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A B S T R A C T

This paper presents a mixed finite element framework for coupled hydro-mechanical–chemical processes
in heterogeneous porous media. The framework combines two types of locally conservative discretization
schemes: (1) an enriched Galerkin method for reactive flow, and (2) a three-field mixed finite element method
for coupled fluid flow and solid deformation. This combination ensures local mass conservation, which is
critical to flow and transport in heterogeneous porous media, with a relatively affordable computational cost.
A particular class of the framework is constructed for calcite precipitation/dissolution reactions, incorporating
their nonlinear effects on the fluid viscosity and solid deformation. Linearization schemes and algorithms for
solving the nonlinear algebraic system are also presented. Through numerical examples of various complexity,
we demonstrate that the proposed framework is a robust and efficient computational method for simulation
of reactive flow and transport in deformable porous media, even when the material properties are strongly
heterogeneous and anisotropic.
1. Introduction

Hydro-mechanical–chemical (HMC) processes in porous media, in
which fluid flow, solid deformation, and chemical reactions are tightly
coupled, appear in a variety of problems ranging from groundwater
and contaminant hydrology to subsurface energy production (Nick
et al., 2013; Hu and Hueckel, 2013; Pandey et al., 2014; Pandey and
Chaudhuri, 2017; Nick et al., 2015; Choo and Sun, 2018; Tran and Jha,
2020). The porous media in these problems are often strongly hetero-
geneous, not only because they are naturally heterogeneous materials
(e.g. rocks and soils) but also because HMC interactions strengthen
the material heterogeneity. For instance, change in pore pressure per-
turbs effective stress in the solid matrix, which can, in turn, alter
the conductivity and storability of the porous medium (Chen, 2007;
Du and Wong, 2007; Abou-Kassem et al., 2013; Kadeethum et al.,
2018, 2019b, 2020c; Nejati et al., 2019). Similarly, chemical processes
can result in the precipitation or dissolution of solid minerals, which
decreases or increases the pore volume, respectively, and thus, the
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conductivity (Salimzadeh et al., 2019; Pandey et al., 2014; Pandey
and Chaudhuri, 2017; Rutqvist, 2017; Ahkami et al., 2020; Choo and
Sun, 2018). Therefore, accurate numerical modeling of coupled HMC
problems requires a computational method that can robustly handle
strong heterogeneity in porous media.

Nevertheless, it remains challenging to simulate coupled HMC pro-
cesses in porous media in a robust and efficient manner, especially
when the material properties are highly heterogeneous and/or
anisotropic. Because HMC problems involve transport phenomena in
heterogeneous porous media, the numerical method for these prob-
lems must ensure local (element-wise) conservation (Riviere, 2008;
Lee et al., 2016). The most practical method featuring local mass
conservation may be the finite volume method with a standard two-
point flux approximation scheme. However, this standard finite volume
method requires the grid to be aligned with the principal directions
of the permeability/diffusivity tensors (Lipnikov et al., 2009; Choo
and Sun, 2018), which inhibits the use of an unstructured grid when
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the permeability/diffusivity tensors are anisotropic. Multi-point flux-
approximation methods have been developed to tackle this issue (Aa-
vatsmark, 2002), but their implementation is often complicated and
onerous (Choo, 2018). Discontinuous Galerkin (DG) methods offer
an elegant way to handle arbitrarily anisotropic tensor conductiv-
ity/diffusivity. However, their computational cost is often impractical
as a result of the proliferation of the degrees of freedom.

In this paper, we present a new framework for computational
modeling of coupled HMC processes in porous media, which efficiently
provides local mass conservation even when the material properties
are strongly heterogeneous and anisotropic. The proposed framework
combines two types of discretization methods: (1) an enriched Galerkin
(EG) method for reactive flow and transport, and (2) a three-field
mixed finite element method for coupled hydro-mechanical processes.
The EG method, which has recently been developed and advanced in
the literature (Sun and Liu, 2009; Lee et al., 2016; Lee and Wheeler,
2018; Choo and Lee, 2018; Choo, 2018, 2019; Kadeethum et al.,
2020a, 2021b; Rupp and Lee, 2020; Choi and Lee, 2020), augments
a piecewise constant function to the continuous Galerkin (CG) function
space. This method uses the same interior penalty type form as the
DG method, but it requires a substantially fewer number of degrees
of freedom than the DG method. Thus the EG method can provide
locally conservative solutions to the reactive flow system regardless of
the grid-conductivity alignment. For the hydro-mechanical sub-system
of the HMC problem, we use a three-field mixed finite element formula-
tion (Phillips and Wheeler, 2007a,b; Haga et al., 2012), which provides
locally conservative, high-order solutions to the fluid velocity field.
Specifically, we employ the Lagrange finite elements for approximating
the displacement field, the Brezzi–Douglas–Marini (BDM) element for
the fluid velocity field, and the piecewise constant element for the
fluid pressure field. It is noted that this combination of elements is
our personal choice, and one may use another combination for the
same three primary fields as in Ferronato et al. (2010), Jha and Juanes
(2007) and Haga et al. (2012).

The purpose of this work is to develop an accurate numerical
method for tackling coupled HMC processes in heterogeneous porous
media, with a practically affordable computational cost. Our specific
objectives can be summarized as follows:

1. To formulate a robust numerical approximation scheme for cou-
pled HMC processes in heterogeneous porous media, employing
a combination of locally conservative finite element methods.

2. To reduce the computational cost for solving an advection–
diffusion–reaction equation by using the EG method, which
requires approximately two and three times fewer degrees of
freedom than the DG method for 2D and 3D geometries, respec-
tively (Kadeethum et al., 2020b).

3. To demonstrate the performance and capabilities of the pro-
posed framework for modeling tightly coupled HMC problems
with homogeneous to heterogeneous, isotropic to anisotropic
permeability fields with local conservation.

The rest of the paper is organized as follows. Section 2 describes
he governing equations of coupled HMC processes. Section 3 explains
he discretization methods, linearization techniques, and solution algo-
ithms of the proposed framework. Section 4 presents several numerical
xamples of various complexity and discusses key points found in this
aper. Section 5 concludes the work.

. Governing equations

This section briefly describes all the equations used in this study,
amely poroelasticity and advection–diffusion–reaction equations.

Let 𝛺 ⊂ R𝑑 (𝑑 ∈ {1, 2, 3}) denote the computational domain and 𝜕𝛺
enote the boundary. The time domain is denoted by T = (0,T] with
> 0. Primary variables used in this paper are 𝒒(⋅, 𝑡) ∶ 𝛺 × T → R𝑑 ,
2

which is a vector-valued Darcy velocity (m∕s), 𝑝(⋅, 𝑡) ∶ 𝛺 × T → R,
which is a scalar-valued fluid pressure (Pa), 𝒖(⋅, 𝑡) ∶ 𝛺 ×T → R𝑑 , which
is a vector-valued displacement (m), 𝑐𝑖 ∶ 𝛺 × T → R, which is the 𝑖th
omponent of chemical concentration (mmol∕m3).

.1. Poroelasticity

To begin, we adopt Biot’s poroelasticity theory for coupled hydro-
echanical processes in porous media (Biot, 1941; Biot and Willis,
957). Although poroelasticity may oversimplify deformations in soft
orous materials such as soils (Choo et al., 2016; Borja and Choo,
016; MacMinn et al., 2016; Zhao and Choo, 2020; Kadeethum et al.,
021a), it would be reasonably good for stiff materials such as rocks,
hich is the focus of this work. The poroelasticity theory provides

wo coupled governing equations, namely linear momentum and mass
alance equations. Under quasi-static conditions, the linear momentum
alance equation can be written as

⋅ 𝝈(𝒖, 𝑝) + 𝒇 = 𝟎, (1)

here 𝒇 is the body force term defined as 𝜌𝜙𝐠 + 𝜌𝑠(1 − 𝜙)𝐠, where
is the fluid density, 𝜌𝑠 is the solid density, 𝜙 is the porosity, 𝐠 is

he gravitational acceleration vector. The gravitational force will be
eglected in this study, but the body force term will be kept in the
ucceeding formulations for a more general case. Further, 𝝈 is the total
tress tensor, which may be related to the effective stress tensor 𝝈′ and
he pore pressure 𝑝 as

(𝒖, 𝑝) = 𝝈′(𝒖) − 𝛼𝑝𝐈. (2)

ere, 𝐈 is the second-order identity tensor, and 𝛼 is the Biot coefficient
efined as (Jaeger et al., 2009):

