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Towards ultrafast cooling through transient phonon currents: A closed-form solution
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We develop a closed-form formula to calculate the transient thermal currents flowing through an arbitrary
nanoscale phonon device in response to a sudden thermal switch. Our theory provides a solution to the problem
in the far-from-equilibrium nonlinear response regime beyond the wide-band-like approximation and Drude
regularization. We present calculations in a one-dimensional monatomic chain with Lorentzian-like thermal
baths and show that the transient phonon currents are significantly larger than the long-time-limit steady-state
phonon current. From the formula’s clear mathematical structure, we also show that the transient oscillation
periodicity and relaxation time are determined by the poles of the retarded phonon Green’s function. In addition,
higher temperatures of the thermal baths and stronger coupling between the baths and the central monatomic
chain result in higher transient thermal currents. Our results suggest that ultrafast cooling of nanodevices through
transient phonon currents is a promising route.
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I. INTRODUCTION

Thermal transport in low-dimensional systems has aroused
lots of interests due to the novel thermal properties, such as
quantized thermal conductance [1], breakdown of the classical
Fourier’s law [2], exceptionally high thermal conductivity [3],
intrinsic anisotropy of thermal conductance [4], exotic angular
and length dependence of thermal conductance in carbon-
based quantum junctions [5–7]. The possibility of building
thermal circuits to manipulate information using phonons in-
stead of electrons is also intriguing [8–10].

Previously, researchers have been largely focused on the
steady transport properties of phonons [11–14]. However, it
is found that time variation introduces new possibilities. For
example, ac modulation can be used to enhance thermoelectric
performance of noncollinear spin valves [15] and spin transfer
torques [16]. Despite considerable research on transient be-
havior of charge currents [17–24], spin currents [25,26], and
heat currents of electrons [27,28], time-dependent behavior of
phonon currents remain understudied [29,30]. In 2010, Wang
et al. studied the transient behavior of a one-dimensional
atomic chain under a sudden thermal switch [31]. Later,
Tuovinen et al. developed a closed-form analytic expression
of one-particle reduced density matrix based on the equation
of motion in a wide-band-like approximation [32]. Recently,
Sandonas et al. adopted an auxiliary mode approach to nu-
merically describe time-dependent phonon transport, where a
spectral density of the thermal baths with a Drude regulariza-
tion was assumed [33].
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In this work, we derive a closed-form solution for calcu-
lating the transient phonon currents under a sudden thermal
switch beyond the wide-band-like approximation and Drude
regularization. We further investigate a monatomic chain with
analytical self-energies of thermal baths, demonstrating that
our solution reduces computational complexity significantly.
In Sec. II, we present our theory for obtaining the closed-form
expression for the transient phonon currents and the simpli-
fication over a one-dimensional (1D) atomic chain model.
We present and discuss numerical results in Sec. III before
concluding in Sec. IV.

II. GENERAL FORMALISM

To calculate the transient thermal currents flowing through
an arbitrary nanoscale phonon device, we consider a system
consisting of thermal leads (L, R) and a central region (C).
The Hamiltonian of the vibrating system can be written as

Ĥ = ĤL + ĤR + ĤC + V̂LC + V̂CR, (1)

where Ĥα (α = L,C, R) is the Hamiltonian of region α and
V̂CR (V̂CL) is the interaction between region C and R (L),
respectively. Under the Harmonic approximation, these terms
can be written as [34]

ĤL/R/C =
∑

I∈L/R/C

∑
α=xyz

1

2
v̂2

Iα+ 1

2

∑
I,J∈L/R/C

∑
α,β=xyz

ûIαDIα,Jβ ûJβ,

(2)

V̂LC = 1

2

⎛
⎝∑

I∈L
J∈C

+
∑

I∈C
J∈L

⎞
⎠ ∑

α,β

ûIαDIα,Jβ ûJβ, (3)

V̂CR = 1

2

⎛
⎝∑

I∈R
J∈C

+
∑

I∈C
J∈R

⎞
⎠ ∑

α,β

ûIαDIα,Jβ ûJβ. (4)
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FIG. 1. Schematic plot of a monatomic chain model. Coupling
of the central part to the thermal baths are switched on abruptly at
t = 0.

