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Real-time tracking and prediction of COVID-19
infection using digital proxies of population mobility
and mixing
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Digital proxies of human mobility and physical mixing have been used to monitor viral

transmissibility and effectiveness of social distancing interventions in the ongoing COVID-19

pandemic. We develop a new framework that parameterizes disease transmission models

with age-specific digital mobility data. By fitting the model to case data in Hong Kong, we are

able to accurately track the local effective reproduction number of COVID-19 in near real time

(i.e., no longer constrained by the delay of around 9 days between infection and reporting of

cases) which is essential for quick assessment of the effectiveness of interventions on

reducing transmissibility. Our findings show that accurate nowcast and forecast of COVID-19

epidemics can be obtained by integrating valid digital proxies of physical mixing into con-

ventional epidemic models.
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Tracking the spread of COVID-19 infection in real time has
been an elusive goal, given the necessary delay between
infection and reporting. This delay consists of the incu-

bation period (around 6 days), time between symptom onset and
diagnosis (around 3 days), and the duration between confirma-
tion and reporting (around half day)1,2. Therefore, there is
around 9 days of delay even with instantaneous updating of case
reports, assuming that testing is adequate to capture a consistent
proportion of cases.

We previously estimated that possibly 44% of all COVID-19
infection events were pre-symptomatic transmission, i.e., during
the last 2–3 days of the index-case incubation period; and 95% of
all transmission would have taken place by day 5 after symptom
onset3. Moreover, COVID-19, like SARS and MERS previously,
show remarkable clustering and potential for superspreading
events4. These are especially important if they take place in high-
risk settings, such as nursing homes and institutional contexts.
Taken together, it remains an urgent priority to develop new
analytics that would allow truly real-time monitoring of trans-
missibility, thus the application of timely public health inter-
ventions in mitigation.

Digital proxies of human mobility and physical mixing
have been shown to provide useful insights into disease trans-
mission5–11. Specifically, during the ongoing COVID-19 pan-
demic, data of human mobility and mixing have been used to
monitor the effectiveness of social distancing interventions5,9,10.
Here, using COVID-19 in Hong Kong as an example, we describe
a framework that integrates such digital proxies into conventional
epidemic models to (i) track transmissibility in near real time;
and (ii) generate nowcast and short-term forecast of the
pandemic.

Results
Transmissibility of COVID-19 in Hong Kong. The first
imported and local case of COVID-19 in Hong Kong was con-
firmed on January 23, 2020, and January 30, 2020, respectively. In
response to the pandemic, Hong Kong imposed progressively
more restrictive interventions on inbound travelers thereafter. As
such, the transmissibility of imported and local cases was
expected to be inherently different and should be estimated
separately, hence we stratified the local cases in Hong Kong into
secondary cases of local and imported cases (based on their
epidemiologic linkages documented in the COVID-19 surveil-
lance database compiled by the Government Center for Health
Protection) and estimated the transmissibility of local and
imported cases over time (see “Methods” for details).

To estimate the transmissibility of COVID-19 in Hong Kong,
we first approximated the epidemic curves by date of infection by
deconvoluting the epidemic curves by date of onset with the
incubation period12–14. We then applied the method described in
Thompson et al.15 to estimate the instantaneous effective
reproduction number (Rt), which was defined as the mean
number of secondary infections generated by a typically
infectious case at time t. We call the resulting estimates of Rt
for local cases our empirical Rt estimates. We used simulations to
verify that this method for generating empirical Rt estimates was
generally accurate, except when the daily case count fell below ten
(Supplementary Fig. 1).

The empirical Rt estimate was around 2.5 when community
transmission first began in mid-January. Rt then dropped rapidly
to around 1 during late-January after Wuhan was locked down on
23 January and stringent nonpharmaceutical interventions were
implemented across all major cities in mainland China (Fig. 1). Rt
hovered around 1 in February, during which aggressive physical
distancing measures, such as “work-from-home” among civil

servants as well as many other businesses, were implemented.
Due to the relaxation of these measures and the importation of
cases among more than 75,000 returnees from infected countries
during the first week of March16, Rt rebounded sharply to mid-
January levels (i.e., around 2.5) within a week. As the cases
generated by such increase in transmission began to be registered
by surveillance during the second week of March (i.e., around
9 days of infection-to-reporting delay), Rt began to drop, probably
due to spontaneous resumption of physical distancing measures
among the general public in response to the observed increase in
community transmission. NPIs such as “work-from-home” were
reintroduced on 21 March and Rt continued to drop thereafter to
subcritical levels (i.e., <1) in April.

Digital proxies for population mixing. The basic premise of our
framework was that intracity mobility and physical mixing rele-
vant to the local spread of COVID-19 in Hong Kong could be
gauged by the digital transactions made on Octopus cards, which
are ubiquitously used by the Hong Kong population for their
daily public transport and small retail payments (https://www.
octopus.com.hk/tc/consumer/index.html). We demonstrated the
validity of our premise by calculating the Pearson’s correlation
coefficients between these digital proxies and the posterior mean
of the empirical Rt estimates.

The empirical Rt estimates were highly correlated with the
number of Octopus transactions for transport: the Pearson’s
correlation coefficients between the two were r= 0.62, 0.68, 0.80,
and 0.76 for children, students, adults, and the elderly,
respectively (Fig. 2 and Supplementary Fig. 2). These results
support our premise that Octopus transport transactions were
valid digital proxies for population mixing. The correlation
between Octopus retail transactions and the empirical Rt
estimates was low except for fast-food retail among adults (r=
0.71, which was still lower than that for adult transport).
Consequently, we did not use retail transactions as digital proxies.