= 1 − 𝐾
𝐾𝑠
, (3)

with 𝐾 and 𝐾𝑠 being the bulk moduli of the solid matrix and the solid
grain, respectively. According to linear elasticity, the effective stress
tensor has a constitutive relationship with the displacement vector,
which can be written as

𝝈′(𝒖) = 𝜆𝑙 tr(𝜺(𝒖))𝐈 + 2𝜇𝑙𝜺(𝒖). (4)

Here, 𝜺 is the infinitesimal strain tensor, defined as

𝜺(𝒖) ∶= 1
2
(

∇𝒖 + (∇𝒖)⊺
)

, (5)

and 𝜆𝑙 and 𝜇𝑙 are the Lamé constants, which are related to the bulk
modulus and the Poisson ratio 𝜈 of the solid matrix as

𝜆𝑙 =
3𝐾𝜈
1 + 𝜈

, and 𝜇𝑙 =
3𝐾(1 − 2𝜈)
2(1 + 𝜈)

. (6)

For this solid deformation problem, the domain boundary 𝜕𝛺 is
assumed to be suitably decomposed into displacement and traction
boundaries, 𝜕𝛺𝑢 and 𝜕𝛺𝑡, respectively. Then the linear momentum bal-
ance equation is supplemented by the boundary and initial conditions
as:
∇ ⋅ 𝝈′(𝒖) − 𝛼∇ ⋅ (𝑝𝐈) + 𝒇 = 𝟎 in 𝛺 × T,

𝒖 = 𝒖𝐷 on 𝜕𝛺𝑢 × T,

𝝈(𝒖) ⋅ 𝐧 = 𝒕𝐷 on 𝜕𝛺𝑡 × T,

𝒖 = 𝒖0 in 𝛺 at 𝑡 = 0,

(7)

where 𝒖𝐷 and 𝒕𝐷 are prescribed displacement and traction values at
the boundaries, respectively, and 𝐧 is the unit normal vector to the
boundary.

Next, the mass balance equation is given as (Coussy, 2004; Kim
et al., 2011; Pandey and Chaudhuri, 2017; Salimzadeh and Nick, 2019):

1
𝑀

𝜕𝑝
𝜕𝑡

+ 𝛼
𝜕𝜀𝑣
𝜕𝑡

+
𝜕𝜙𝑐
𝜕𝑡

+ ∇ ⋅ 𝒒 = 𝑔 in 𝛺 × T, (8)

where
1 =

(

𝜙0𝑐𝑓 +
𝛼 − 𝜙0

)

(9)

𝑀 𝐾𝑠
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is the Biot modulus. Here, 𝑐𝑓 is the fluid compressibility, 𝜙0 is the
initial porosity, 𝜀𝑣 ∶= tr(𝜺) = ∇ ⋅ 𝒖 is the volumetric strain, and 𝑔 is
a sink/source term. Because we will introduce chemical effects later
on, we have added 𝜕𝜙𝑐

𝜕𝑡 to the standard poroelasticity equation (Chaud-
uri et al., 2013; Pandey et al., 2014; Pandey and Chaudhuri, 2017;
alimzadeh and Nick, 2019). This term will be discussed again after
ntroducing chemical effects. Also, 𝒒 is the superficial velocity vector,
hich is given by Darcy’s law as

= −
𝒌(𝜙)
𝜇(𝑐𝑖)

(∇𝑝 − 𝜌𝐠). (10)

Note that here the fluid viscosity 𝜇 is considered a function of con-
centration 𝑐𝑖. Again, the gravitational force, 𝜌𝐠, will be neglected in
this work, without loss of generality. In addition, 𝒌(𝜙) is the matrix
permeability tensor defined as

𝒌 ∶=

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

𝑘𝑚𝑢𝑙𝑡(𝜙)

⎡

⎢

⎢

⎢

⎣

𝑘𝑥𝑥 𝑘𝑥𝑦 𝑘𝑥𝑧

𝑘𝑦𝑥 𝑘𝑦𝑦 𝑘𝑦𝑧

𝑘𝑧𝑥 𝑘𝑧𝑦 𝑘𝑧𝑧

⎤

⎥

⎥

⎥

⎦

if 𝑑 = 3,

𝑘𝑚𝑢𝑙𝑡(𝜙)

[

𝑘𝑥𝑥 𝑘𝑥𝑦

𝑘𝑦𝑥 𝑘𝑦𝑦

]

if 𝑑 = 2,

𝑘𝑚𝑢𝑙𝑡(𝜙) 𝑘 if 𝑑 = 1,

(11)

The 𝑘𝑥𝑥, 𝑘𝑦𝑦, and 𝑘𝑧𝑧 represent the matrix permeability in 𝑥-, 𝑦-, and
𝑧-direction, respectively. The 𝑘𝑚𝑢𝑙𝑡(𝜙) is a multiplier used to update 𝒌
when 𝜙 is altered, which will be described later.

For the fluid flow problem, the domain boundary 𝜕𝛺 is also suit-
ably decomposed into the pressure and flux boundaries, 𝜕𝛺𝑝 and
𝜕𝛺𝑞 , respectively. In what follows, we apply the fixed stress split
scheme (Kim et al., 2011; Mikelic and Wheeler, 2013), assuming
(

𝜎𝑣 − 𝜎𝑣,0
)

+ 𝛼
(

𝑝 − 𝑝0
)

= 𝐾𝜀𝑣. Then we write the fluid flow problem
with boundary and initial conditions as
(

1
𝑀

+ 𝛼2

𝐾

)

𝜕𝑝
𝜕𝑡

+ 𝛼
𝐾
𝜕𝜎𝑣
𝜕𝑡

+
𝜕𝜙𝑐
𝜕𝑡

+ ∇ ⋅ 𝒒 = 𝑔 in 𝛺 × T,

𝑝 = 𝑝𝐷 on 𝜕𝛺𝑝 × T,

𝒒 ⋅ 𝐧 = 𝑞𝐷 on 𝜕𝛺𝑞 × T,

𝑝 = 𝑝0 in 𝛺 at 𝑡 = 0,

(12)

where 𝜎𝑣 ∶= 1
3 tr(𝝈) is the volumetric stress, and 𝑝𝐷 and 𝑞𝐷 are the

iven boundary pressure and flux, respectively.

.2. Reactive flow

An advection–diffusion–reaction system for 𝑁𝑐 number of the mis-
ible species is given by the following equations. For all 𝑖 = 1,… , 𝑁𝑐 ,

𝜕
𝜕𝑡
(𝜙𝑐𝑖) + ∇ ⋅ 𝜂(𝒒, 𝑐𝑖) = 𝑞𝑖(𝑐𝑖), in 𝛺 × T, (13)

where 𝑞𝑖(𝑐𝑖) is a reaction term coupled with sink/source for each
component, and the mass flux 𝜂(𝒒, 𝑐𝑖) is defined as

𝜂(𝒒, 𝑐𝑖) ∶= 𝒒𝑐𝑖 −𝑫𝑒,𝑖(𝜙)∇𝑐𝑖. (14)

Here 𝑫𝑒,𝑖(𝜙) is the effective diffusion coefficient tensor defined as

𝑫𝑒,𝑖 ∶=
𝜙
𝜏
𝑫𝑖, (15)

where 𝜏 = 𝜙− 1
2 (Tjaden et al., 2016; Mu et al., 2008) and 𝑫𝑖 is the given

iffusion coefficient tensor. The boundary for the advection–diffusion–
eaction system is decomposed into inflow and outflow boundaries,
enoted by 𝜕𝛺in and 𝜕𝛺out , respectively, which are defined as

𝛺in ∶= {𝒙 ∈ 𝜕𝛺 ∶ 𝒒⋅𝐧 < 0} and 𝜕𝛺out ∶= {𝒙 ∈ 𝜕𝛺 ∶ 𝒒⋅𝐧 ≥ 0}. (16)

In what follows, we specialize the model to calcite precipitation
3

nd dissolution reactions, which requires us to solve a calcite–carbonic
cid system. In general, the system requires eight transport equations to
olve the concentration values of the following main species/ions:

{

H+ ,
Ca2+, CaHCO+

3 , OH−, CO2−
3 , HCO−

3 , H2CO
∗
3, CaCO∗

3(Aq)} (Chaudhuri
et al., 2013; Pandey et al., 2014; Raoof et al., 2013; Morel and Hering,
1993). For simplicity, in this paper we consider a reduced system based
on the empirical relationship presented in Chaudhuri et al. (2013),
Pandey et al. (2014) and Pandey and Chaudhuri (2017), in which 𝑁𝑐
decreases to 1. Thus, letting 𝑐 ∶= 𝑐1, we write the advection–diffusion–
reaction system with its boundary and initial conditions as follows:
𝜕
𝜕𝑡
(𝜙𝑐) + ∇ ⋅ (𝒒𝑐) − ∇ ⋅

