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Tunable double Weyl phonons driven by chiral point group symmetry
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Different from spin- 1
2 Weyl points which are robust due to the protection of topology, the unconventional chiral

quasiparticles usually require extra crystalline symmetries for their existence, indicating that such quasiparticles
are sensitive to perturbation. Herein, we present that the spin-1 Weyl can transform into quadratic Weyl phonons
depending on symmetry variation. Specifically, the spin-1 Weyl nodes arisen from three-dimensional (3D)
irreducible representations (IRs) of chiral point groups, O(432) or T (23), are verified to split into quadratic Weyl
points if symmetry breaking decomposes 3D IRs into two-dimensional IRs. Symmetry analysis and low-energy
effective models are performed to identify the splitting mechanisms. The evolution of Berry curvature and surface
states driven by symmetry breaking is obtained in real materials. Our work not only builds the connection
between double Weyl phonons but also offers guidance for exploring the transition among unconventional
quasiparticles.

DOI: 10.1103/PhysRevB.103.104101

I. INTRODUCTION

Band topology has sparked intense studies in the last few
years [1–16]. The interplay between symmetry and topology
has provided a useful way to find new topological states and
helps us to understand the possible topological phases in solid-
state physics [1–3]. In this light, various symmetry protected
topological nontrivial states are discovered, i.e., topological
insulators [4,5], Dirac semimetals [6–9], Weyl semimetals
[10–12,16–18], and node-line semimetals [13–15,19,20], etc.
Among them, the chiral fermions characterized by topological
charge (Chern number C) receive much attention because of
their chiral anomaly [21–24].

Different from the free fermions constrained by the
Poincaré symmetry, the low-energy fermionic excitations in
condensed-matter physics need to respect the space group
symmetry in three-dimensional (3D) lattices [25]. As a result,
unconventional chiral quasiparticles without counterparts in
high-energy physics are proposed. They range from two-,
three-, four-, and sixfold degeneracies characterized by Chern
number C larger than one [25–31]. Among them, the chiral
quasiparticles which carry Chern number C of ±2 are called
double Weyl nodes and come in three types [30]. The first type
is the threefold spin-1 Weyl point [26], which is protected by
spatial symmetry and can be described by a low-energy k · p
Hamiltonian H = k · S, where S is a 3 × 3 matrix taken as
the generating operators of SO(3) rotation group in the spin-1
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representation [25]. For spin-1 Weyl point, the three bands
carry Chern numbers C of ±2, 0 (see the left panel of Fig. 1).
The second type is the twofold degenerate node, in which
the linear terms are suppressed by spatial or time reversal T
symmetries [27,29] (see the blue lines in right panel of Fig. 1).
Moreover, a quadratic Weyl node and two spin- 1

2 Weyl points
with opposite chirality can form a triangular Weyl complex
[32,33]. In the third type, the double Weyl nodes are formed
by fourfold band crossings, which can be considered as the
direct sum of two Weyl equations with the same chirality
related by T symmetry. Each spin- 1

2 Weyl point contributes
a unit topological charge, giving birth to the fourfold double
Weyl fermions with C = ±2 [30].

Incorporating symmetries with topology has enriched the
topological classification and promises new varieties of phe-
nomena different from the conventional ones. For example,
the intriguing electronic and optical transport phenomena
stem from large Chern number C [34,35], quantum criticality,
and phase transition [36,37], etc. However, symmetry pro-
tected unconventional quasiparticles become susceptible to
perturbation. Up to now, the splitting mechanisms of uncon-
ventional quasiparticles in boson systems are still lacking. It
is rational to explore their splitting behaviors under symmetry
breaking.

In this work, to uncover the splitting mechanisms of un-
conventional quasiparticles, we simply focus on the spin-1
Weyl phonons emerging at the center of the Brillouin zone
(BZ). We show that the space groups whose isogonal point
groups are either O(432) or T(23) groups can host spin-1
Weyl points at � due to the existence of 3D irreducible
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FIG. 1. The transition between the spin-1 Weyl (left panel) and
quadratic (right panel) Weyl nodes driven by T = A⊕E. In the left
panel, the spin-1 Weyl nodes are managed by 3D IRs of O(432) or
T(23). The three bands are labeled by Chern numbers C with the
values of ±2, 0, respectively. In the right panel, the quadratic Weyl
points (C = +2) are guaranteed by 2D IRs of the subgroups, i.e.,
D4(422), C4(4), etc. The third single band is accidentally either above
(red solid line) or below (red dashed line) the quadratic Weyl point
to form spin- 1