Integrating the digital proxies into an epidemic model.
Assuming that Octopus transport transactions were valid digital
proxies for population mixing, we integrated them into an age-
structured (0–11, 12–18, 19–64, and ≥65 years) susceptible (S)-
infectious (I)-removed (R) model, assuming that the contact
matrix can be parameterized by optimally scaling the age-specific
digital proxies (see “Methods”). We inferred these scaling factors
and other model parameters by fitting the model to the epidemic
curve of local cases between January 22, 2020 and May 31, 2020
(the date of symptom onset of the last case was 28 April, but this
case was reported on 31 May and there were no cases reported
between 15 and 31 May)17,18.

The Rt estimates from the fitted model (i.e., the dominate
eigenvalue of the next-generation matrix in the fitted model at
time t) had a significantly higher correlation with the empirical Rt
estimates than the constituent digital proxies (r= 0.98, Fig. 3).
The deviations between the two in late-February (during which
empirical Rt was lower) and early-March (during which empirical
Rt was higher) might be due to low case counts (which tends to
cause oscillations in the empirical Rt estimates; see Supplementary
Fig. 1). We estimated that only 23% (13–47%) of all local
COVID-19 infections in Hong Kong had been ascertained by the
official surveillance system (Supplementary Fig. 6). We performed
the same model fitting at five earlier time points of the epidemic:
2 March, 14 March, 17 March, 22 March, and 4 April. The
posterior distributions of the scaling factors that translate the
digital proxies into the contact matrix were largely the same over
the course of the epidemic (Supplementary Fig. 3). That is, the
inferred mechanistic dependence of transmission dynamics on
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the digital proxies was stable over time, giving credence to the
epidemiologic validity of our framework. Incorporating house-
hold contact patterns into our framework did not improve
its performance (see Supplementary Information), probably
because local cases have been generated mostly by community
transmission.

Nowcasting and forecasting the spread of COVID-19 in Hong
Kong. The traditional framework of generating empirical Rt

estimates from epidemic curves could not provide real-time
estimates of Rt because there was an inevitable delay of around
9 days between infection and case reporting on average (e.g.,
6 days of incubation period plus 3 days of lead time between
symptoms onset and case reporting). In contrast, our framework
could be used to translate the digital proxies (which can be
autonomously compiled by Octopus daily) into real-time esti-
mates of Rt. More importantly, the fitted model could be used to
(i) nowcast the epidemic (i.e., estimating the number of cases that
have already been generated but not yet registered by surveillance

Fig. 1 Transmissibility of COVID-19 in Hong Kong. A, B The epidemic curves by dates of confirmation and symptom onset stratified by imported cases,
close contacts of imported cases, and local cases. The epidemic curve of local cases by dates of infection was estimated using deconvolution. C, D Rt
estimates of local and imported cases by dates of infections on sliding weekly windows using methods from Thompson et al. Local cases only include CHP
categories of local case, possibly local case, epidemiologically linked with local case and epidemiologically linked with the possible local case. The light
shades showed the Chinese New Year holidays and the time period when “work-from-home” arrangements were implemented for civil servants. Fourteen-
day quarantine was mandated for travelers from South Korea since 25 February; Iran and northern Italy since 1 March; Italy and affected area in France,
Germany, Spain, and Japan since 14 March; Schengen area and Egypt since 17 March; all regions and countries except Taiwan and Macau since 19 March;
and all regions and countries since 25 March. Red lines and shades indicated the posterior mean and 95% credible intervals of local Rt estimates. Blue lines
and shades indicated the posterior mean and 95% credible intervals of Rt estimates for imported cases.
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due to the infection-to-reporting delay); and (ii) generate short-
term epidemic forecast by making assumptions on how the digital
proxies (i.e., population mixing) might evolve over the forecast
time horizon.

We used the metrics proposed in Funk et al. (namely sharpness,
bias, ranked probability score (RPS), Dawid–Sebastiani score
(DSS), and absolute error (AE)) to assess the predictive
performance of our forecasts (Supplementary Fig. 7)19. Sharpness,
RPS, DSS, and AE dropped progressively between 30 January and
28 February, suggesting that the performance of our forecast
model was improving as more mobility and case data became
available (Supplementary Fig. 7). However, all metrics suggested
that the forecasts were less accurate on 29 February, 15–17 March,
and 22–23 March (Fig. 3 and Supplementary Fig. 8, in the sense
that the observed case counts were near or outside the 95%
prediction intervals). These prediction errors were likely due to the
occurrence of superspreading events, which tend to result in more
explosive growth in incidence20, and the stochastic effects in an

otherwise low-prevalence setting. Specifically, our forecast under-
estimated the number of new onsets on 29 February which
comprised a cluster from a religious group and another cluster
seeded by returnees on the Diamond Princess Cruise. Similarly,
our forecast underestimated incidence on 22–23 March which
comprised a large cluster from a bar setting17. Because SSEs were
rare in the training data and not explicitly modeled in our
framework, the forecast model underestimated incidence when
SSEs occurred. On the other hand, our forecast overestimated
incidence on 15–17 March probably because the true prevalence
was very low (on the order of tens) and the associated stochasticity
in transmission dynamics resulted in an epidemic take-off that
occurred slower than predicted by our deterministic framework.
Notwithstanding the prediction errors attributed to SSEs and very
low prevalence, our framework generated largely robust epidemic
nowcasts during February–April: the estimated number of cases
and its 95% prediction intervals from the fitted model (which were
sufficiently tight for practical purposes) provided a reasonably
robust inference of the number of cases that had already been
generated but not yet registered by surveillance due to the
infection-to-reporting delay (Fig. 3). Under the assumption that
population mixing would remain at status quo for 6 days following
the time of prediction, our epidemic forecasts were congruent with
the observed epidemic curve during February–April except when
SSEs occurred or when prevalence was very low (Fig. 3).