Here, ûIα ≡ √
MI η̂Iα and v̂Iα ≡ ˙̂uIα = p̂Iα/

√
MI are mass-

weighted displacements and momenta, respectively, of the I th

atom along direction α. In addition, DIα,Jβ is the (Iα, Jβ )th

element of the dynamical matrix D. V̂LC and V̂CR are ab-
sent when t < 0. A sudden coupling of two regions can be
achieved by establishing a point contact between them. For
example, by using a scanning tunneling microscope tip in
molecular junctions to induce a bond through proximity, a
thermal switch can be realized [31].

The phonon current flowing out of thermal lead L can be
written as (see Appendix)

JL(t ) = −h̄
∫ +∞

−∞
dt1ReTr

[
Gr

CC (t, t1)�<,1
L (t1, t )

+ G<
CC (t, t1)�a,1

L (t1, t )
]
, (5)

where Gr
CC (G<

CC) is the retarded (lesser) phonon Green’s
function of the central region, and �<,1

L (�a,1
L ) is the lesser

(advanced) type-1 phonon self-energy of thermal lead L (γ =
r, a,<,>):

�
γ ,1
L (t1, t ) ≡

∫
dω

2π
ωDCL(t1)gγ

L (ω)DLC (t )e−iω(t1−t ). (6)

Note that gγ

L (ω) [gγ

R (ω)] are the phonon Green’s functions of
the isolated thermal lead L (R), DCL is the dynamical matrix
between the central region and the thermal lead L, and DLC =
DT

CL. Under a sudden connection of thermal bath L, R with the
central region at t = 0 (Fig. 1), we have the phonon current
expressed as

JL(t ) = − h̄

2

∫ +∞

0
dt1Tr

[
Gr

CC (t, t1)�<,1
L (t1, t )

+ G<
CC (t, t1)�a,1

L (t1, t ) + H.c.
]
, (7)

and the modified type-1 phonon self-energies as (γ = r, a,>

,<)

�
γ ,1
L (t1, t ) = θ (t1)θ (t )

∫
dω

2π
ωDCLgγ

L (ω)DLCe−iω(t1−t ).

(8)

Here, θ (x) is the Heaviside step function. Because of the
sudden connection at t = 0, the self-energies of thermal leads
are zero before that. It is reasonable to assume that the sud-
den thermal switch does not alter the phonon structure of
both thermal leads. When both t and t1 are later than zero,
�

γ ,1
L (t1, t ) = �

γ ,1
L (t1 − t ) is a function of time difference ac-

cording to Eq. (8). Therefore, a Fourier transform can be used

to obtain

�
γ ,1
L(R)(ω) = ω�

γ

L(R)(ω), (9)

where �
γ

L(R)(ω) = DCL(R)g
γ

L(R)(ω)DL(R)C .
In the following, we shall omit the subscript “CC” for the

Green’s functions of the central region such that Gr,a,< ≡
Gr,a,<

CC .
According to Dyson’s equation, the retarded Green’s func-

tion becomes [35]

Gr (t, t ′)

= Gr
0(t, t ′) +

∫∫ +∞

0
dt1dt2Gr

0(t, t1)�r (t1, t2)Gr (t2, t ′),

t, t ′ > 0, (10)

where Gγ

0 is the retarded Green’s function of the central region
when the thermal leads are disconnected from the central
region.

Recognizing that self-energies are nonzero when time is
later than zero, by the Keldysh equation for the lesser Green’s
function G<, we obtain, for t, t ′ > 0,

G<(t, t ′) = Gr (t, 0)G<
0 (0, 0)Ga(0, t ′)

+
∫∫ +∞

0
dt1dt2Gr (t, t1)�<(t1, t2)Ga(t2, t ′),

(11)

by noting that self-energies are nonzero when time is later than
zero. Here, �γ = �

γ
L + �

γ
R .