2 Weyl nodes (C = +1).

representations (IRs). Furthermore, the spin-1 Weyl points
will split into quadratic Weyl nodes if the 3D IRs decompose
into two-dimensional (2D) IRs, T = A⊕E, where T, E, and A
represent the triple, double, and single IRs, respectively. All
possible degenerations following T = A⊕E are tabulated in
Table I. According to the criteria, the involved space groups
possessing either spin-1 or quadratic Weyl points at � are
given in Table S1 in the Supplemental Material (SM) [38].
If crystalline symmetries are further broken, the quadratic
Weyl points will split into one pair of spin- 1

2 Weyl nodes
with the same chirality. Low-energy effective k · p models and
symmetry arguments are performed to verify the transition
behaviors of the double Weyl nodes. Furthermore, based on
first-principles calculations, Rb2Be2O3 and SrSi2 are provided
to support our analysis.

II. LOW-ENERGY EFFECTIVE MODELS

In a low-energy effective model, the symmetries require the
Hamiltonian H(k) satisfying the equation,

DmH (k)D−1
m = H (Rmk), (1)

where Dm is the generating operator, and Rm is the correspond-
ing matrix representation.

We first consider a generic 3D lattice with a point group
O(432). The generating elements are chosen as twofold rota-
tional symmetry C2x along the [100] axis, threefold rotational
symmetry C3[111] along the [111] direction, fourfold rotational
symmetry C4z along the [001] axis, and the time reversal

TABLE I. Compatibility table for O(432) group.

O T D4 D3 C4 C3

A1 A A1 A1 A A
A2 A B1 A2 B A
E {1E ,2 E}∗ A1 + B1 E A + B {2E ,1 E}∗

T1 T A2 + E A2 + E A + {2E ,1 E}∗ A + {2E ,1 E}∗

T2 T B2 + E A1 + E B + {2E ,1 E}∗ A + {2E ,1 E}∗

symmetry T . Here, all the rotational operators are uniformly
anticlockwise ones. The corresponding 3D matrix representa-
tions [39] can be written as

C2x =

⎛⎜⎝−1 0 0

0 1 0

0 0 −1

⎞⎟⎠, C3[111] =

⎛⎜⎝0 0 1

1 0 0

0 1 0

⎞⎟⎠,

C4z =

⎛⎜⎝−1 0 0

0 0 1

0 −1 0

⎞⎟⎠, T = K,

(2)

where K is a complex conjugation operator. The transfor-
mation of momentum k under generating operators is listed
below,

(kx, ky, kz )
C2x−→ (kx,−ky,−kz ),

(kx, ky, kz )
C3[111]−−−→ (kz, kx, ky),

(kx, ky, kz )
C4z−→ (−ky, kx, kz ),

(kx, ky, kz )
T−→ (−kx,−kx,−kz ). (3)

We then have the low-energy effective model Ho with the
linear orders to respect Eq. (1),

Ho = m

⎛⎜⎝ 0 −iky ikx

iky 0 −ikz

−ikx ikz 0

⎞⎟⎠, (4)

where the coefficient m is a nonzero real constant. Here, the
constant m is set to 1 to calculate the dispersion relation
[see Fig. S1(a)]. The Chern number C is obtained by the
Wilson loop method [40]; see Fig. S1(d). We find each band
has a Chern number C of ±2, 0, respectively, indicating the
expected spin-1 Weyl point.