Finally, although the Rt estimates and scaling factors for
contact matrix parameterization were sensitive to assumptions
regarding the generation time distribution (as expected), the
accuracy and precision of the nowcasts and forecasts were
unaffected (Supplementary Figs. 9 and 10).

Discussion
Epidemic dynamics of directly transmitted infectious diseases,
including COVID-19, is shaped by contact patterns which can
fluctuate substantially over time due to spontaneous behavioral
changes in physical mixing among the general public as well as
interventions mandated by health officials (e.g., different com-
ponents of “lockdowns”)21. Although the conventional method of
using social contact surveys to gauge contact patterns has pro-
vided valuable insights into the epidemiology of many infectious
diseases (e.g., influenza, varicella, the current COVID-19 pan-
demic, etc.)22–24, it might be difficult to acquire real-time updates
of population mixing on a daily basis in the context of epidemic
surveillance, especially in settings with limited resources. Mobile
and location-based technology offer a complementary and effi-
cient solution—the digital footprints of human mobility and
activities registered by ubiquitously used mobile platforms (e.g.,
Octopus cards in Hong Kong, WeChat, and Alipay in mainland
China, Oyster cards in the UK, Facebook and Google in the US,
etc.) can be harnessed to generate near real-time proxies of
population mixing with very high frequency and spatiotemporal
resolution at very low cost. In this study, we have illustrated how
accurate nowcast and short-term forecast of COVID-19 epi-
demics can be obtained using epidemic models parameterized
with valid digital proxies even when population mixing was
varying widely on a weekly or even daily basis.

The robustness of such a framework hinges on the identifica-
tion of proxies that can provide representative and epidemiolo-
gically valid descriptions of human mobility and mixing among
different age groups over time. The correlation between Octopus
transactions and empirical Rt estimates would be weaker if the
former were not stratified by age and transaction categories
(Supplementary Fig. 2). Other digital proxies for human mobility
in Hong Kong such as CityMapper25 and Google’s community
mobility reports26 (Supplementary Fig. 4) had a lower correlation

Fig. 2 Correlation between transmissibility of COVID-19 and mobility
levels inferred from Octopus transport data in Hong Kong. A–D
Correlation with Octopus transport data (7-day moving average) of
children, students, adults, and the elderly. Red lines and shades indicated
the posterior mean and 95% credible intervals of local Rt estimates from
Fig. 1.
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with empirical Rt estimates than Octopus transport transactions,
probably because Octopus has much higher uptake across all age
groups and areas. Similarly, we found that Baidu’s transport data
for Beijing, Shanghai, Shenzhen, and Wenzhou (the four Chinese
cities for which empirical Rt estimates have been reported in our
previous study27) also correlated well with the respective local Rt
(Supplementary Fig. 5). In principle, jurisdictions that can track
Rt in near real-time would be able to adopt a reinforcement
learning approach to optimize their intervention portfolios via
rapid iterative cycles of transmissibility assessments and portfolio
readjustments.

Our methods leveraged aggregate data instead of individual-
level data from mobile phone usage. While individual-level data
could probably provide more information to improve the tem-
poral and spatial resolution of COVID-19 transmissibility, the use
of personally identifiable information must be considered more
thoughtfully to avoid the associated social, ethical and legal
challenges6. Aggregate data of population mobility and activity,
such as the Octopus card usage and Baidu’s intracity traffic
indices, are by default anonymized and therefore should not elicit
privacy concerns.

Our current framework has several limitations. First, daily
usage of Octopus cards among adults is much higher than that
among children (e.g., public transportation is free for children
aged below 3 years) and the elderly (e.g., the daily activities of
many seniors tend to occur within walking distance of their
neighborhood). As such, we posit that the explanatory and pre-
dictive power of our framework could be enhanced by including
proxies that are more specific to young children as well as older
adults (e.g., relative changes in customer volumes of “dim sum”
restaurants that are regularly patronized by the elderly in
Hong Kong).

Second, it is unlikely that big data such as Octopus transactions
can reflect physical mixing within households. However, this
seems to have little impact on how well our framework could
nowcast and forecast the COVID-19 epidemic in Hong Kong,
probably because community transmission has so far been the
major driving force for local spread of COVID-19. Nonetheless,

our framework should be extended to deal with more general
transmission scenarios by integrating the community contact
patterns inferred from digital proxies with household contact
patterns obtained from conventional social contact surveys.

Third, our framework tracked real-time changes in physical
mixing but not temporal changes in the probability that these
contacts conduce disease transmission. The latter might depend
strongly on infection-prevention behaviors (e.g., wearing of
masks and heightened personal hygiene) which can vary sub-
stantially as public sentiments regarding epidemic control fluc-
tuate. Again, this seems to have little impact on the performance
of our framework in this study, probably because infection-
prevention precaution has consistently remained at very high
levels among the general public in Hong Kong since the first
emergence of COVID-19 in January 202016. Future refinements
of our framework should include tracking of factors that might
affect transmissibility other than population mixing, which
includes infection-prevention behaviors of the general public as
well as climatic conditions28.

Fourth, our framework is based on changes in population
mixing and therefore might not be able to provide accurate epi-
demic forecast when there are not enough data from large clusters
or superspreading events to train the model (Fig. 3). Changes in
population mixing correlate with the average disease transmissi-
bility well, but the occurrence and scale of superspreading events
are often associated with substantial stochasticity. To improve our
framework, estimation of the scale of superspreading events
should be integrated into the model once the relevant data are
available from outbreak investigations.

Fifth, our framework is based on deterministic epidemic
dynamics and hence is not yet designed to cope with stochasticity
associated with very low disease prevalence (e.g., at fadeout
levels). To generate a more accurate nowcast and forecast in such
epidemic settings, the disease transmission model and inference
of its parameters in our framework should be extended to account
for stochastic epidemic dynamics29.