(

𝑫𝑒(𝜙)∇𝑐
)

= 𝑞 in 𝛺 × (0,T],

𝜂(𝒒, 𝑐) ⋅ 𝐧 = 𝑐𝑖𝑛𝒒 ⋅ 𝐧 on 𝜕𝛺in × (0,T],

𝑫𝑒(𝜙)∇𝑐 ⋅ 𝐧 = 0 on 𝜕𝛺out × (0,T],

𝑐 = 𝑐0 in 𝛺 at 𝑡 = 0,

(17)

here 𝑐𝑖𝑛 is the inflow concentration, 𝑐0 is the initial concentra-
ion, and 𝑞 represents a source term reflecting the calcite dissolu-
ion/precipitation reactions. For this term, here we adopt the term
n Chaudhuri et al. (2013), Pandey et al. (2014) and Pandey and
haudhuri (2017), given by

= 𝑅𝑐𝐴𝑠, (18)

here 𝐴𝑠 is the specific surface area, and 𝑅𝑐 is the reaction rate
alculated as

𝑐 =

⎧

⎪

⎨

⎪

⎩

10𝑟, for 𝑐 > 0,
−10𝑟, for 𝑐 < 0,
0.0, for 𝑐 = 0,

(19)

ith

̃=

(

𝑐𝑒𝑞 − 𝑐
)

𝑐𝑒𝑞
, (20)

𝑟 = 𝑎0 + 𝑎1𝜏 + 𝑎2 log |𝑐| + 𝑎3𝜏2 + 𝑎4𝜏 log |𝑐| + 𝑎5(log |𝑐|)2, (21)

and
𝑐𝑒𝑞 = 1.417 × 10−3 + 3.823 × 10−6𝑝 − 4.313 × 10−7𝜏

− 2.148 × 10−8𝑝2 + 4.304 × 10−8𝑝𝜏 − 7.117 × 10−8𝜏2.
(22)

Here, 𝜏 is the medium temperature, and 𝑎0, 𝑎1, 𝑎2, 𝑎3, 𝑎4, and 𝑎5 are
defined in Table 1.

Before closing this section, we describe physical properties that are
coupled with primary variables, 𝒖, 𝒒, 𝑝, and 𝑐. The porosity change due
to solid deformation may be expressed as (Biot, 1941; Dana et al., 2018;
Dana and Wheeler, 2018):

𝜙𝑚 = 𝜙0 +
(

𝛼 − 𝜙0
)

(

𝜖𝑣 − 𝜖𝑣0
)

+

(

𝛼 − 𝜙0
)

(1 − 𝛼)
𝐾

(

𝑝 − 𝑝0
)

, (23)

where 𝜖𝑣0 is the initial volumetric strain. The porosity alteration due to
calcite dissolution/precipitation is calculated as

𝛤 (𝒖, 𝑐) =
𝜕𝜙𝑐
𝜕𝑡

=
𝑅𝑐𝐴𝑠
𝜌𝑠𝜔

, (24)

where 𝜌𝑠𝜔 is the molar density mol∕m3. In this study 𝜔 (the number of
moles of total precipitated species per kilogram of rock) is considered
to be equal to 10 mol∕kg (Pandey et al., 2014; Pandey and Chaudhuri,
2017)), and 𝜌𝑠 equal to 2500 kg∕m3 (Jaeger et al., 2009). Note that
this term, (24), enters (12). Also, the terms 𝜙𝑚 and 𝜙𝑐 are used to
distinguish between the changes in 𝜙 due to solid deformation as in
(23), and chemical reactions as in (24), respectively. The changes in
porosity due to (23) and (24), also affect the specific surface area (𝐴𝑠)
as

𝐴𝑠 = 𝐴0
𝜙
𝜙0

log(𝜙)
log

(

𝜙0
) , (25)

where 𝐴0 is the initial value of 𝐴𝑠, and it is set to 5000 throughout
this study. This value is reported by Taheriotaghsara et al. (2020).

Furthermore, the porosity change influences the matrix permeability
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Table 1
Coefficients of the (21) for different range of (20).

𝑎0 𝑎1 𝑎2 𝑎3 𝑎4 𝑎5
𝑐 > 0.01 −5.73 1.25 × 10−2 1.38 2.61 × 10−5 −4.01 × 10−3 3.26 × 10−1

−0.01 < 𝑐 −6.45 2.09 × 10−2 −4.65 × 10−2 3.06 × 10−5 9.25 × 10−3 −4.59 × 10−1

−0.01 < 𝑐 ≤ 0.01 −5.80 1.35 × 10−2 9.97 × 10−1 3.80 × 10−5 1.51 × 10−5 −4.87 × 10−4
Table 2
Summary of the effects of individual physical processes on physical properties.
Physical properties Mechanical deformation Fluid pressure Calcite concentration

𝜙 (23) (23) (24)
𝒌 (23) + (26) (23) + (26) (24) + (26)
𝜇 – – (27)
𝑫𝑒 (23) + (15) (23) + (15) (24) + (15)
𝐴𝑠 (23) + (25) (23) + (25) (24) + (25)
d
o

w

𝑘

as (Rutqvist et al., 2002; Rutqvist and Stephansson, 2003; Min et al.,
2004):

𝒌 = 𝒌0𝑘𝑚𝑢𝑙𝑡(𝜙) = 𝒌0 exp
(

𝑏
(

𝜙
𝜙0

− 1
))

, (26)

here 𝒌0 is the initial matrix permeability and 𝑏 is an empirical
arameter determined experimentally. In this work, we set 𝑏 = 22.2
ollowing the value reported by Rutqvist et al. (2002). The change in
also affects 𝜇, and we adopt the specific form from Grolimund et al.

2001), Bijeljic and Blunt (2007) and Yortsos and Salin (2006), given
y

= log
(

𝜇𝑙
)

+
(

𝑐 − 𝑐𝑙
𝑐ℎ − 𝑐𝑙

)

(

log
(

𝜇ℎ
)

− log
(

𝜇𝑙
))

, (27)

where 𝑐𝑙 and 𝑐ℎ are lower and higher bounds of the concentration, and
𝜇𝑙 and 𝜇ℎ are fluid viscosity corresponding to 𝑐𝑙 and 𝑐ℎ, respectively.
Table 2 summarizes the effects of physical processes on material prop-
erties considered in this study. Note that the numbers, e.g., (23), point
out the equations used to represent these effects, while a hyphen means
the absence of a relationship.

3. Numerical methods

In this section, we describe the numerical methods for the gov-
erning system described in the previous sections. Here, we utilize a
combination of a mixed finite element method for spatial discretization,
and employ both a backward differentiation formula and an explicit
Runge–Kutta method for temporal discretization.

3.1. Domain discretization and geometrical quantities

We begin by introducing the notations used throughout this paper.
Let ℎ be a shape-regular triangulation obtained by a partition of 𝛺
into 𝑑-simplices (triangles in 𝑑 = 2, tetrahedra in 𝑑 = 3). For each cell
𝑇 ∈ ℎ, we denote by ℎ𝑇 the diameter of 𝑇 , and we set ℎ = max𝑇∈ℎ ℎ𝑇
nd ℎ𝑙 = min𝑇∈ℎ ℎ𝑇 . We further denote by ℎ the set of all faces
i.e., 𝑑−1 dimensional entities connected to at least a 𝑇 ∈ ℎ) and by 𝐼ℎ
nd 𝜕ℎ the collection of all interior and boundary facets, respectively.
he boundary set 𝜕ℎ is decomposed as 𝐷,𝑢ℎ ∪ 𝑁,𝑢ℎ , where 𝐷,𝑢ℎ and
𝑁,𝑢
ℎ are two disjoint subsets associated with the Dirichlet boundary
aces on 𝜕𝛺𝑢 and the Neumann boundary faces on 𝜕𝛺𝑡𝑟 as defined
n (7). Similarly, 𝜕ℎ is also decomposed as 𝐷,𝑚ℎ ∪ 𝑁,𝑚ℎ , where 𝐷,𝑢ℎ
𝑁,𝑚ℎ , respectively) is associated to 𝜕𝛺𝑝 (𝜕𝛺𝑞 , resp.) in (12), as well as
𝜕
ℎ =  In

ℎ ∪Out
ℎ , where  In

ℎ (Out
ℎ , resp.) is defined based on 𝜕𝛺In (𝜕𝛺Out ,

esp.) in (17).
We also define

= 𝜕𝑇 + ∩ 𝜕𝑇 −, 𝑒 ∈ 𝐼ℎ ,

here 𝑇 + and 𝑇 − are the two neighboring elements to 𝑒. We denote by
𝑒 the characteristic length of 𝑒 calculated as

𝑒 ∶=
meas

(

𝑇 +) + meas (𝑇 −)
, (28)
4

2meas(𝑒)
epending on the argument, meas(⋅) represents the measure of a cell or
f a facet.