Furthermore, by introducing the spectral function as [21]

A(ω, t ) =
∫ t

0
dt ′Gr (t, t ′)eiω(t−t ′ ), (12)

we can rewrite Gr and G< in terms of spectral function A for
t, t ′ > 0 as

Gr (t, t ′) =
∫ +∞

−∞

dω

2π
A(ω, t )e−iω(t−t ′ ), (13)

and

G<(t, t ′) = Gr (t, 0)G<
0 (0, 0)Ga(0, t ′)

+
∫ +∞

−∞

dω

2π
A(ω, t )�<(ω)A†(ω, t ′)e−iω(t−t ′ ),

(14)

respectively. Also, we have [26,36]

A(ω, t ) = Ḡr (ω) +
∫ +∞

−∞

dω′

2π i

e−i(ω′−ω)t

ω − ω′ + i0+ Ḡr (ω′), (15)

and

Gr (t, t ′) = Ḡr (t − t ′), t, t ′ > 0, (16)

where 0+ is an infinitesimal positive number and Ḡr (t − t ′)
[Ḡr (ω)] is the steady-state retarded Green’s function (in en-
ergy space) where both thermal leads’ couplings are present
(the long-time limit). Substituting Eq. (14) into Eq. (7),
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we have

JL(t ) = −
∫ +∞

−∞

dω

2π
ReTr[h̄ωA(ω, t )�<

L (ω)

+ A(ω, t )�<(ω)BL(ω, t )

+Gr (t, 0)G<
0 (0, 0)Ḡa(ε)CL(ε)], (17)

with

Bα (ω, t ) = −
∫ +∞

−∞

dω′

2π i

ei(ω′−ω)t

ω − ω′ + i0+ ω′Ḡa(ω′)�a
α (ω′)

= ωḠa(ω)�a
α (ω)

−
∫ +∞

−∞

dω′

2π i

ei(ω′−ω)t

ω − ω′ − i0+ ω′Ḡa(ω′)�a
α (ω′),

(18)

and

Cα (ω) = −
∫ +∞

−∞

dω′

2π i
ω′�a

α (ω′)
eiω′t

ω − ω′ + i0+ . (19)

Equation (17) is the close-form solution for the transient
phonon current under a sudden thermal switch.

For phonon Green’s functions, they have the following re-
lations [37]: Ḡr (−ω) = [Ḡr (ω)]∗, [Ḡ<,>(ω)]+ = −Ḡ<,>(ω),
G<(−ω) = [G>(ω)]T , and naturally �r,a(−ω) = [�r,a(ω)]∗
and �<(−ω) = [�>(ω)]T . Thus, we have A(−ω, t ) =
A∗(ω, t ), Bα (−ω, t ) = −B∗

α (ω, t ), and

Jα (t ) = −
∫ +∞

0

dω

2π
ReTr[h̄ωA(ω, t )(�<

α + �>
α )

+ A(ω, t )(�< + �>)Bα (ω, t )] (20)

for zero occupation of the central region [G<
0 (0, 0) = 0]. In

Eq. (20), integration is done within [0,+∞). Recognizing that
thermal currents at the right thermal lead can be obtained by
simply replacing the quantities of L in JL(t ) with the corre-
sponding quantities of R, we have α = L, R in Eqs. (18)–(20).

Equation (20) obviously consists of two parts: dc and ac
components. The dc part corresponds to the steady-state limit
when t → ∞. Based on Eq. (20), the dc parts of A and B can
be extracted as

Adc(ω, t ) = Ḡr (ω), (21)

Bα;dc(ω, t ) = ωḠa(ω)�a
α (ω). (22)

Accordingly, the dc component of the thermal current can also
be calculated as

JL;dc = −1

2

∫ +∞

0

dω

2π
h̄ωTr

[
(Ḡr − Ḡa)(�<

L + �>
L )

+ Ḡr (�< + �>)Ḡa
(
�a

L − �r
L

)]

=
∫ +∞

0

dω

2π
h̄ω( fL − fR)Tr(�LḠr�RḠa), (23)

and

JR;dc =
∫ +∞

0

dω

2π
h̄ω( fR − fL )Tr(�RḠr�LḠa), (24)

where Ḡr − Ḡa = −iḠr�Ḡa. Equations (23) and (24) recover
the results of Landauer-like thermal currents for quasiballistic

systems [4,5]. The upper limit for the integrals can be replaced
by ωmax, which is the highest eigenfrequency in the phonon
spectra.