In conclusion, we have shown that digital proxies of population
mobility and mixing can be integrated into conventional

Fig. 3 Retrospective nowcast and forecast of the COVID-19 epidemic in Hong Kong. The green dash lines indicate the dates on which retrospective
nowcast, and 6-day forecast were made (2 March, 14 March, 17 March, 22 March, and 4 April). The blue dash lines indicate the latest empirical Rt
estimates obtainable from the epidemic curve on those dates. A Comparison between empirical Rt estimates and Rt from the fitted SIR model. The red line
and shades indicate the empirical Rt estimates (posterior mean and 95% credible intervals). Blue lines and shades indicate the nowcasted Rt (posterior
mean and 95% CrIs). Green lines and shades correspond to the assumption that population mixing (and hence Rt) would remain at status quo for the next
6 days (posterior mean and 95% CrIs). B Nowcast and forecast of local epidemic curves by dates of symptom onset. Red bars showed the number of local
onsets reported on or before the date of prediction. Orange bars showed the number of local onsets reported after the date of prediction. Blue lines and
shades.
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epidemic models to nowcast and forecast epidemics. As the
penetration of mobile and location-based technology continues to
rise globally in the future, many jurisdictions would be able to
harness various streams of real-time big data to generate timely
and robust epidemic intelligence. Indeed, in the context of
COVID-19 control, such data are already readily accessible in
countries such as China (e.g., WeChat and Alipay transactions)
for designing policies that maximize economic productivity while
maintaining the effective reproductive number below 1 until safe
and effective vaccines become widely accessible.

Methods
COVID-19 data in Hong Kong. The daily number of confirmed COVID-19 cases
in Hong Kong by date of symptoms onset was provided by the Centre for Health
Protection (CHP). Patients who met certain clinical, epidemiological, or laboratory
criteria were classified as suspected, probable, or confirmed cases in Hong Kong2.
Although some SARS-CoV-2 infections were asymptomatic at the time of
reporting, for simplicity we used the term “case” to include all symptomatic and
asymptomatic SARS-CoV-2 infections. A confirmed case is defined as a patient
whose specimens have been laboratory-confirmed to contain virologic or serologic
evidence of infection with SARS-CoV-2, irrespective of symptoms or epidemiologic
linkage. The testing strategy in Hong Kong has been relatively consistent between
late-January and the end of April2.

The CHP classified all COVID-19 cases into six categories: imported case, local
case, possibly local case, epidemiologically linked with imported case,
epidemiologically linked with local case and epidemiologically linked with possibly
local case (https://www.coronavirus.gov.hk/eng/index.html). Transmissibility of
imported and local cases was expected to be very different because intensive
nonpharmaceutical interventions had been imposed on travelers arriving from
COVID-19 affected regions since January 2020. Specifically, 14-day home
quarantine has been mandated for all individuals arriving in Hong Kong from
mainland China since 8 January, from South Korea since 25 February, from Iran
and affected areas in Italy since 1 March, from Italy and affected regions in France,
Germany, Japan, and Spain since 14 March, from the Schengen Area since 17
March and from all overseas countries and territories since 20 March16.

Octopus data in Hong Kong. The basic premise of our framework was that
intracity mobility and physical mixing relevant to the local spread of COVID-19 in
Hong Kong could be gauged by the digital transactions made on Octopus cards,
which are ubiquitously used by the Hong Kong population for their daily public
transport and small retail payments (https://www.octopus.com.hk/tc/consumer/
index.html). The Octopus cards are used by 99% of the population of Hong Kong
aged 16 to 65 and the system handles more than 14 million transactions, worth
over HK$180 million on a daily basis. (http://www.octopus.com.hk/en/corporate/
about-octopus/profile/services/index.html).

We obtained the daily number of Octopus transactions in two major categories,
namely transport and retail, among four types of cards, namely child (for children
aged 3 and 11), student (for primary, secondary school, and university students <26
years old as well as student cardholders who receive discounted fares on selected
routes), adult (for non-student adults aged under 65), and elder (for older adults
aged 65 years or above). The daily numbers of Octopus transactions were
normalized assuming the average number of Octopus transactions of each category
of each age group between January 1, 2020 and January 15, 2020 was 100%.

Model, inference, and analysis. Our analysis comprised the following steps:

1. Estimate the instantaneous reproductive number Rt of local cases in Hong
Kong on each day t between 22 January (day 0) and 15 May (day T) in the
renewal equation model built in the “EpiEstim” package.

2. Correlate the resulting time series of empirical Rt estimates (posterior
means) with the daily volumes of different types of Octopus transactions.
Select digital traces with high correlation coefficients with Rt as mobility
proxies for parameterizing the contact matrix of the SIR-type epidemic
model in step 3.

3. On each day t, optimize the scaling factors that translate the digital proxies
into the contact matrix by fitting the epidemic model to the epidemic curve
between day 0 and t.

4. On each day t, use the fitted model from step 3 to (retrospectively) nowcast
and forecast the number of new cases and compare with the corresponding
realized epidemic curve.

We describe the details of each of these steps in the following subsections.

Step 1: estimating the instantaneous reproductive number of COVID-19 in Hong
Kong. The instantaneous effective reproduction number Rt is defined as the average
number of secondary cases generated by cases on day t. If Rt > 1, the epidemic is
expanding at time t, whereas Rt < 1 indicates that the epidemic size is shrinking at

time t. Since the epidemic curves provided by the CHP are based on the dates of
symptom onset, we used a deconvolution-based method to reconstruct the COVID-
19 epidemic curves by dates of infections12–14. Specifically, we used fincubation, the
probability density function (pdf) of the incubation period, to deconvolute the time
series of the daily number of symptom onsets to reconstruct an epidemic curve of a
daily number of new infections. We assumed the incubation period distribution was
Gamma with a mean and SD of 6.5 and 2.6 days1.