Let 𝐧+ and 𝐧− be the outward unit normal vectors to 𝜕𝑇 + and 𝜕𝑇 −,
respectively. For any given scalar function 𝜁 ∶ ℎ → R and vector
function 𝝉 ∶ ℎ → R𝑑 , we denote by 𝜁± and 𝝉± the restrictions of 𝜁 and
𝝉 to 𝑇 ±, respectively. Subsequently, we define the weighted average
operator as

{𝜁}𝛿𝑒 = 𝛿𝑒𝜁
+ +

(

1 − 𝛿𝑒
)

𝜁−, on 𝑒 ∈ 𝐼ℎ , (29)

and

{𝝉}𝛿𝑒 = 𝛿𝑒𝝉+ +
(

1 − 𝛿𝑒
)

𝝉−, on 𝑒 ∈ 𝐼ℎ , (30)

where 𝛿𝑒 is calculated by Ern et al. (2009) and Ern and Stephansen
(2008):

𝛿𝑒 ∶=
𝑘−𝑒

𝑘+𝑒 + 𝑘−𝑒
. (31)

Here,

𝑘+𝑒 ∶=
(

𝐧+
)⊺

⋅ 𝒌+𝐧+, and 𝑘−𝑒 ∶= (𝐧−)⊺ ⋅ 𝒌−𝐧−, (32)

here 𝑘𝑒 is a harmonic average of 𝑘+𝑒 and 𝑘−𝑒 which reads

𝑒 ∶=
2𝑘+𝑒 𝑘

−
𝑒

𝑘+𝑒 + 𝑘−𝑒
, (33)

and 𝒌 is defined as in (11). The jump across an interior edge will be
defined as

J𝜁K = 𝜁+𝐧+ + 𝜁−𝐧− and J𝜏K = 𝝉+ ⋅ 𝐧+ + 𝝉− ⋅ 𝐧− on 𝑒 ∈ 𝐼ℎ .

Finally, for 𝑒 ∈ 𝜕ℎ , we set {𝜁}𝛿𝑒 ∶= 𝜁 and {𝝉}𝛿𝑒 ∶= 𝝉 for what
concerns the definition of the weighted average operator, and J𝜁K ∶= 𝜁𝐧
and J𝝉K ∶= 𝝉 ⋅ 𝐧 as definition of the jump operator.

3.2. Temporal discretization

The time domain T = (0,T] is partitioned into 𝑁 subintervals such
that 0 =∶ 𝑡0 < 𝑡1 < ⋯ < 𝑡𝑁 ∶= T. The length of each subinterval
𝛥𝑡𝑛−1 is defined as 𝛥𝑡𝑛−1 = 𝑡𝑛 − 𝑡𝑛−1 where 𝑛 represents the current time
step. We assume that the user provides the initial 𝛥𝑡0, while an adaptive
procedure is carried out to choose 𝛥𝑡𝑛−1, 𝑛 > 1, as follows:

𝛥𝑡𝑛−1 ∶=

⎧

⎪

⎨

⎪

⎩

CFL
ℎ𝑙

‖

‖

𝒒𝑛−1‖
‖∞

if 𝛥𝑡𝑛 ≤ 𝛥𝑡max

𝛥𝑡max if 𝛥𝑡𝑛 > 𝛥𝑡max,
(34)

where CFL is a constant that the user can provide according to the
Courant–Friedrichs–Lewy condition (Courant et al., 1967), ‖⋅‖∞ is the
maximum norm of a vector function, and 𝛥𝑡max is a maximum allowed
time step. Note that we use 𝛥𝑡max as a tool to control 𝛥𝑡𝑛 as the model
approaches a steady-state condition since ‖

‖

‖

𝒒𝑛−1‖‖
‖∞

may approach zero,
which would lead to a very large ratio ℎ𝑙 .
‖𝒒𝑛−1‖∞
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Let 𝜑(⋅, 𝑡) be a scalar function and 𝜑𝑛 be its approximation at time
𝑛, i.e. 𝜑𝑛 ≈ 𝜑 (𝑡𝑛). We employ the following backward differentiation
ormula (Ibrahim et al., 2007; Akinfenwa et al., 2013; Lee et al., 2018)

BDF𝑚 (𝜑𝑛)

∶=

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

1
𝛥𝑡𝑛

(

𝜑𝑛 − 𝜑𝑛−1
)

𝑚 = 1
1

2𝛥𝑡𝑛
(

3𝜑𝑛 − 4𝜑𝑛−1 + 𝜑𝑛−2
)

𝑚 = 2
1

6𝛥𝑡𝑛
(

11𝜑𝑛 − 18𝜑𝑛−1 + 9𝜑𝑛−2 − 2𝜑𝑛−3
)

𝑚 = 3
1

12𝛥𝑡𝑛
(

25𝜑𝑛 − 48𝜑𝑛−1 + 36𝜑𝑛−2 − 16𝜑𝑛−3 + 3𝜑𝑛−4
)

𝑚 = 4

(35)

or the discretization of the time derivative of 𝜑(⋅, 𝑡) at time 𝑡𝑛. We also
tilize the explicit Runge–Kutta methods (Dormand and Prince, 1980;
hen et al., 2006):

K1(𝜑𝑛) = 𝜑𝑛+1 = 𝜑𝑛 + 𝜅1, (36)

𝜅1 = 𝛥𝑡𝑛𝐹 (X𝑛,Y𝑛) ,
for the first order Runge–Kutta method corresponding to the explicit
Euler method, and

RK4(𝜑𝑛) = 𝜑𝑛+1 = 𝜑𝑛 + 1
6
𝜅1 +

1
3
𝜅2 +

1
3
𝜅3 +

1
6
𝜅4, (37)

𝜅1 = 𝛥𝑡𝑛𝐹 (X𝑛,Y𝑛) ,
𝜅2 = 𝛥𝑡𝑛𝐹

(

X𝑛 + 1
2𝛥𝑡

𝑛,Y𝑛 + 1
2𝜅1

)

,

𝜅3 = 𝛥𝑡𝑛𝐹
(

X𝑛 + 1
2𝛥𝑡

𝑛,Y𝑛 + 1
2𝜅2

)

,
𝜅4 = 𝛥𝑡𝑛𝐹

(

X𝑛 + 𝛥𝑡𝑛,Y𝑛 + 𝜅3
)

,
or the fourth order Runge–Kutta method, 𝐹 (X𝑛,Y𝑛) is any functions
ith independent variable X and dependent variable Y (Dormand and
rince, 1980; Chen, 2007), which we will specify in the linearization
nd solving processes in Section 3.4.

Finally, we define an extrapolation operator as follows (Chen et al.,
006; Chen, 2007):

X (𝜑) = 𝜑̂𝑛+1 =

⎧

⎪

⎨

⎪

⎩

(

1 + 𝛥𝑡𝑛

𝛥𝑡𝑛−1

)

𝜑𝑛 − 𝛥𝑡𝑛

𝛥𝑡𝑛−1
𝜑𝑛−1 if 𝑛 ≥ 1,

𝜑0 if 𝑛 = 0,
(38)

and in the following we will adopt the notation 𝜑̂𝑛+1 to denote an
xtrapolation value of {𝜑𝑛, 𝜑𝑛−1}.

.3. Spatial discretization

In this framework, the displacement field is approximated by the
lassical continuous Galerkin method (CG) method, and the fluid ve-
ocity and pressure fields are discretized by the Brezzi–Douglas–Marini
BDM) element (Brezzi and Fortin, 2012) and the piecewise constants
iscontinuous Galerkin (DG) method, respectively, to ensure local mass
onservation. Lastly, the concentration field is discretized by the en-
iched Galerkin (EG) method (Lee et al., 2016; Sun and Liu, 2009).