Combining Eqs. (15), (18), and (20), transient phonon cur-
rents can be calculated by using the phonon Green’s functions
of the central region and the self-energies of both thermal
leads. It is worth noting that the forms of self-energies are not
restricted to any particular type. Thus, our theory provides a
closed-form solution to the transient phonon currents flowing
through an arbitrary nanoscale phonon device under a sudden
thermal switch in the far-from-equilibrium nonlinear response
regime beyond the wide-band-like approximation and Drude
regularization.

III. MODEL AND RESULTS

A. Monatomic chain under a thermal switch

Now we shall use a monatomic chain in the central region
(Fig. 1) to investigate the transient phonon current under a
thermal switch. Such a chain model can be used to present
quasi-1D, two-dimensional (2D), and three-dimensional (3D)
systems because atomic layers can be treated effectively as
sites. Suppose that a monatomic chain with N atoms is sand-
wiched between two phonon baths, L and R. Connections
between the central region and thermal baths are switched on
at time t = 0. The dynamical matrix of the central region can
be written as

D0 = 1

2
ω2

0

⎛
⎜⎜⎜⎝

2 −1

−1 2 . . .
. . .

. . . −1
−1 2

⎞
⎟⎟⎟⎠

N×N

, (25)

which is simply D0 = ω2
0 when there is only one atom (N =

1) in the central part, implying an isolated oscillation mode
of angular frequency ω0. We begin by presenting results for
N = 1.

Coupling to thermal baths L, R after t = 0 can be in-
troduced through self-energies. The bandwidth function of
thermal bath α can be assumed to be a Lorentzian-like line-
shape [33,38,39]


α (ω) = ωγαω2
c

ω2 + ω2
c

, (26)

where ωc is the cutoff angular frequency for thermal baths L
and R. Under the Drude regularization, the self-energies can
be determined as [17]

�r,a
α (ω) =

∫
dε

2π


α (ε)

ω − ε ± i0+

=
∫

dε

2π

1

ω − ε ± i0+
εγαω2

c

(ε + iωc)(ε − iωc)

= ∓ i

2

γαω2
c

ω ± iωc
. (27)

The lesser self-energies due to thermal lead α are

�<
α (ω) = −i fBE ;α (ω)
α (ω), (28)
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and

�>
α (ω) = −i[ fBE ;α (ω) + 1]
α (ω), (29)

with fBE ;α (ω) = 1/[exp(h̄ω/kBTα ) − 1] is the Bose-Einstein
distribution function.

The retarded Green’s function at the steady state is

Ḡr = ω + iωc

(ω + iωc)
[
(ω + iη)2 − ω2

0

] + iγω2
c/2

= ω + iωc

(ω − ω1)(ω − ω2)(ω − ω3)
, (30)

where γ = γL + γR and ωi (i = 1, 2, 3) are de-
fined through (ω + iωc)[(ω + iη)2 − ω2

0] + iγω2
c/2 =

(ω − ω1)(ω − ω2)(ω − ω3).1 The auxiliary functions A(ω, t )
and Bα (ω, t ) can be calculated according to Eqs. (15) and (18)
as

A(ω, t ) = Ḡr (ω) +
∑

i=1,2,3

e−i(ωi−ω)t

ωi − ω

ωi + iωc

�
k 
=i

(ωi − ωk )
, (31)

and

Bα (ω, t ) = ωḠa�a
α + iγαω2

c

2

∑
i=1,2,3

ω∗
i ei(ω∗

i −ω)t

(ω∗
i − ω) �

k 
=i
(ω∗

i − ω∗
k )

.

(32)

For N > 1, A(ω, t ) and Bα (ω, t ) can be calculated using
numerical integration and subsequently the transient phonon
currents can be calculated through Eq. (20).