We next examine the splitting behaviors of spin-1 Weyl
points by introducing a perturbation Hamiltonian with C3

symmetry breaking. After removing C3[111] from the gen-
erating operators, the remaining operators C2x, C4z, and T
symmetries in Eq. (2), are automatically the subduced rep-
resentations under C3 symmetry breaking. Therefore, the
constructed perturbation Hamiltonian V shares the same basis
functions with the Ho and can be described by

V =

⎛⎜⎝ m1 −g1iky g1ikx

g1iky 0 g2ikz

−g1ikx −g2ikz 0

⎞⎟⎠, (5)

where the coefficients m1, g1, and g2 are nonzero real con-
stants. The final Hamiltonian H can be written as

H = Ho + V. (6)

The quadratic Weyl points derived from spin-1 Weyl nodes
by breaking C3 symmetry can be described by Eq. (6). After
introducing the perturbation, the little group at � decreases
into D4(422), and 3D IRs associated with O(432) simultane-
ously decompose into 2D IRs. To examine the topology of
the Hamiltonian H in Eq. (6), the parameters are chosen as
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m1 = 0.01, g1 = 0.5, and g2 = 0.5 to obtain the dispersion
relation and Chern number C. As shown in Figs. S1(b) and
S1(e) in the SM [38], the twofold crossing bands have Chern
number C of ±2, confirming that the spin-1 Weyl point splits
into a quadratic Weyl node.

Similarly, we break the C4 symmetry by excluding C4z op-
erator from the generating elements in Eq. (2). The subduced
representations ensure that the perturbation Hamiltonian V ′
shares the same basis functions with Ho. The perturbation
Hamiltonian V ′ can be presented as

V ′ =

⎛⎜⎝ 0 h∗
1 h2

h1 0 h∗
3

h∗
2 h3 0

⎞⎟⎠,

h1 = f − i( f1kx − f2ky + f3kz ),

h2 = f − i( f1kz − f2kx + f3ky),

h3 = f − i( f1ky − f2kz + f3kx ),

(7)

where the coefficients f , f1, f2, and f3 are nonzero real con-
stants. Similarly, the Hamiltonian H ′ = Ho + V ′ can describe
the process that the spin-1 Weyl points evolve into quadratic
Weyl nodes driven by C4 symmetry breaking. As shown in
Figs. S1(c) and S1(f) in the SM [38], the twofold crossing
bands have Chern number C = ±2, showing that the spin-1
Weyl point transforms into the quadratic Weyl node by C4

symmetry breaking. Here, the parameters are chosen as f =
0.1, f1 = 0.2, f2 = 0.3, and f3 = 0.4.

For the chiral space group, whose little group at � is iso-
morphic to the O(432) group, the threefold spin-1 Weyl nodes
emerging at � can be described by the above Hamiltonian in
Eq. (4). As the O(432) group is the supergroup of T (32), the
above analysis can be applied to T (23), which also hosts spin-
1 Weyl points at �. Using effective models and perturbation
Hamiltonian, we have confirmed that the spin-1 Weyl node
can evolve into the quadratic Weyl point if any perturbation
drives the 3D IRs into 2D IRs. Besides, based on the above
criteria and effective Hamiltonians, the space groups which
host spin-1 Weyl points or quadratic Weyl nodes at � are
summarized in the SM [38].

III. COMPUTATIONAL METHODS

We further employ first-principles calculations to confirm
the transition behaviors discussed above. The first-principles
calculations are performed based on the density functional
theory (DFT) [41,42] using the Vienna ab initio simula-
tion package (VASP) [43,44]. The core-valence interactions
are treated by the projector augmented wave method [45].
The generalized gradient approximation (GGA) described by
Perdew-Burke-Ernzerbof (PBE) function is used to describe
the exchange-correlation functional [46,47]. The cutoff en-
ergy for plane waves is set to 500 eV. The phonon spectrum is
calculated through the density functional perturbation theory
(DFPT) approach [48] interfaced with the PHONOPY code [49].
A 3 × 3 × 3 supercell is utilized to generate force matrix and
the nonanalytical term is included to correct the dispersions
near �. The comparison with and without the nonanalyti-
cal term correction is shown in Fig. S3. The surface states

FIG. 2. (a) Crystalline structure of Rb2Be2O3 with space group
P4332. Rb, Be, and O atoms are represented by pink, blue, and
red spheres, respectively. (b) Bulk BZ and the (001) surface BZ.
(c) Phonon spectrum along the high symmetry lines.

and Chern numbers C of Rb2Be2O3 are calculated using the
Green’s function method based on the WANNIERTOOLS pack-
age [50,51].