To begin, we define the finite element space for the CG function
pace for a vector-valued function:
CG𝑘
ℎ

(

ℎ
)

∶=
{

𝝍𝒖 ∈ C0(𝛺;R𝑑 ) ∶ 𝝍𝒖||𝑇 ∈ P𝑘(𝑇 ;R𝑑 ),∀𝑇 ∈ ℎ
}

, (39)

here C0(𝛺;R𝑑 ) denotes the space of vector-valued piecewise continu-
us polynomials, P𝑘(𝑇 ;R𝑑 ) is the space of polynomials of degree at most
over each element 𝑇 , and 𝝍𝒖 denotes a generic function of  CG𝑘

ℎ
(

ℎ
)

.
n addition, the CG space for scalar-valued functions is defined as:
CG𝑘
ℎ

(

ℎ
)

∶=
{

𝜓𝑝 ∈ C0(𝛺) ∶ 𝜓𝑝
|

|

|𝑇
∈ P𝑘(𝑇 ),∀𝑇 ∈ ℎ

}

, (40)

here C0(𝛺) ∶= C0(𝛺;R) and P𝑘(𝑇 ) ∶= P𝑘(𝑇 ;R). Next, we define the
following DG function space:

DG𝑘 (
)

∶=
{

𝜓 ∈ 𝐿2(𝛺) ∶ 𝜓 |

| ∈ P (𝑇 ),∀𝑇 ∈ 
}

, (41)
5

ℎ ℎ 𝑝 𝑝
|𝑇 𝑘 ℎ
where 𝐿2(𝛺) is the space of square-integrable scalar functions. We then
define the EG finite element space with polynomial order 𝑘 as:

EG𝑘
ℎ

(

ℎ
)

∶= CG𝑘
ℎ

(

ℎ
)

⊕ DG0
ℎ

(

ℎ
)

, (42)

i.e., a CG finite element space enriched by the space DG0
ℎ

(

ℎ
)

of
piecewise constant functions. In the following we denote 𝜓𝑐 a generic
function of EG𝑘

ℎ
(

ℎ
)

.
Lastly, we define the BDM function space as follows (Brezzi and

Fortin, 2012):

BDM𝑘
ℎ

(

ℎ
)

∶=
{

𝝍𝒗 ∈ 𝐻(div, 𝛺) ∶ 𝝍𝒗||𝑇 ∈ BDM(𝑇 ),∀𝑇 ∈ ℎ
}

(43)

where 𝝍𝒗 denotes a generic function of BDM𝑘
ℎ

(

ℎ
)

and BDM(𝑇 ) is
defined according to Brezzi and Fortin (2012):

𝑇 ∈ { triangle, tetrahedron }
 =

[

𝑞(𝑇 )
]𝑑

 =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

∫𝑓 𝑣 ⋅ 𝐧𝑝𝑑𝑆, for a set of basis functions 𝑝 ∈ 𝑞(𝑓 )
for each facet

∫𝑇 𝑣 ⋅ 𝑝𝑑𝑥, for set of basis functions 𝑝 ∈ NED𝑘−1(𝑇 )
for 𝑘 ⩾ 2

(44)

where NED refers to the Nédélec elements of the first kind.

3.3.1. Fully discrete form
We now present the fully discrete form of the coupled HMC prob-

lem using the above-described combination of finite element spaces.
In particular, we seek the approximated displacement solution 𝒖𝒉 ∈
 CG2
ℎ

(

ℎ
)

as done in Choo and Lee (2018), Kadeethum et al. (2019a)
and Vik et al. (2018), fluid pressure 𝑝ℎ ∈ DG0

ℎ
(

ℎ
)

, velocity ap-
proximation 𝒒ℎ ∈ BDM1

ℎ
(

ℎ
)

, and concentration approximation 𝑐ℎ ∈
EG1
ℎ

(

ℎ
)

.
We multiply the linear momentum balance equation (7) by a test

function 𝝍𝒖 ∈  CG2
ℎ

(

ℎ
)

. The fully discretized linear momentum
balance equation thus has the following form:

𝑢
(

𝝍𝒖; 𝒖𝑛ℎ, 𝑝
𝑛
ℎ
)

= 0, ∀𝝍𝒖 ∈  CG2
ℎ

(

ℎ
)

, (45)

at each time step 𝑡𝑛, where

𝑢
(

𝝍𝒖; 𝒖𝑛ℎ, 𝑝
𝑛
ℎ
)

=
∑

𝑇∈ℎ
∫𝑇
𝝈′

(

𝒖𝑛ℎ
)

∶ ∇𝑠𝝍𝒖 𝑑𝑉 −
∑

𝑇∈ℎ
∫𝑇

𝛼𝑝𝑛ℎ𝐈 ∶ ∇𝑠𝝍𝒖 𝑑𝑉

−
∑

𝑇∈ℎ
∫𝑇
𝒇𝝍𝒖 𝑑𝑉 −

∑

𝑒∈𝑁,𝑢ℎ

∫𝑒
𝒕𝑫𝝍𝒖 𝑑𝑆, ∀𝝍𝒖 ∈  CG2

ℎ
(

ℎ
)

ere ∫𝑇 ⋅ 𝑑𝑉 and ∫𝑒 ⋅ 𝑑𝑆 refer to volume and surface integrals, re-
pectively, and ∇𝑠 is the symmetric gradient operator. Furthermore,
he notation for 𝑢

(

𝝍𝒖; 𝒖𝑛ℎ, 𝑝
𝑛
ℎ
)

in (45) highlights before the semicolon
he test function, and after the semicolon the (possibly nonlinear)
ependence on discrete solutions to the coupled problem. The same
otation will be used hereafter for the remaining equations.

Next, the weak form of the mass balance equation (12) is obtained
ultiplying by 𝜓𝑝 ∈ DG0

ℎ
(

ℎ
)

and integrating by parts, resulting in:

𝑝
(

𝜓𝑝; 𝑝𝑛ℎ, 𝒒
𝑛
ℎ, 𝑐

𝑛
ℎ
)

= 0, ∀𝜓𝑝 ∈ DG0
ℎ

(

ℎ
)

, (46)

or each time step 𝑡𝑛, where

𝑝
(

𝜓𝑝; 𝑝𝑛ℎ, 𝒒
𝑛
ℎ, 𝑐

𝑛
ℎ
)

=
∑

𝑇∈ℎ
∫𝑇

(

1
𝑀

+ 𝛼2

𝐾

)

BDF1
(

𝑝𝑛ℎ
)

𝜓𝑝 𝑑𝑉 +
∑

𝑇∈ℎ
∫𝑇

∇ ⋅
(

𝒒𝑛ℎ
)

𝜓𝑝 𝑑𝑉

+
∑

𝑇∈ℎ
∫𝑇

𝛼
𝐾
RK1(𝜎𝑣)𝜓𝑝 𝑑𝑉 +

∑

𝑇∈ℎ
∫𝑇

RK1(𝜙𝑐 )𝜓𝑝 𝑑𝑉

−
∑

∫ 𝑔𝜓𝑝 𝑑𝑉 .

𝑇∈ℎ 𝑇



Computers and Geosciences 152 (2021) 104774T. Kadeethum et al.

a
M
f
1
s
d
o
e
K
e

2

𝑐

w

p
p
p
i
I
t

R
b

w
a
w
(

R
c
B
s
s
e

1
1
1
1

2
2
2
2

For the Darcy velocity equation (10), we obtain

𝑣
(

𝝍𝑣; 𝒖𝑛ℎ, 𝑝
𝑛
ℎ, 𝒒

𝑛
ℎ, 𝑐

𝑛
ℎ
)

= 0, ∀𝝍𝑣 ∈ BDM1
ℎ

(

ℎ
)

. (47)

where

𝑣
(

𝝍𝑣; 𝒖𝑛ℎ, 𝑝
𝑛
ℎ, 𝒒

𝑛
ℎ, 𝑐

𝑛
ℎ
)

∶=
∑

𝑇∈ℎ
∫𝑇

𝑝𝑛ℎ∇ ⋅ 𝝍𝒗 𝑑𝑉

+
∑

𝑇∈ℎ
∫𝑇
𝒌(𝒖𝑛ℎ, 𝑐

𝑛
ℎ)

−1𝜇(𝑐𝑛ℎ)𝒒
𝑛
ℎ𝝍𝒗 𝑑𝑉

+
∑

𝑒∈𝐷,𝑚ℎ

∫𝑒
𝑝𝐷𝝍𝑣 ⋅ 𝐧 𝑑𝑆.