To account for the differential transmissibility between local and imported
cases, we decomposed the epidemic curves by imported cases, local cases linked
with imported cases, and local cases based on the CHP case classification: imported
cases include only “imported cases” defined by CHP; local cases linked with
imported cases include only cases “epidemiologically linked with imported case”
defined by CHP; local cases include “local case”, “possibly local case”, cases
“epidemiologically linked with the local case”, and cases “epidemiologically linked
with possibly local case” defined by CHP.

We then computed Rt for imported and local cases separately from the
respective epidemic curves using the “EpiEstim” R package developed by
Thompson et al.15. We called the resulting estimates of Rt for local cases our
empirical Rt estimates. We used the default prior in “EpiEstim” R package, i.e.,
assuming a prior distribution for the effective reproduction number with mean of 5
and SD of 5. We assumed that the generation time distribution was gamma with (i)
mean 5.2 days and coefficient of variation 0.33 in the base case; and (ii) mean 4.2
and 6.2 days with the same coefficient of variation in the sensitivity analysis. We
assumed a 7-day time window in Rt estimation with “EpiEstim” because the
Octopus transport volume during weekends was on average 60–70% that during
weekdays.

Step 2: select digital traces as proxies for population mobility and mixing in Hong
Kong. We obtained the number of Octopus transactions in two major categories,
namely transport and retail, among four types of cards, namely child (for children
aged 3 to 11), student (for primary, secondary school, and university students who
receive discounted fares on selected routes; some university students are >18 years),
adult (for non-student adults aged under 65), and elder (for older adults aged 65
years or above). We used ga,c (t) to denote the normalized number of transactions
for card type a and payment category c on day t (such that ga,c (t)= 1 on 1 January
2020). We calculated the Pearson’s correlation coefficient between each of these
digital proxies ga,c(t), and the posterior mean of our empirical Rt estimates. We
found that all transport transactions exhibited a correlation coefficient of 0.5 or
above with Rt while retail transactions exhibited a much lower correlation. As such,
we selected only the age-specific transport transactions as digital proxies for
population mixing in the epidemic model in step 3. Specifically, we assumed that
the number of infectious contacts between age group a and b (outside households)
at time t could be modeled as γaga,tran (t) γbgb,tran (t) where γa > 0 and γb > 0 were
the scaling factors for the digital proxy of age group a and b (to be inferred in step
3), respectively. Under such formulation, the average rate at which an individual in
age group a made infectious contacts with age group b at time t was

βab tð Þ ¼ γaga;tran tð Þγbgb;tran tð Þ
Na

ð1Þ
Step 3: optimize the weights of the digital proxies by fitting the epidemic model to the
observed number of confirmed cases on each day (retrospectively). We used our
previous age-structured SIR model to simulate the transmission of COVID-19 in
Hong Kong30:

dSaðtÞ
dt

¼ �SaðtÞπa tð Þ ð2Þ

∂Ia t; τð Þ
∂t

þ ∂Ia t; τð Þ
∂τ

¼ �fGT τð ÞIa t; τð Þ ð3Þ

Ia t; 0ð Þ ¼ Sa tð Þπa tð Þ ð4Þ

dRa tð Þ
dt

¼
Zt

0

fGT τð ÞIa t; τð Þdτ ð5Þ

Na ¼ Sa tð Þ þ
Zt

0

Ia t; τð Þdτ þ Ra tð Þ ð6Þ

πa tð Þ ¼
Xm
b¼1

Zt

0

βab tð Þ
Nb

Ib t; τð Þdτ ð7Þ

where

● m was the number of age groups in the population.
● Sa(t) and Ra(t) were the numbers of susceptible and removed individuals in

age group a at time t.
● Ia(t,τ) was the number of infectious individuals in age group a at time t who

were infected at time t–τ.
● Na was the total number of people in age group a.
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● πa(t) was the force of infection on age group a at time t.
● fGT was the pdf of the generation time.

The time-varying next-generation matrix for this SIR model was:

NGM tð Þ ¼ Tg

β11 tð ÞS1 tð Þ
N1 tð Þ � � � β1m tð ÞS1 tð Þ

N1 tð Þ

..

. . .
. ..

.

βm1 tð ÞSm tð Þ
Nm tð Þ � � � βmm tð ÞSm tð Þ

Nm tð Þ

2
6664

3
7775 ð8Þ

where Tg was the mean generation time.
The effective reproduction number Rt corresponded to the dominant eigenvalue

of NGM(t)31,32. The incidence rate of infection and reported onsets in age group a
at time t were calculated as follows:

Aa;infectionðtÞ ¼ Sa tð Þπa tð Þ ð9Þ

Aa;onsetðtÞ ¼ preport
Zt

0

Aa;infectionðuÞfincubation t � uð Þdu ð10Þ

where preport was the proportion of infections ascertained by the CHP. We assumed
that the epidemic was seeded by M local infections on January 22, 2020.

The set of parameters that were subject to statistical inference, which we
denoted by θ, included: (i) the seed size M; (ii) the scaling factors γa’s; and (iii) the
ascertainment proportion preport. We estimated θ from the daily number of
symptom onsets reported in Hong Kong (see Supplementary Table 1 for the list of
inferred parameters) assuming that the observed number of cases was Poisson
distributed with a mean equal to the number of cases in the fitted model. The
likelihood function was

Y
t

λtð Þnt e�nt

nt !
ð11Þ

where λt ¼
P
a
Aa;onset tð Þ and nt were the expected (from the model) and observed

number of reported onsets on day t. The statistical inference was performed in a
Bayesian framework with noninformative (flat) priors using Markov Chain Monte
Carlo. We used Pt(θ) to denote the posterior distribution of θ obtained by fitting
the model to epidemic data up to day t. All analyses were conducted in MATLAB
2020a and R 4.0.0.