From the above expression, we can see that there are long-
tail oscillations of the transient current. The damping factor
lies in the imaginary part of the poles ωi. Since the poles of
the retarded Green’s function are located in the lower-half
complex plane, the ac part of the transient thermal current
has a damping factor and finally approaches the dc limit when
t → +∞.

B. Results and discussion

We present numerical results of the transient thermal cur-
rent under a thermal switch. Parameters are chosen to be
around the order of 1 THz because phonon oscillation is
typically around this order. To facilitate presentation, we con-
verted angular frequencies to frequencies. The case with N =
1 is fully explored and followed by the case with N > 1.

Figure 2 shows the transient phonon current for a sym-
metric junction (γL = γR) after the coupling of the central
region to thermal leads are both switched on suddenly at
t = 0. Although the two thermal leads have the same temper-
ature, transient thermal currents begin emerging from t = 0
onwards. The transient thermal currents are equal in thermal
leads L and R in the symmetric junction. Jα > 0 implies that
for t � 0 thermal currents flow out of both thermal leads to
the central part. General features of quick growth from zero
to a maximum value and slow decay with fast oscillation can

1When γ < 2ω2
0/ωc, all poles (ω1, ω2, ω3) distribute in the lower

half of the complex plane.

FIG. 2. Transient thermal currents at thermal lead L (blue dotted
line) and R (red line) after switching on the coupling between the
thermal leads and the central part at t = 0. Both thermal leads are
supposed to be Lorentzian thermal baths in equilibrium and at the
temperature of 300 K. Other parameters are set to be N = 1, ωc =
1 THz, γL = γR = 0.1 THz, η = 10−7 THz. Vertical dotted lines in
the figure indicates the relaxation time τL/R calculated from Eq. (39).

be seen in Figs. 2(a)–2(d), which is consistent with previous
studies [31,32]. When t is long enough, phonon current ap-
proaches the steady-state limit, where the net thermal flow is
zero due to the equal temperature of the two thermal leads.

As ω0 increases from 0.35 to 0.8 THz, oscillation fre-
quency increases and the decaying time becomes longer. A
contour plot of transient current JL/R as a function of the
characteristic frequency of the central part (ω0) and time t
is given in Fig. 2(e). The maximum or minimum value is
achieved within t = 2 ps. In addition, oscillation of the tran-
sient thermal currents is reflected in the wavy patterns in the
plot, where the oscillation period is roughly the same at a
fixed ω0 and decreases as ω0 increases. When ω0 decreases,
the transient thermal current vanishes more quickly.

To better understand the transient behavior of the ther-
mal current, we shall make a simple analysis here. From
Eqs. (20), (31), and (32), it is indicative that both the decaying
and oscillating behavior can be attributed to the poles ωi of the
retarded Green’s function Gr since integration over frequency
ω smears out the oscillation caused by e±iωt and leaves the
contribution from e±iωit . Writing the poles in forms of real
and imaginary parts as

ωi = ai − ibi, ai, bi ∈ R, (33)

where bi > 0 due to the distribution of poles, we have

e−iωit = e−iait−bit , (34)

eiω∗
i t = eiait−bit . (35)

The integral in Eq. (20) consists of both dc terms and
ac terms, which are generated by the ac parts of A, Bα ,
and ABα . As a consequence, this integral contains several

075427-4



TOWARDS ULTRAFAST COOLING THROUGH TRANSIENT … PHYSICAL REVIEW B 103, 075427 (2021)

parts that effectively vary with time since the three ac terms
correspond to

e−iait−bit , eiait−bit , and ei(ai−a j )t−(bi+b j )t . (36)

Thus, the oscillation period of the transient phonon current
can be estimated using the largest oscillation frequency as

T0 = 2π

max{|ai|, |ai − a j |}i, j=1,...,3;i 
= j
, (37)

with ωi in the unit of rad/s.2 The imaginary part of ωi causes
decay characterized by the relaxation time τ , which is defined
through [32]

10% =Jα (t = τ ) − Jα (t = +∞)