Lastly, for the advection–diffusion–reaction equations of species trans-
port we write:

𝑐
(

𝜓𝑐 ; 𝒖𝑛ℎ, 𝒒
𝑛
ℎ, 𝑐

𝑛
ℎ
)

= 0, ∀𝜓𝑐 ∈ EG1
ℎ

(

ℎ
)

(48)

for each time step 𝑡𝑛, where

𝑐
(

𝜓𝑐 ; 𝒖𝑛ℎ, 𝒒
𝑛
ℎ, 𝑐

𝑛
ℎ
)

=
∑

𝑇∈ℎ
∫𝑇

𝜙BDF4
(

𝑐𝑛ℎ
)

𝜓𝑐 𝑑𝑉 +
∑

𝑇∈ℎ
∫𝑇
𝑫𝑒

∗(𝜙𝑛)∇𝑐𝑛ℎ ⋅ ∇𝜓𝑐 𝑑𝑉

−
∑

𝑒∈𝐼ℎ
∫𝑒

{

𝑫𝑒
∗(𝜙𝑛)∇𝑐𝑛ℎ

}

𝛿𝑒
⋅ J𝜓𝑐K 𝑑𝑆

+ 𝜃
∑

𝑒∈𝐼ℎ
∫𝑒

{

𝑫𝑒
∗(𝜙𝑛)∇𝜓𝑐

}

𝛿𝑒
⋅ J𝑐𝑛ℎK 𝑑𝑆

+
∑

𝑒∈𝐼ℎ
∫𝑒

𝛽
ℎ𝑒
𝑫𝑒

∗(𝜙𝑛)𝑒J𝑐
𝑛
ℎK ⋅ J𝜓𝑐K 𝑑𝑆

−
∑

𝑇∈ℎ
∫𝑇
𝒒𝑛ℎ𝑐

𝑛
ℎ ⋅ ∇𝜓𝑐 𝑑𝑉 +

∑

𝑒∈𝐼ℎ
∫𝑒
𝒒𝑛ℎ ⋅ 𝐧𝑐

up
ℎ J𝜓𝑐K 𝑑𝑆

+
∑

𝑒∈Outℎ

∫𝑒
𝒒𝑛ℎ ⋅ 𝐧𝑐

𝑛
ℎ𝜓𝑐 𝑑𝑆

−
∑

𝑇∈ℎ
∫𝑇

𝑅𝑐𝐴𝑠𝜓𝑐 𝑑𝑉 +
∑

𝑒∈ Inℎ
∫𝑒
𝒒𝑛ℎ ⋅ 𝐧𝑐in𝜓𝑐 𝑑𝑆.

We note that the 𝑫𝑒
∗(𝜙𝑛) is redefining 𝑫𝑒(𝜙𝑛) by including the

numerical stabilization term, where

𝑫𝑒
∗(𝜙𝑛) ∶= 𝑫𝑒(𝜙𝑛) + 𝛾ℎ

‖

‖

‖

𝒒𝑛ℎ
‖

‖

‖

𝐈, (49)

s defined in Araya et al. (2005), Harari and Hughes (1994) and
asud and Khurram (2004). The 𝛾ℎ ‖‖

‖

𝒒𝑛ℎ
‖

‖

‖

𝐈 term is often referred as the
irst order artificial diffusivity coefficient (Onate, 1998; Brezzi et al.,
992). In our paper, we set the tuning parameter 𝛾 = 0.25. Alternative
tabilization strategies including streamline diffusion and crosswind
iffusion, or entropy viscosity methods could be also utilized to reduce
scillations in the numerical solution to the concentration field (Bonito
t al., 2014; Araya et al., 2005; Harari and Hughes, 1994; Masud and
hurram, 2004; Brezzi et al., 1992; Guermond et al., 2019; Scovazzi
t al., 2017; Lee and Wheeler, 2017).

Also, 𝑐upℎ is an upwind value of 𝑐𝑛ℎ defined as (Riviere and Wheeler,
000; Riviere, 2008):

up
ℎ =

{

𝑐𝑛+ℎ if 𝒒𝑛ℎ ⋅ 𝐧 ≥ 0
𝑐𝑛−ℎ if 𝒒𝑛ℎ ⋅ 𝐧 < 0

∀𝑒 = 𝜕𝑇 + ∩ 𝜕𝑇 − (50)

here 𝑐𝑛+ℎ and 𝑐𝑛−ℎ correspond to 𝑐𝑛ℎ of 𝑇 + and 𝑇 −, respectively.
Lastly, the two parameters 𝜃 and 𝛽 define corresponding interior

enalty methods. The discretization becomes the symmetric interior
enalty Galerkin method (SIPG) when 𝜃 = −1, the incomplete interior
enalty Galerkin method (IIPG) when 𝜃 = 0, and the non-symmetric
nterior penalty Galerkin method (NIPG) when 𝜃 = 1 (Riviere, 2008).
n this study, we set 𝜃 = −1 for the simplicity and 𝛽 = 1.1 throughout
his paper.
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emark 1. For the momentum balance equation (7), the traction
oundary condition 𝒕𝑫 (traction) is applied weakly on each 𝑒 ∈ 𝑁,𝑢ℎ

in (45), while the displacement boundary condition 𝒖𝐷 is strongly
enforced on each 𝑒 ∈ 𝐷,𝑢ℎ . For the mass balance equation (12), since

e use a mixed formulation, the flux boundary condition 𝑞𝐷 is strongly
pplied on each 𝑒 ∈ 𝑁,𝑚ℎ , but the pressure boundary condition 𝑝𝐷 is
eakly applied on each 𝐷,𝑚ℎ in (47). Finally, for the transport equation

17), all boundary conditions are weakly applied in (48).

emark 2. In our computational framework, we provide a flexible
hoice of the time discretization schemes for each equation. We use
DF1 for the time discretization of the mass balance equation (12)
ince it is sufficient to provide the optimal error convergence rate,
ee Zhang et al. (2016). For the time discretization of the transport
quation (17), we use BDF4 to capture a sharp front in the advection

dominated regime (Riviere, 2008).

3.4. Splitting algorithm

The coupled system obtained from the discrete governing equations
(45), (46), (47), and (48) is nonlinear. Although the coupled nonlinear
system may be solved in a monolithic manner, here we focus on
developing a splitting algorithm for sequential solution to the coupled
system, which can provide more flexibility especially when different
software packages need to be combined. The overall computational
strategy is summarized in Algorithm 1.

Algorithm 1 Splitting algorithm for hydro-mechanical–chemical cou-
pling model
1: Initialize all input parameters ⊳ 𝑝0 and 𝑐0 must be provided.
2: Solve the equilibrium state for 𝒖𝟎 ⊳ see (45)
3: Update 𝜙0, 𝒌0, 𝑫0

𝑒 , and 𝐴0
𝑠 ⊳ see (23), (26), (15), (25)

4: for each time step 𝑡𝑛 do
5: Part 1: coupling solid and fluid mechanics
6: Set 𝜄→ 0 as the nonlinear iterations counter
7: 𝑝𝑛−1ℎ → 𝑝𝑛,𝜄=0ℎ , 𝒒𝑛−1ℎ → 𝒒𝑛,𝜄=0ℎ , 𝒖𝑛−1ℎ → 𝒖𝑛,𝜄=0ℎ
8: for each fixed stress iteration step (⋅)𝑛,𝜄 until 𝛿𝜙𝑛,𝜄 < TOL do
9: Solve (46) and (47) w.r.t. 𝑝𝑛ℎ and 𝒒𝑛ℎ for fixed 𝒖𝑛ℎ ∶=
𝒖𝑛,𝜄−1ℎ , 𝑐𝑛ℎ ∶= 𝑐𝑛ℎ to get 𝑝𝑛,𝜄ℎ , 𝒒

𝑛,𝜄
ℎ

0: Calculate 𝜙𝑛,𝜄𝑓 ⊳ see (52)
1: Solve (45) w.r.t. 𝒖𝑛ℎ and for fixed 𝑝𝑛ℎ ∶= 𝑝𝑛,𝜄ℎ to get 𝒖𝑛,𝜄ℎ
2: Calculate 𝜙𝑛,𝜄𝑚 ⊳ see (23)
3: Evaluate F

(

𝜎𝑣𝑛,𝜄
)

⊳ see (53)
14: Evaluate 𝛿𝜙𝑛,𝜄 ⊳ see (51)
15: Update 𝒌𝑛,𝜄 ⊳ see (23), (26)
16: end for
17: 𝑝𝑛,𝜄ℎ → 𝑝𝑛ℎ, 𝒒𝑛,𝜄ℎ → 𝒒𝑛ℎ, 𝒖𝑛,𝜄ℎ → 𝒖𝑛ℎ
18: Part 2: chemical process
19: Update 𝜙𝑛, 𝑫𝑛