IV. MATERIALS REALIZATION

Here, we mainly focus on the cubic Rb2Be2O3 and the
other candidate SrSi2 is provided in the SM [38]. As shown
in Fig. 2(a), each unit cell contains eight Rb, eight Be, and
12 O atoms. Rb, Be, and O atoms occupy Wyckoff positions
8c (0.753, 0.253, 0.246), 8c (0.780, 0.219, 0.719), and 12d
(0.625, 0.864, 0.386), respectively. The Rb2Be2O3 is an insu-
lator and the optimized lattice constant is 7.51 Å, which is in
agreement with the previous work [52].

The group elements contain fourfold screw rotational
symmetry C̃4z = {C4z| 3

4
1
4

3
4 } along the [001] axis, three-

fold rotational symmetry C3[111] along the [111] direction,
twofold screw rotational symmetries C̃2x = {C2x| 1

2
1
2 0}, C̃2y =

{C2y|0 1
2

1
2 }, C̃2z = {C2z| 1

2 0 1
2 }, and twofold rotational symme-

tries C2[011], C2[101], and C2[110] along the [011], [101], and
[110] axes, respectively. We plot the bulk BZ and projected
surface BZ along the [001] direction, as well as the high
symmetry points in Fig. 2(b). The phonon spectrum along the
high symmetry lines is shown in Fig. 2(c). As expected, the
threefold degenerate bands with 3D IRs at � form the spin-1
Weyl node [i.e., the T2 modes marked by the black box in
Fig. 2(c)], which is consistent with the above analysis. The
enlarged drawing is shown in the upper panel of Fig. 3(a). It
is worth noting that the T2 modes near � are infrared silent
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FIG. 3. The evolution of phonon spectra near the � and R points
under symmetry variation. Each band is labeled by ordinal num-
ber. (a) The upper panel shows the enlarged phonon dispersion of
Rb2Be2O3 at � without external strain. The middle and bottom
panels show the phonon spectra with C3 and C4 symmetry breaking,
respectively. Z point located at the C4 axis when the strain is applied
along the [001] direction. (b) The phonon dispersion near R is shown
in the upper panel. The middle and bottom panels give the band
spectra with C3 and C4 symmetry breaking, respectively. C labels
bands in the top panel of (a), while C labels nodes in the other panels
of (a) and (b). The Berry curvature distribution in the kx-ky plane with
C3 (c) or C4 (d) symmetry breaking.

and robust against the nonanalytical correction, while the T1

modes marked by the red box in Fig. 2(c) are infrared active
and split [53]. The enlarged drawings are shown in Fig. S3.
At the R point, there exist fourfold degenerate states which
turn out to be charge-2 Dirac points [see the blue box in
Fig. 2(c)] and the enlarged drawing is shown in the upper
panel of Fig. 3(b). The three screw axes C̃2x,2y,2z, satisfying
the relation of {C̃2i, C̃2 j}=−2δi j (i, j = x, y, z), can give rise
to a twofold degeneracy. In addition, the C2[110] axis does not
commute with the twofold screw rotational symmetry, leading

to the fourfold charge-2 Dirac points (see more details in the
SM [38]). To further examine the existence of the charge-2
Dirac point at R, we present the generating operators in the
basis of |uk〉, C̃2y |uk〉, C2[110] |uk〉, and C̃2xC2[110] |uk〉 as below
to construct the k · p model, where |uk〉 is the eigenstate of C̃2z

with the eigenvalue −i (see more details in the SM [38]),

C3[111] =
√

2

2

⎛⎜⎜⎜⎜⎝
e−i π

12 e−i 7π
12 0 0

ei 11π
12 e−i 7π

12 0 0

0 0 ei π
12 ei π

12

0 0 e−i 5π
12 ei 7π

12

⎞⎟⎟⎟⎟⎠,

C̃4z =

⎛⎜⎜⎜⎝
0 0 0 1

0 0 −1 0

0 −i 0 0

−i 0 0 0

⎞⎟⎟⎟⎠, T =

⎛⎜⎜⎜⎝
0 0 −i 0

0 0 0 1

−i 0 0 0

0 1 0 0

⎞⎟⎟⎟⎠K,

(8)

where K is a complex conjugation operator. The transfor-
mation of momentum k under generating operators is listed
below,

(kx, ky, kz )
C3[111]−−−→ (kz, kx, ky),

(kx, ky, kz )
C̃4z−→ (−ky, kx, kz ),

(kx, ky, kz )
T−→ (−kx,−kx,−kz ). (9)

