pathway, amino acids,
and purine metabolism. A 25-min gradient from 5% to 90% mobile phase B was used. Positive-negative
ion switching was performed for data acquisition. Cycle time was set as 1 s, and a total of 138 ion pairs
were included. The resolutions for Q1 and Q3 are both 0.7 FWHM (full width, half maximum). The source
voltage was 3,500 V for positive and 2,500 V for negative ion mode. Sweep gas was turned on at 1 arb.
flow rate.

LC-MS/MS data analysis for plaque metabolome. For targeted metabolomics, a triple-quadrupole
mass spectrometer (TSQ Quantiva; Thermo Fisher) was used for the analysis in MRM mode. All the ion
transitions and retention times were optimized using chemical standards. Tracefinder (Thermo Fisher,
USA) was applied for metabolite identification and peak integration. The peaks were manually checked
for the analysis. Pooled QC samples were inserted in the batch to ensure system stability.

For untargeted metabolomics, an Orbitrap mass spectrometer (QExactive; Thermo Fisher) was used
for the analysis in DDA mode. An in-house database containing MS/MS spectra of over 1,500 metabolites
was incorporated for metabolite identification. Tracefinder (Thermo Fisher, USA) was used for metabolite
identification based on MS/MS fragment matching. Library score (LS) was applied to confirm the confi-
dence of metabolite identification. Only metabolites with an LS of .30 were considered confirmed.
Otherwise, they were assigned as a putative identification. The peaks were manually checked for the
analysis. Pooled quality control (QC) samples were inserted in the batch to ensure system stability.

Normalization was performed before statistical analysis. The missing values were replaced with half
of the minimum values in all the samples. Peak areas were normalized relative to the mean of the total
area of a sample. Both targeted and untargeted metabolomics data were combined and imported into
the R software (version 3.6.2) for multivariate analysis.

Quantification of salivary cytokines using multiplexed bead immunoassay.We collected 194 sal-
ivary samples at days 221, 0, 3, 7, and 28 from 40 subjects who were selected for quantification of
inflammatory cytokines (Fig. 1a). All samples were subpacked (1.0 ml sample in a 1.5-ml Eppendorf tube)
and stored at 280°C until measurements. Samples were thawed in an ice bath and vortexed, followed
by centrifugation at 3,000 rpm for 5min at 4°C. Supernatants were collected for further cytokine assays.
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Levels of the following 27 cytokines were analyzed using a BioPlex Pro human cytokine 27-plex assay kit
(no. M500KCAF0Y; Bio-Rad, Hercules, CA, USA) in accordance with the manufacturer’s instructions: IL-1b ,
IL-1a, IL-2, IL-4, IL-5, IL-6, IL-7, IL-8, IL-9, IL-10, IL-12(p70), IL-13, IL-15, IL-17, eotaxin, basic FGF, granulo-
cyte colony-stimulating factor (G-CSF), granulocyte-macrophage CSF (GM-CSF), IFN-g, IP-10 (10-kDa IFN-
g-induced protein), monocyte chemoattractant protein 1 (MCP-1), MIP-1a, MIP-1b , platelet-derived
growth factor BB (PDGF-BB), RANTES, tumor necrosis factor alpha (TNF-a), and vascular endothelial
growth factor (VEGF). Mean fluorescence intensities of the 192 salivary samples and 8 standards were
detected via a Luminex Flexmap 3D system (Luminex Corp., Austin, TX, USA). Cytokine concentrations
were calculated by xPONENT build 4.2.1441.0 (Luminex Corp.) using a five-parameter fit algorithm.
Values obtained from the reading of samples below the sensitivity limit of detection (LOD) or above the
upper limit of the sensitivity method were interpolated using a cubic spline interpolation to calculate
cytokine concentrations.

Statistical analyses. All statistical analyses were performed using R software (version 3.6.2). PCoA
analysis on a range of distance metrics was performed in R using the vegan and ape packages.
Quantifications of variance explained in plaque microbiome, metabolome, and salivary cytokine profiles
were calculated using permutational multivariate analysis of variance (PERMANOVA) with the adonis
function in the R package vegan (Fig. S1). The total variance explained by each variable was calculated
independently of other variables and should thus be considered the total variance explainable by that
variable. The differential abundance analyses of all measurement types were tested. First, an appropriate
transformation/normalization method was applied: CLR transformation for microbial taxonomic profiles.
The transformed abundances were then used to perform differential abundance analyses between time
points or groups using custom R functions (available at https://github.com/shihuang047/crossRanger).
To construct the co-occurrence network of molecular features from the multi-omics data sets, we identi-
fied significant associations between them using the Spearman correlation (jrhoj.0.6; false discovery
rate [FDR] P, 0.05). The network was visualized in Cytoscape (version 3.7.1).

Data availability. The code and all the data sets used in this study are publicly available at http://
mse.ac.cn/SoH.html.
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