Step 4: nowcast and forecast the daily number of confirmed cases using the fitted
models. On each day t, we drew 5000 samples of θ from Pt(θ) to parameterize the
age-structured transmission model and simulated the number of new confirmed
cases for day t (i.e., nowcast) as well as day t+ 1,…, t+ 6 (i.e., 6-day forecast) in
each of these models. We then compared these simulated epidemic trajectories with
the corresponding observed case counts in the CHP data to evaluate the predictive
performance of the fitted model.

Incorporating household contacts into the framework. Conventionally, contact
matrices for epidemic models of human-to-human transmissible respiratory dis-
eases are constructed using data from social contact surveys33. Although we have
previously conducted a social contact survey and estimated the contact matrix in
Hong Kong (Supplementary Tables 2 and 3), the contact patterns outside
households have likely changed substantially since then due to the COVID-19
pandemic as well as social unrest that has been ongoing since 201921. Let Hab be
the average number of household contacts that an individual in age group a had in
age group b from our previous survey (Supplementary Table 3).

As discussed in the main text, the contact matrix parameterized with digital
proxies largely corresponded to social contacts outside the households that drove
community transmission. In our sensitivity analysis, we assumed that the relative
contact pattern within the household was the same as that in our previous survey
and incorporate the household contact matrix into our framework as follows:

βab tð Þ ¼ μ
γaga;tran tð Þγbgb;tran tð Þ

Na
þ 1� μð ÞHab ð12Þ

where μ was a weight parameter subject to statistical inference.

Empirical estimates of Rt in mainland Chinese cities. For Shenzhen and Wenzhou,
dates of symptom onset were available for most cases. As in our analysis for Hong
Kong, we used fincubation, the probability density function (pdf) of the incubation
period, to deconvolute the time series of the daily number of symptom onsets to
reconstruct an epidemic curve of the daily number of new infections. For Beijing
and Shanghai, dates of symptom onset of many cases were not available. Thus we
used finfection-reporting, the pdf of the time between infection and case reporting, to
deconvolute the time series of the daily number of confirmed cases accordingly. We
assumed fincubation and fonset-reporting were independent such that the pdf of the time
between infection and reporting was

finfection�reporting tð Þ ¼ Rt
0
fonset�reportingðt � uÞfincubationðuÞdu. We assumed the dis-

tribution of the time between symptom onset and reporting was Gamma with

mean and standard deviation (SD) of 4.3 and 3.2 days, based on 186 cases reported
in January–February 2020 in Beijing27, which was consistent with the time between
symptom onset and case reporting since February across China from the WHO-
China Joint Mission Report34.

In the vast majority of provinces and cities in mainland China, 14-day
centralized quarantine had been mandated for individuals who had been to Hubei
within 14 days from 23 January until late-April27. Cases in Beijing, Shanghai,
Shenzhen, and Wenzhou were only categorized as imported and local cases.
Consequently, we could not estimate Rt of local and imported cases separately as
we did in our analysis for Hong Kong. Instead, we estimated Rt of local and
imported cases in these cities by modifying the method by Thompson et al.15 as
follows.

For each city, let It be the total number of new infections on day t which

comprised both local I localt

� �
and imported Iimported

t

� �
infections, i.e.,

It ¼ Ilocalt þ Iimported
t . We assumed that the generation time distribution was the

same for imported and local infectors. Let ρt be the relative infectiousness of
imported infections on day t (ρt ∈ [0,1] due to the 14-day mandatory quarantine
on imported infections). Given I locals , Iimported

s and ρs for s= 0, …, t− 1, the
expected number of incident local infections on day t was

E I localt jIlocal0 ; ¼ ; Ilocalt�1 ; I
imported
0 ; ¼ ; Iimported

t�1 ; ρ0; ¼ ; ρt�1

� �

¼ Rt

Pt
s¼1

Ilocalt�s þ ρt�sI
imported
t�s

� �
FGT sð Þ � FGT s� 1ð Þð Þ

ð13Þ

where FGT was the cdf of the generation time. We then estimated Rt using the same
Bayesian method described in Thompson et al. under two extreme scenarios: (1)
ρt= 0 for all time t which implied imported infections did not generate any local
infections; and (2) ρt= 1 for all time t which implied imported infections were as
infectious as local infections (Fig. 2B of Leung et al.27).

Intracity mobility and activity indices of cities in mainland Chinese cities. To
estimate the intracity mobility levels of mainland Chinese cities, we obtained
publicly available indices of intracity traffic volumes based on location-based ser-
vices provided by Baidu (https://qianxi.baidu.com/). The index is a normalized
ratio of a city’s population with intracity movement within 24 h to a city’s resi-
dential population, though the precise details of the normalization algorithm have
not been made publicly available by Baidu on their website.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
We collated epidemiological data from publicly available data sources (i.e., complete line
list of all cases from websites of Centre for Health Protection Hong Kong: https://www.
coronavirus.gov.hk/eng/index.html and https://data.gov.hk/en-data/dataset/hk-dh-
chpsebcddr-novel-infectious-agent). All the epidemiological information that we used is
available in the main text or the Supplementary Materials. The aggregate data of
passenger numbers by card types (i.e., child, student, adult, and elder) were provided in
the supplementary information. Other data, including the aggregate data of passenger
numbers by public transportation means and aggregate data of transactions by retail
categories, were provided by Octopus Cards Limited (Octopus). We have obtained
consent from Octopus to share the aggregate data of transport transactions between
January 1, 2020 and May 31, 2020. Our agreement with Octopus prohibits us from
further sharing data with third parties but interested parties can contact Octopus to make
the same data request. Data and codes used in the paper are available at https://github.
com/kathyleung/Octopus_mobility_model.