Jα (t = +∞)
, (38)

can be roughly estimated using the smallest decaying factor,

τα = ln 10

min{bi}3
i=1

. (39)

Estimations of oscillation period and transient relaxation
time agree well with numerical results: the oscillation period
given by Eq. (37) when ω0 = 0.35, 0.4, 0.5, and 0.8 THz is
about 3.35, 1.97, 1.24, and 0.66 ps, respectively. The esti-
mated relaxation time τL/R is also reasonable as indicated by
the vertical dotted lines in Figs. 2(a)–2(d). Furthermore, oscil-
lation period T0 as a function of ω0 is obtained using Eq. (37)
and plotted in Fig. 2(f). It shows that T0 decreases dramatically
as ω0 increases. Since the thermal current is transported via
the central region, it makes sense that the oscillation period is
closely related to ω0.

When TL 
= TR, the steady-state thermal current is nonzero.
However, due to the aforementioned fact that the oscillation
and decaying characters are determined by the poles of Gr ,
varying the temperatures of thermal baths only causes a shift
in thermal currents. As shown in Figs. 3(a) and 3(b), tran-
sient currents in thermal leads L and R under a temperature
difference of 20 K have the same oscillating period as those
with equal-temperature thermal baths in Figs. 2(a) and 2(b).
When t is long enough, JL(t ) = −JR(t ) = Jdc, indicating a
steady flow from the high-temperature thermal lead to the
low-temperature thermal lead.

When coupling strengths vary, however, profiles of tran-
sient thermal currents change significantly. The variation
originates from changing the poles of Gr . In Figs. 3(c)–3(d),
we plot the time variation of transient currents ω0 when TL =
TR. Due to different coupling strengths, γL = 2γR, transient
current at thermal lead L is higher than that at R, suggesting
that larger coupling guarantees larger phonon flow. In this
figure, it is also shown that when t is long enough, JL(t ) ≈
2JR(t ), due to the fact that γL = 2γR. During the transient
process, energy transfers between the thermal leads and the
central region. It is thus interesting to investigate how much
energy is transferred. We may define the total transferred
energy within the transient time τ as

Wtrans = WL + WR, (40)

2An extra factor of 2π should be added if ω is in units of THz.

FIG. 3. Transient phonon currents at thermal lead L (thick blue
line) and R (thin red line) after switching on the coupling between
thermal leads and the central part at t = 0 when (a), (b) TL = 320 K,
TR = 300 K, γL = γR = 0.1 THz and (c), (d) TL = TR = 300 K, γL =
2γR = 0.1 THz. Other parameters are set as N = 1, ωc = 1 THz, η =
10−7 THz. ω0 is 0.35 THz for panels (a) and (c) and 0.4 THz for
panels (b) and (d).

with

Wα =
∫ τ

0
Jα (t )dt, α = L, R, (41)

τ = max (τL, τR). (42)

From the definition, Wα is the energy transferred from the lead
α to the central region within the transient time τ . One can in-
fer that coupling strength γα , oscillation frequency ω0, and the
phonon spectrum of the leads should be pivotal for the energy
transfer. For the chosen 1D chain model with Lorentzian-like
baths, we may investigate the impact of γα and ω0.

Figure 4(a) shows the total transferred energy as a function
of coupling strength γL/R with various oscillating frequency of
the central region (ω0). It is shown that Wtrans is positive when
γL/R is small enough, which means that energies are effec-
tively extracted from the thermal leads to the central region.
As the coupling strength increases, Wtrans decreases quickly
and switches its sign at some critical values of γL/R, implying
that the thermal baths effectively acquire energy from the
switching process instead when the coupling strengths are
large enough. This abnormal behavior can be attributed to the
extra energy added during switch on [31]. It is also shown that
for a given coupling strength, increasing the value of ω0 leads
to an increase of Wtrans, and may even lead to a sign change of
Wtrans. Thus, as long as the coupling strength is small enough,
the device acts as a cooling device, where energy is efficiently
extracted from the thermal leads to the central region during
the transient time.
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FIG. 4. Transferred energy from the leads to the central dot
(Wtrans > 0) or the inverse (Wtrans > 0) during the relaxation time as a
function of (a) coupling strength γL/R and (b) temperature with ω0 =
0.35, 0.4, 0.5, and 0.8 THz, respectively. Here, TL = TR and γL = γR.
Particularly, TL = TR = 300 K in panel (a) and γL = γR = 0.1 THz
in panel (b).