𝑒 , and 𝐴𝑛𝑠 ⊳ see (23), (15), (25)
0: Solve (48) w.r.t. 𝑐𝑛ℎ for fixed 𝒖𝑛ℎ ∶= 𝒖𝑛ℎ, 𝒒

𝑛
ℎ ∶= 𝒒𝑛ℎ to get 𝑐𝑛ℎ

1: Extrapolate 𝑐𝑛+1ℎ ⊳ see (54)
2: Calculate 𝛥𝑡𝑛+1 ⊳ see (34)
3: Evaluate F

(

𝑞𝑛+1
)

and F
(

̂̇𝜙𝑛+1𝑐

)

⊳ see (56), (55)

24: Update 𝜙̂𝑛+1, 𝒌̂𝑛+1, 𝑫̂𝑛+1
𝑡 , 𝜇̂𝑛+1, and 𝐴̂𝑠

𝑛+1 ⊳ see (54), (24),
(26), (15), (27), (25)

25: 𝑝𝑛ℎ → 𝑝𝑛−1ℎ , 𝒒𝑛ℎ → 𝒒𝑛−1ℎ , 𝒖𝑛ℎ → 𝒖𝑛−1ℎ , 𝑐𝑛ℎ → 𝑐𝑛−1ℎ ⊳ update time step
𝑛 − 1

26: Output
27: end for

In Algorithm 1, we separate our algorithm into two parts. The first
part (lines 8 to 17) focuses on solving the coupled hydro-mechanical
problem, (45), (46), and (47), using the fixed stress method which is
an unconditionally stable splitting scheme (Kim et al., 2011; Dana and
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𝑐

Wheeler, 2018; Dana et al., 2018; Mikelic and Wheeler, 2013). At each
iteration 𝜄 we solve (46) and (47) for the velocity 𝒒𝑛,𝜄ℎ and the pressure
𝑝𝑛,𝜄ℎ using a monolithic method (line 9) based on given displacement
𝒖𝑛,𝜄−1ℎ from previous nonlinear iteration and concentration extrapolated
̂𝑛ℎ from previous time step. Then, we couple with (45) using the fixed-
stress split scheme based on the pressure 𝑝𝑛,𝜄ℎ computed at the current
nonlinear iteration (line 11). The convergence criterion is based on 𝛿𝜙𝑛,𝜄
(Algorithm 1 line 8), which is defined as:

𝛿𝜙𝑛,𝜄 ∶=
𝜙𝑛,𝜄𝑚 − 𝜙𝑛,𝜄𝑓
𝜙𝑛,𝜄𝑚

. (51)

Here, 𝜙𝑛,𝜄𝑚 is the porosity resulting from the solid deformation (23)
and 𝜙𝑛,𝜄𝑓 is the porosity resulting from the fluid flow problem defined
as (Mikelic and Wheeler, 2013; Dana and Wheeler, 2018; Dana et al.,
2018):

𝜙𝑛,𝜄𝑓 = 𝜙𝑛−1 +

(

𝛼 − 𝜙𝑛−1
)

𝐾
(

𝑝𝑛,𝜄 − 𝑝𝑛−1
)

, (52)

where (⋅)𝜄 represents iteration counter inside the fixed-stress loop. From
the fixed stress split concept (52) is the 𝜙 predictor, while (23) is the
𝜙 corrector (Kim et al., 2011; Dana and Wheeler, 2018; Dana et al.,
2018; Mikelic and Wheeler, 2013). Hence, when 𝜙𝑛,𝜄𝑚 and 𝜙𝑛,𝜄𝑓 converge,
i.e., 𝛿𝜙𝑛,𝜄 < TOL, the fixed-stress loop is completed. The tolerance TOL
is set as 1 × 10−6 throughout this study. Note that the flow equations,
(46) and (47), are solved by assuming that 𝜕𝜎𝑣

𝜕𝑡 = 0, i.e., F
(

𝜎𝑣𝑛,𝜄
)

is
frozen; therefore, this term is evaluated explicitly after the momentum
equation (45) is solved, as illustrated in Algorithm 1 line 13 (Kim et al.,
2011; Mikelic and Wheeler, 2013), and F

(

𝜎𝑣𝑛,𝜄
)

is defined as:

F
(

𝜎𝑣
𝑛,𝜄) ∶=

∑

𝑇∈ℎ
∫𝑇

𝛼
𝐾
RK1

(

𝜎𝑣(𝒖𝑛,𝜄, 𝒖𝑛−1, 𝑝𝑛,𝜄, 𝑝𝑛−1)
)

𝜓𝑝 𝑑𝑉 . (53)

The second part (from line 18) focuses on solving advection-
diffusion–reaction equation (48), using 𝒒𝑛ℎ, 𝜙𝑛, 𝑫𝑛

𝑒 , and 𝐴𝑛𝑠 obtained
from the first part. One could view this strategy as a one-way coupling
scheme between coupled hydro-mechanical and advection–diffusion–
reaction equations. Next, Algorithm 1 line 21 linearizes 𝑐𝑛+1ℎ by extrap-
olating 𝑐𝑛ℎ and 𝑐𝑛−1ℎ to 𝑐𝑛+1ℎ by using (38):

𝑐𝑛+1ℎ = EX
(

𝑐ℎ
)

(54)

where (⋅̂)𝑛 represents an extrapolation value based on the extrapolation
described in (38). Subsequently, we evaluate F

(

𝜙̇𝑐
𝑛,𝜄) and F (𝑞𝑛,𝜄), which

are defined as

F
(

̂̇𝜙𝑛+1𝑐

)

∶=
∑

𝑇∈ℎ
∫𝑇

RK1
(

𝜙𝑐 (𝑐𝑛+1, 𝑐𝑛)
)

𝜓𝑝 𝑑𝑉 , (55)

and

F
(

𝑞𝑛+1
)

∶=
∑

𝑇∈ℎ
∫𝑇

𝑅𝑐 (𝑐𝑛+1, 𝑝𝑛)𝐴𝑠(𝑐𝑛+1, 𝒖𝑛)𝜓𝑐 𝑑𝑉 , (56)

using 𝑐𝑛+1ℎ calculated by (54). We note that Eq. (48) becomes linear by
employing 𝑐𝑛+1ℎ to calculate F (𝑞). Also, the porosity alteration as a result
of calcite dissolution/precipitation (Algorithm 1 line 24) is computed
by

𝜙̂𝑛+1 = 𝜙̂𝑛+1𝑐 = RK4
(

𝛤
(

𝒖𝑛, 𝑐𝑛+1ℎ
))

. (57)

Note that the porosity change due to the calcite dissolution/
precipitation reactions is additional to the porosity change by solid
deformation, (23). Subsequently, 𝒌̂𝑛+1, 𝑫̂𝑛+1

𝑡 , and 𝐴̂𝑠
𝑛+1 are determined

using 𝜙̂𝑛+1. Lastly, we also calculate 𝜇̂𝑛+1 using 𝑐𝑛+1ℎ , see (54) and (27).
For all the computations, matrices and vectors are built using the

FEniCS form compiler (Alnaes et al., 2015). The block structure is
assembled by using the multiphenics toolbox (Ballarin and Rozza,
2019). Solvers are employed from PETSc package (Balay et al., 2018).
All simulations are computed on XeonE5_2650v4 with a single thread.
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Fig. 1. Geometry and notation used to define material properties; (𝐚) example 1: single-
layer porous medium (𝛺500), (𝐛) example 2: three-layer porous medium (𝛺500 and 𝛺501),
(𝐜) example 3: heterogeneous porous medium (the arithmetic mean of 𝒌 = 8.8×10−10𝐈 m2

with correlation length in 𝑥- and 𝑦-direction of 5 and 1 m, respectively). (𝐝) mesh 1
is used for all examples (number of element is 7852, and ℎ = 1.47 m) unless otherwise
stated.

Remark 3. We note that the EG method, which is used to approximate
the advection–diffusion–reaction (17), is based on the Galerkin method,
which could be extended to consider adaptive meshes that contain
hanging nodes. Besides, an adaptive enrichment, i.e., the piecewise-
constant functions only added to the elements where the sharp material
discontinuities are observed, can be developed.

4. Numerical examples

In this section, we demonstrate the performance and capabilities of
the proposed numerical method through various numerical examples.
We begin with a single-layer model comparing the performance for
single-phase flow with chemical dissolution/precipitation and solid
deformation. Then we illustrate the performance of the developed
model for a layered medium as well as a heterogeneous single-layer
medium. Lastly, we test the proposed framework using an example
with an anisotropic permeability field. All four examples and their
mesh are illustrated in Fig. 1. More detailed setup, including the input
parameters and the boundary conditions of each example, are described
in the beginning of each example.