Code availability
Codes used in the paper are available at https://github.com/kathyleung/
Octopus_mobility_model.

Received: 7 July 2020; Accepted: 5 February 2021;

References
1. Backer, J. A., Klinkenberg, D. & Wallinga, J. Incubation period of 2019 novel

coronavirus (2019-nCoV) infections among travellers from Wuhan, China,
20-28 January 2020. Eur. Surveill. 25, 2000062 (2020).

2. Wu, P. et al. Suppressing COVID-19 transmission in Hong Kong: an
observational study of the first four months. Preprint at https://www.
researchsquare.com/article/rs-34047/v1 (2020).

3. He, X. et al. Temporal dynamics in viral shedding and transmissibility of
COVID-19. Nat. Med. 26, 1–4 (2020).

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-21776-2 ARTICLE

NATURE COMMUNICATIONS |         (2021) 12:1501 | https://doi.org/10.1038/s41467-021-21776-2 |www.nature.com/naturecommunications 7

https://qianxi.baidu.com/
https://www.coronavirus.gov.hk/eng/index.html
https://www.coronavirus.gov.hk/eng/index.html
https://data.gov.hk/en-data/dataset/hk-dh-chpsebcddr-novel-infectious-agent
https://data.gov.hk/en-data/dataset/hk-dh-chpsebcddr-novel-infectious-agent
https://github.com/kathyleung/Octopus_mobility_model
https://github.com/kathyleung/Octopus_mobility_model
https://github.com/kathyleung/Octopus_mobility_model
https://github.com/kathyleung/Octopus_mobility_model
https://www.researchsquare.com/article/rs-34047/v1
https://www.researchsquare.com/article/rs-34047/v1
www.nature.com/naturecommunications
www.nature.com/naturecommunications


4. Adam, D. C. et al. Clustering and superspreading potential of SARS-CoV-2
infections in Hong Kong. Nat. Med. https://doi.org/10.1038/s41591-020-1092-0
(2020).

5. Buckee, C. O. et al. Aggregated mobility data could help fight COVID-19.
Science 368, 145 (2020).

6. Mello, B. M. M. & Wang, C. J. Ethics and governance for digital disease
surveillance. Science 368, eabb9045 (2020).

7. Kraemer, M. U. G. et al. Mapping global variation in human mobility. Nat.
Hum. Behav. 4, 800–810 (2020).

8. Kraemer, M. U. et al. The effect of human mobility and control measures on
the COVID-19 epidemic in China. Science 368, 493–497 (2020).

9. Kishore, N. et al. Measuring mobility to monitor travel and physical distancing
interventions: a common framework for mobile phone data analysis. Lancet
Digital Health 2, E622–E628 (2020).

10. Monod, M. et al. Age groups that sustain resurging COVID-19 epidemics in
the United States. Science https://doi.org/10.1126/science.abe8372 (2021).

11. Kissler, S. M. et al. Reductions in commuting mobility correlate with
geographic differences in SARS-CoV-2 prevalence in New York City. Nat.
Commun. 11, 4674 (2020).

12. Goldstein, E. et al. Reconstructing influenza incidence by deconvolution of
daily mortality time series. Proc. Natl Acad. Sci. USA 106, 21825–21829
(2009).

13. Wu, J. T. et al. Estimating infection attack rates and severity in real time
during an influenza pandemic: analysis of serial cross-sectional serologic
surveillance data. PLoS Med. 8, e1001103 (2011).

14. Gostic, K. M. et al. Practical considerations for measuring the effective
reproductive number, Rt. PLoS Comput. Biol. 6, e1008409 (2020).

15. Thompson, R. et al. Improved inference of time-varying reproduction
numbers during infectious disease outbreaks. Epidemics 29, 100356
(2019).

16. Cowling, B. J. et al. Impact assessment of non-pharmaceutical interventions
against coronavirus disease 2019 and influenza in Hong Kong: an
observational study. Lancet Public Health 5, E279–E288 (2020).

17. Centre for Health Protection. COVID-19 Thematic Website, https://www.
coronavirus.gov.hk/eng/index.html (2020).

18. The Standard, HK. Kerry Logistics warehouse may house latest local Covid-19
cluster. The Standard https://www.thestandard.com.hk/breaking-news/
section/4/148242/Kerry-Logistics-warehouse-may-house-latest-local-Covid-
19-cluster (2020).

19. Funk, S. et al. Assessing the performance of real-time epidemic forecasts: a
case study of Ebola in the western area region of Sierra Leone, 2014-15. PLoS
Comput. Biol. 15, e1006785 (2019).

20. Lloyd-Smith, J. O., Schreiber, S. J., Kopp, P. E. & Getz, W. M. Superspreading
and the effect of individual variation on disease emergence. Nature 438, 355
(2005).

21. Zhang, J. et al. Changes in contact patterns shape the dynamics of the
COVID-19 outbreak in China. Science 368, 1481–1486 (2020).

22. Mossong, J. et al. Social contacts and mixing patterns relevant to the spread of
infectious diseases. PLoS Med. 5, e74 (2008).

23. Jarvis, C. I. et al. Quantifying the impact of physical distance measures on the
transmission of COVID-19 in the UK. BMC Med. 18, 1–10 (2020).

24. Feehan, D. M. & Mahmud, A. S. Quantifying population contact patterns in
the United States during the COVID-19 pandemic. Nat. Commun. 12, 839
(2021).

25. CityMapper. Citymapper Mobility Index. https://citymapper.com/cmi (2020).
26. Google. Community Mobility Reports. https://www.google.com/covid19/

mobility/ (2020).
27. Leung, K., Wu, J. T., Liu, D. & Leung, G. M. First-wave COVID-19

transmissibility and severity in China outside Hubei after control measures,
and second-wave scenario planning: a modelling impact assessment. Lancet
395, P1382–P1393 (2020).