To examine the influence of temperature, the variation
of Wtrans with temperature TL/R is plotted in Fig. 5(b).
For different ω0, Wtrans varies linearly with the increase
of temperature. In particular, Wtrans is negative when ω0 =
0.35 THz. The reason lies in the fact that the coupling
strength γL/R is too big for this case, which is consistent with
Fig. 5(a).

FIG. 5. (a) Transient phonon current at thermal lead L under a
thermal switch at t = 0 with central atom number N = 1, . . . , 5.
(b) The maximum value of JL (t ) after t = 0 within 4 ps, Jmax and
the corresponding time tmax. The other parameters are specified as
follows: ωc = 1 THz, ω0 = 0.5 THz, TL = TR = 300 K, γL = 2γR =
0.1 THz, η = 10−4 THz.

We have explored the transient behavior of thermal cur-
rents for N = 1. Thanks to the analytical results of A(ω, t )
and Bα (ω, t ), the transient behavior and mechanisms are
rather clear in this case. However, the number of atoms may
also influence the transient behavior. When N > 1, analytical
results of A(ω, t ) and Bα (ω, t ) are not available and numerical
calculations can be performed instead.

We calculated the transient phonon current at thermal lead
L with elongated central atomic chain and plotted the results
in Fig. 5. The patterns of variation of JL for 1 � N � 5 is
similar in the quick increase at the beginning and in the subse-
quent fluctuations during the transient period. The oscillation
of transient thermal current should be also governed by the
poles of Gr . Changes in N lead to changes the dimension
and also poles of Gr , giving rise to variation of the tran-
sient thermal currents. Interestingly, the quick increase of JL

at the beginning is roughly the same for 1 � N � 5. Since
the buildup of thermal current is facilitated by the coupling
between the thermal leads and the central region, the increase
of JL should be faster for larger coupling strength. The peak
value of the transient thermal current is largest at the second
peak except for the case of N = 2. Nevertheless, the peak
value of JL steadily increases with the number of atoms in
the central region. Yet, the increase may saturate eventually
with more atoms since a declining trend of the increment can
be observed.

Finally, we consider a 1D carbon chain model. Since the
force constants between nearest-neighbor carbon atoms is
about k = 60 eV/Å2, the eigenfrequency of the central region
ω0 is around 50 THz as estimated from 2

√
k/mC, where mC

is the atomic mass of carbon atoms. The cutoff frequency of
the thermal baths may estimated from the Debye temperature
of the carbon systems as ωc ≈ 50 THz. The transient phonon
currents under a thermal switch for the 1D carbon chain re-
sembles the one showing in Fig. 2(d) for the case with γL =
γR = 0.1ωc, and has a much shorter decaying time of about
0.28 ps. With γL/R properly set, Wtrans stays positive, which
means that energy flows out of both thermal leads. Because of
the reasons that the thermal leads are thermal reservoirs and
that thermal equilibrium cannot be established instantly, tem-
peratures of both thermal leads are fixed in our model. Thus,
thermodynamics cannot be properly treated in our model. For
realistic materials, temperature would be lowered essentially
as the energy is extracted. Since transient phonon currents can
be significantly larger than steady-state phonon currents, the
cooling process can be ultrafast.

IV. CONCLUSION

In summary, we have derived a closed-form formula for
exploring transient phonon currents under an abrupt thermal
switch. For a single atom connected to two Lorentzian baths,
the transient current can be obtained through a single inte-
gral instead of multiple integrals in previous studies, thereby
greatly simplifying the problem and providing a clear picture
of the transient phonon currents. Investigation of this simple
model shows that similar to electric current, transient phonon
current exists even when the two baths have the same tem-
perature. In addition, the transient oscillating behavior and
relaxation time are determined by the poles of the retarded
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Green’s function of the central region: larger ω0 results in
a smaller oscillating period, and the relaxation time can be
evaluated by the minimum imaginary part of the poles. For the
thermal lead with a higher temperature and stronger coupling
to the central region, its transient current is also larger.