Then a low-energy Hamiltonian is obtained as

H1 = d

⎛⎜⎜⎜⎝
kz −kx − iky 0 0

−kx + iky −kz 0 0

0 0 −kz −ikx − ky

0 0 ikx − ky kz

⎞⎟⎟⎟⎠,

(10)

H2 = U †H1U = d

(
k · σ 0

0 k · σ

)
, (11)

where d is a nonzero constant and U is a unitary matrix. It
is exactly the charge-2 Dirac point formed by two Weyl equa-
tions with the same chirality. For the spin-1 Weyl phonons, the
Chern numbers C are defined on the threefold node for each
degenerate band [see Fig. 3(a)]. To respect the no-go theorem,
the spin-1 Weyl point with the Chern number C = +2 (the
sum of the Chern number C on the 65th and 66th bands) at �

and the charge-2 Dirac node (C = −2) at R come into pairs.
However, between the 65th and 66th bands, there is only one
spin-1 Weyl point with the Chern number C = +2 (the Chern
number of the 65th band) and the nodal walls emerge in the
whole BZ. The no-go theorem is circumvented due to the ex-
istence of nodal walls [54]. The nodal walls can be understood
by the combination operators C̃2iT (i = x, y, z), which possess
the product of (C̃2iT )2 = −1 and leave the ki = π (i = x, y, z)
planes invariant, giving rise to the twofold nodal walls at the
boundary of BZ.
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A. Symmetry breaking

We then evaluate the transition between spin-1 Weyl nodes
and quadratic Weyl points by applying a strain with the pres-
sure value of 0.98 GPa along the [001] direction, in which
the C3 symmetry is broken. As shown in the middle panel
of Fig. 3(a), the spin-1 Weyl node evolves into one quadratic
Weyl node with C = +2 (between the 66th and 67th bands) at
� and one pair of spin- 1

2 Weyl phonons with C = +1 (between
the 65th and 66th bands) lie along the C4 axis. For the 65th

and 66th bands, C̃2iT (i = x, y, z) can also protect the nodal
walls at the boundary of BZ. Hence, there is only one pair
of spin- 1

2 Weyl phonons in the BZ to circumvent the no-go
theorem. For the charge-2 Dirac node with C = −2 at R,
although the C2[110] symmetry is broken, the relation {C̃2i,
C̃2 j}=−2δi j (i, j = x, y, z) is conserved. The T symmetry
maps the Weyl point into itself and preserves the chirality,
still protecting the fourfold charge-2 Dirac points at R [see
the middle panel of Fig. 3(b)].

We further apply another strain with the pressure value of
0.13 GPa along the [111] direction to break C4 symmetry.
As expected, the spin-1 Weyl points at � are driven into one
quadratic Weyl node with C = +2 (between the 65th and 66th

bands) and two spin- 1
2 Weyl points with C = +1 (between

the 66th and 67th bands), as shown in the bottom panel of
Fig. 3(a). In this case, the three bands derived from spin-1
Weyl nodes can be labeled by the eigenvalues e±i 2π

3 and 1 of C3

symmetry. The two bands with the eigenvalues e±i 2π
3 related

by T symmetry can give rise to the quadratic Weyl point.
Meanwhile, such two bands are allowed to intersect with the
remaining single band with the eigenvalue of 1, forming two
spin- 1

2 Weyl nodes located along the C3 rotation axis.
At the R point, the charge-2 Dirac nodes are destroyed

because the anticommutative relations among rotational screw
axes C̃2i (i = x, y, z) are broken. As the R point shares the
same little group with �, it forms one quadratic Weyl node
with C = −2 (between the 66th and 67th bands) and two spin- 1

2
Weyl points with C = −1 (between the 65th and 66th bands),
as shown in the bottom panel of Fig. 3(b). The 68th band near
the R point does not appear in the current scale in the bottom
panel of Fig. 3(b). To show the 68th band clearly, Fig. S5 is
provided in the SM [38]. We then construct a perturbation
Hamiltonian by excluding the operator C̃4z in Eq. (8) to elu-
cidate such evolutionary process. The remaining C̃3[111] and T
are the subduced representation with C4 symmetry breaking,
which can ensure the obtained perturbation Hamiltonian V1

sharing the same basis functions with H1,

V1 =
(

0 V ′†
1

V ′
1 0

)
, (12)