28. Kissler, S. M., Tedijanto, C., Goldstein, E., Grad, Y. H. & Lipsitch, M.
Projecting the transmission dynamics of SARS-CoV-2 through the
postpandemic period. Science 368, 860–868 (2020).

29. Funk, S. & King, A. A. Choices and trade-offs in inference with infectious
disease models. Epidemics 30, 100383 (2020).

30. Wu, J. T. et al. Estimating clinical severity of COVID-19 from the
transmission dynamics in Wuhan, China. Nat. Med. 26, 506–510 (2020).

31. Diekmann, O., Heesterbeek, J. & Roberts, M. G. The construction of next-
generation matrices for compartmental epidemic models. J. R. Soc. Interface 7,
873–885 (2010).

32. Diekmann, O. & Heesterbeek, J. A. P.Mathematical Epidemiology of Infectious
Diseases: Model Building, Analysis and Interpretation, Vol. 5 (John Wiley &
Sons, 2000).

33. Leung, K., Jit, M., Lau, E. H. & Wu, J. T. Social contact patterns relevant to the
spread of respiratory infectious diseases in Hong Kong. Sci. Rep. 7, 1–12
(2017).

34. World Health Organization. Report of the WHO-China Joint Mission on
Coronavirus Disease 2019 (COVID-19), 16-24 February 2020. https://www.
who.int/docs/default-source/coronaviruse/who-china-joint-mission-on-covid-
19-final-report.pdf (2020).

Acknowledgements
We thank Octopus Cards Limited for providing aggregate data of passenger numbers by
public transportation means and aggregate data of transactions by retail categories for the
research. We thank Tim K. Tsang and Benjamin J. Cowling for useful discussion on
estimating the effective reproduction number of local and imported cases. We thank Eric
H.Y. Lau for the useful discussion on estimating the fraction of pre-symptomatic
infections. We thank Di Liu, Miky Wong, and Chi-Kin Lam for technical support. This
research was supported by a commissioned grant from the Health and Medical Research
Fund (CID-HKU2) and General Research Fund (grant no.: 17110020) from the Gov-
ernment of the Hong Kong Special Administrative Region. The funding bodies had no
role in study design, data collection and analysis, preparation of the paper, or the decision
to publish.

Author contributions
J.T.W., G.M.L., and K.L. designed the experiments. G.M.L. and K.L. obtained the
Octopus data. K.L. collected the data. K.L. and J.T.W. analyzed the data. K.L., J.T.W., and
G.M.L. interpreted the results and wrote the paper.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary information The online version contains supplementary material
available at https://doi.org/10.1038/s41467-021-21776-2.

Correspondence and requests for materials should be addressed to J.T.W.

Peer review information Nature Communications thanks Sebastien Funk and the other,
anonymous reviewer(s) for their contribution to the peer review of this work. Peer review
reports are available.

Reprints and permission information is available at http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made. The images or other third party
material in this article are included in the article’s Creative Commons license, unless
indicated otherwise in a credit line to the material. If material is not included in the
article’s Creative Commons license and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder. To view a copy of this license, visit http://creativecommons.org/
licenses/by/4.0/.

© The Author(s) 2021

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-21776-2

8 NATURE COMMUNICATIONS |         (2021) 12:1501 | https://doi.org/10.1038/s41467-021-21776-2 | www.nature.com/naturecommunications

https://doi.org/10.1038/s41591-020-1092-0
https://doi.org/10.1126/science.abe8372
https://www.coronavirus.gov.hk/eng/index.html
https://www.coronavirus.gov.hk/eng/index.html
https://www.thestandard.com.hk/breaking-news/section/4/148242/Kerry-Logistics-warehouse-may-house-latest-local-Covid-19-cluster
https://www.thestandard.com.hk/breaking-news/section/4/148242/Kerry-Logistics-warehouse-may-house-latest-local-Covid-19-cluster
https://www.thestandard.com.hk/breaking-news/section/4/148242/Kerry-Logistics-warehouse-may-house-latest-local-Covid-19-cluster
https://citymapper.com/cmi
https://www.google.com/covid19/mobility/
https://www.google.com/covid19/mobility/
https://www.who.int/docs/default-source/coronaviruse/who-china-joint-mission-on-covid-19-final-report.pdf
https://www.who.int/docs/default-source/coronaviruse/who-china-joint-mission-on-covid-19-final-report.pdf
https://www.who.int/docs/default-source/coronaviruse/who-china-joint-mission-on-covid-19-final-report.pdf
https://doi.org/10.1038/s41467-021-21776-2
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
www.nature.com/naturecommunications

	Real-time tracking and prediction of COVID-19 infection using digital proxies of population mobility and mixing
	Results
	Transmissibility of COVID-19 in Hong Kong
	Digital proxies for population mixing
	Integrating the digital proxies into an epidemic model
	Nowcasting and forecasting the spread of COVID-19 in Hong Kong

	Discussion
	Methods
	COVID-19 data in Hong Kong
	Octopus data in Hong Kong
	Model, inference, and analysis
	Step 1: estimating the instantaneous reproductive number of COVID-19 in Hong Kong
	Step 2: select digital traces as proxies for population mobility and mixing in Hong Kong
	Step 3: optimize the weights of the digital proxies by fitting the epidemic model to the observed number of confirmed cases on each day (retrospectively)
	Step 4: nowcast and forecast the daily number of confirmed cases using the fitted models
	Incorporating household contacts into the framework
	Empirical estimates of Rt in mainland Chinese cities
	Intracity mobility and activity indices of cities in mainland Chinese cities

	Reporting summary
	Data availability
	Code availability
	References
	Acknowledgements
	Author contributions
	Competing interests
	Additional information