Interestingly, when the coupling constant exceeds a critical
value, the energy transfer between the thermal leads and the
central region changes direction. Thus, under relatively small
coupling constant, this device acts as a cooling device, where
energy is rapidly subtracted from thermal baths, with the
transferred energy during the relaxation time proportional to
the average temperature. Our research suggests that generat-
ing transient phonon currents is a promising route for cooling
nanodevices.

Although self-energies for a phonon system might not
be analytic as what we show here, the complex absorbing
potential (CAP) method can be further utilized to obtain
an analytical expression for the retarded Green’s function,
locate the positions for poles, and perform integration ana-
lytically [27,40].
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APPENDIX: PHONON CURRENTS

For a two-probe L/C/R system, the thermal current flow-
ing across the thermal lead L can be calculated by evaluating
the energy change in thermal lead L and expressed as [11]

JL(t ) = −
〈

dĤL

dt

〉
. (A1)

According to Heisenberg equation, the above equation can be
further calculated as [34]

JL(t ) = 1

2
lim

t ′→t+

∂

∂t ′ Tr[ih̄DLC (t )G<
CL(t, t ′) + H.c.]. (A2)

Here, Dαβ (t ) and G<
αβ (t, t ′) (α, β ∈ {L,C, R}) are the dy-

namical matrix and the double-time lesser Green’s function
between regions α and β.

Further by using the Dyson equation, we have [15]

GCL(τ, τ ′) =
∫

dτ1GCC (τ, τ1)DCL(τ1)gL(τ1, τ
′), (A3)

where gα is the isolated Green’s function for region α(=
L, R). Applying continuation rules lead to

G<
CL(t, t ′) =

∫
dt1Gr

CC (t, t1)DCL(t1)g<
L (t1, t ′)

+
∫

dt1G<
CC (t, t1)DCL(t1)ga

L(t1, t ′). (A4)

Thus, the thermal current can be expressed in terms of
physical quantities of the central region as

JL(t ) = ih̄

2

∫
dt1 lim

t ′→t+

∂

∂t ′ Tr
[
Gr

CC (t, t1)DCL(t1)

× g<
L (t1, t ′)DLC (t ) + G<

CC (t, t1)DCL(t1)

× ga
L(t1, t ′)DLC (t ) + H.c.

]
(A5)

Differentiation of Green’s functions with respect to t ′ is not
favorable. During a thermal switch, we may suppose that
thermal leads remain intact, which is the fixed-boundary con-
dition [41]. This assumption has been widely adopted for
transient phonon currents [31–33]. In this way, gα (t, t ′) is
time-translational invariant.

In other words, we neglect the variation in diagonal el-
ements of the surface dynamical matrix during the thermal
switch. Then, we can apply Fourier transformation to get
(γ = r, a,>,<)

gγ
L (t1, t ′) =

∫
dω

2π
gγ

L (ω)e−iω(t1−t ′ ). (A6)

Correspondingly,

lim
t ′→t+

∂

∂t ′ DCL(t1)gγ

L (t1, t ′)DLC (t ) = i�γ ,1
L (t1, t ), (A7)

with

�
γ ,1
L (t1, t ) ≡

∫
dω

2π
ωDCL(t1)gγ

L (ω)DLC (t )e−iω(t1−t ). (A8)

Therefore, the general formula for phonon current flowing out
of thermal lead L [Eq. (A5)] can be written as

JL(t ) = − h̄

2

∫ +∞

−∞
dt1Tr

[
Gr

CC (t, t1)�<,1
L (t1, t )

+ G<
CC (t, t1)�a,1

L (t1, t ) + H.c.
]

= −h̄
∫ +∞

−∞
dt1ReTr

[
Gr

CC (t, t1)�<,1
L (t1, t )

+ G<
CC (t, t1)�a,1

L (t1, t )
]
. (A9)
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