V ′
1 =

(
(1 − i)c1 c1(1 − √

3) + c2 ĩk

c1(1 − √
3)i + c2k̃ c1[

√
3 − 2 + (2 − √

3)i]

)
,

k̃ = (
√

3 − i)kx + 2iky − (
√

3 + i)kz, (13)

where the coefficients c1 and c2 are nonzero real constants (see
more details in the SM [38]). As the perturbation Hamiltonian
V1 shares the same basis functions with Hamiltonian H1, the
charge-2 Dirac point at R with C4 symmetry breaking can be

FIG. 4. (a) Projected LDOS on the (001) surface with C3 sym-
metry breaking, and (b) the corresponding isofrequency arcs at the
frequency cut1 (ω = 19.045 THz). (c) Projected LDOS on the (001)
surface with C4 symmetry breaking, and (d) the corresponding isofre-
quency arcs at the frequency cut2 (ω = 18.943 THz).

described by

H ′
1 = H1 + V1. (14)

The band dispersion and Chern number C obtained by Eq. (14)
are shown in Fig. S2, confirming that the charge-2 Dirac point
exactly evolves into the quadratic Weyl node. Here, the param-
eters are chosen as d = 1, c1 = 0.03, and c2 = 1, respectively.

B. Berry curvature and edge states

We next examine the distribution of Berry curvature in the
kx-ky plane when the C3 symmetry is broken. As shown in
Fig. 3(c), the quadratic Weyl node (C = +2) at � and the
charge-2 Dirac points (C = −2) located at the corner of BZ
act as the source and the drain of Berry curvature, respectively,
reflecting these two different double Weyl phonons come in
pairs. For the C4 symmetry breaking, as shown in Fig. 3(d),
the Berry curvature at � (C = +2) flows into two spin- 1

2 Weyl
nodes (C = −1), respectively, resulting in a triangular Weyl
complex. It is worth pointing out that by breaking symmetry
the spin-1 Weyl nodes exhibit diverse topological phases, such
as quadratic Weyl, spin- 1

2 Weyl, or triangular Weyl complex.
Finally, to illustrate the evolution of surface states when the

crystal symmetries are broken, we calculate the surface local
density of states (LDOS) and projected isofrequency surfaces.
A semi-infinite surface is constructed to project LDOS on
the (001) surface. The quadratic Weyl node at the � point is
projected to �, and the charge-2 Dirac point located at R is
projected to M. The obtained LDOS along the high symmetry
lines on the (001) surface is plotted in Fig. 4(a), and the
corresponding isofrequency contour at ω = 19.045 THz is
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shown in Fig. 4(b). To respect the Chern number, there are
two visible surface states that come out from the projection
of quadratic Weyl node and are terminated at the charge-2
Dirac point, which is coincident with the Berry curvature dis-
tribution. When the uniaxial strain is applied along the [111]
direction, the surface states that start at the quadratic Weyl
point (C = +2) at � are obscured in bulk bands, whereas two
arcs originated from the two spin- 1

2 Weyl nodes (C = +1) are
clearly visible as shown in Fig. 4(c). The isofrequency surface
at ω = 18.943 is shown in Fig. 4(d), and there are two arcs
that exactly come out from two spin- 1

2 Weyl nodes and are
terminated at the quadratic Weyl point near the M point.

V. SUMMARY

In summary, through a systematic analysis of the IRs of
chiral point groups, we present that the spin-1 Weyl nodes
governed by 3D IRs of O(432) or T (23) groups can evolve
into quadratic Weyl points if the energy level degenerations
follow T = A⊕E. We show the splitting mechanism by sym-
metry arguments and the low-energy k · p Hamiltonian. Based
on our recipe, all the space groups hosting spin-1 or quadratic
Weyl phonons at � are figured out. Furthermore, Rb2Be2O3 is

an ideal candidate to show the evolutionary process of corre-
sponding Berry curvature and surface states. The long surface
arcs spanning the whole BZ are easily measured in experi-
ments, which also provide a promising unidirectional phonon
propagation channel. Our findings offer further insights into
double Weyl phonons and provide an experimental platform
to investigate the splitting behavior of double Weyl bosons, as
well as the possibility to fabricate pressure-controlled topo-
logical thermal devices.
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