4.1. Example 1

In the first example, the computational domain is defined as 𝛺500 =
[0, 100] × [0, 30], which presents a single layer as shown in Fig. 1a.
Following the physical properties of carbonate rock reported in Jaeger
et al. (2009) and Medetbekova et al. (2020), we set 𝐾 = 8.4 GPa,
𝛼 = 0.74, 𝜈 = 0.18, 𝜙 = 0.2, 𝒌 = 8.8 × 10−10𝐈 m2. The fluid properties
are 𝑐𝑓 = 1.0 × 10−10 Pa−1, 𝜌 = 1000 kg∕m3, 𝑫 = 1.0 × 10−12 m2∕s, and
𝜇 is calculated using (27) by setting 𝜇ℎ = 5.0 and 𝜇𝑙 = 1.0 × 10−4 Pa∕s
corresponding to 𝑐ℎ = 1.68 and 𝑐𝑙 = 0.0 mmol∕m3, respectively. Next,
the boundary conditions for all these examples are applied as follows.
For the momentum balance equation (7), we assume 𝒖 ⋅ 𝐧 = 0 on
𝐷
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Fig. 2. Example 1: concentration fields, 𝑐; I.V. = 42 m3 using (𝐚) 𝑞𝐷 = 2 × 10−4 m∕s at 𝜕𝛺1 and (𝐛) 𝑞𝐷 = 1 × 10−4 m∕s at 𝜕𝛺1; and I.V. = 180 m3 using (𝐜) 𝑞𝐷 = 2 × 10−4 m∕s at 𝜕𝛺1
and (𝐝) 𝑞𝐷 = 1 × 10−4 m∕s at 𝜕𝛺1. The boundary conditions shown in this picture are corresponding to 𝜕𝛺1 and 𝜕𝛺3 of the mass balance equation (12).
𝜕𝛺1, 𝜕𝛺3, and 𝜕𝛺4. Furthermore, 𝒕𝐷 =
[

0.0,−2.0 × 106
]

Pa is applied on
𝜕𝛺2. Therefore, the medium is under compression. For the mass balance
equation (12), the boundary condition 𝑞𝐷 = 0 is set on 𝜕𝛺2 and 𝜕𝛺4
and we impose 𝑝𝐷 = 1 × 105 Pa on 𝜕𝛺3. Here, for the mass balance
equation (12), we test two different scenarios on 𝜕𝛺1, where scenario
(a) corresponds to 𝑞𝐷 = 2 × 10−4 m∕s and scenario (b) is characterized
by 𝑞𝐷 = 1 × 10−4 m∕s. Thus, scenarios (a) and (b) will be referred to
as the high and low injection rate cases, respectively. Since we want to
compare the results of the above scenarios at the same total injected
volume (I.V.), which is defined as

I.V. = 𝑞𝐷𝑡
𝑛𝐴d, (58)

where 𝐴d = 30m2 is the surface area of 𝜕𝛺1, the time 𝑡𝑛 of the scenario
(b) is twice to scenario (a). For the advection–diffusion–reaction equa-
tion (17), we impose the inflow condition 𝑐𝑖𝑛 = 0.5 on 𝜕𝛺1. The initial
pressure 𝑝0 is 1×106 Pa, the initial concentration 𝑐0 is calculated by (22)
using 𝑝 = 𝑝0 and 𝜏 = 20 C, and the initial displacement 𝒖0 is calculated
as stated in Algorithm 1. The penalty parameter (𝛽) is set to be 1.1 for
the EG method. The CFL is used as 0.1 for calculating 𝛥𝑡𝑛, see (34).

Here, we compare the transient distribution of the concentration
achieved with the developed HMC coupled numerical scheme in a
homogeneous porous medium for two different injection rates. The
aim is to illustrate the impact of different processes on the advance of
the flow path and reactive solute transport. Initially, the composition
of the pore fluid within the porous medium is in equilibrium with
calcite. Note that 𝑐𝑒𝑞 calculated by (22) is a function of temperature
and pressure. In this example, assuming constant temperature, pressure
deviates from the initial fluid pressure in time and space. The changes
in the pressure field as a result of fluid injection on the left boundary
and the fluid production on the right boundary varies the 𝑐𝑒𝑞 resulting
in precipitation or dissolution in the domain. The injected water is also
unsaturated with respect to calcite. Therefore, the injected fluid, as
advances into the domain, will dissolve the calcite mineral.

Fig. 2 shows the concentration fields at different injected fluid
volumes (I.V.) and for both scenarios associated to 𝑞𝐷. There are
three main observations from these figures. The first one is the flow
instability, or fingering, emerged as a result of the difference between
the injected fluid viscosity and the in-situ fluid viscosity. The second
observation is that for the higher injection rate scenario, the fingers are
more developed at a later time compared to that of the low injection
scenario. The third one is that most of the fingers developed initially
either merge or vanishes at the later stage, forming one or two main
fingers.

Next, We use different mesh sizes to study the impact of mesh size
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on the observed fingering in Fig. 2. Two new meshes are used here: a
coarse mesh and a fine mesh compared to mesh 1 illustrated in Fig. 1d.
Note that the number of element is 3180 and ℎ = 2.01 m for the
coarse mesh, and the number of element is 14024 and ℎ = 1.10 m
for the fine mesh. The 𝑐 fields of two different meshes are presented
in Fig. 3. Comparing among Figs. 2a, 3a, and 3b, we observe that the
early behavior are approximately similar. While the 𝑐 field of the coarse
mesh (compared to mesh 1 illustrated in Fig. 1d) is more uniformly
developed with less number of initial fingers , the 𝑐 field of the coarse
mesh progresses to approximately similar distance as in the models
with the finer meshes. The impact of mesh size on the fingering at a
later time becomes less. This is evident by comparing Figs. 2c, 3c, and
3d.

Next, we present the interaction among different processes includ-
ing mechanical deformation, calcite dissolution/precipitation, and vis-
cosity alteration in Fig. 4 for two different time steps. Note that the
results of the low injection rate case are similar (for the same volume
of injected fluid); hence, we present here only the results of the high
injection rate case. First, one could observe that the effect of mechani-
cal deformation is dictated by both 𝑝 and 𝒖, see Fig. 4b and g. Fig. 4a
and f illustrate the reduction of 𝜙 by the solid deformation as the model
is under compression. The increased fluid pressure by fluid injection,
however, limits the porosity reduction. This is reflected in Figs. 4a and
f in which 𝜕𝜙𝑚

𝜕𝑡 is positive in the left part of the domain and negative
in the right part of the domain.

The 𝜕𝜙𝑐
𝜕𝑡 result is shown in Fig. 4c and h. Since the injected con-

centration 𝑐𝑖𝑛 = 0.5 is lower than 𝑐0 (initial 𝑐𝑒𝑞), the porous medium is
dissolved in places to which the injected fluid is transported. Note that
𝜕𝜙𝑐
𝜕𝑡 is positive where the dissolution occurs and negative where the

perception occurs. At this time step, the maximum magnitude of 𝜕𝜙𝑐
𝜕𝑡

is 10−7, which is much less compared to that of 𝜕𝜙𝑚
𝜕𝑡 , which is around

10−4. We note this magnitude could be varied with different input pa-
rameters and boundary conditions of each equation, (7), (12), or (17).
The value of 𝜇 is also altered, see Fig. 4d and i, as the concentration
front progresses. This alteration causes the flow instability discussed
previously and establishes a preferential flow path. The impact of 𝜕𝜙𝑚

𝜕𝑡 ,
𝜕𝜙𝑐
𝜕𝑡 , and 𝜇 alteration can be seen in 𝒒 field shown in Fig. 4e and

j. Interestingly, as the first finger reaches the outlet boundary the
second finger gradually disappears resulting in only one preferential
path between the inlet and outlet of the model.

Thus, we have confirmed that the proposed framework can well sim-
ulate the expected physical and chemical phenomena including solid
deformation, viscous fingering, and dissolution/precipitation. The key
ingredients of this method are the capability for tracking the interface
of the concentration species approximated by the high order methods
with numerical stabilization, the computation of reaction terms with
the EG method, and the locally conservative flux from BDM.
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Fig. 3. Example 1: concentration fields, 𝑐, using 𝑞𝐷 = 2×10−4 m∕s at 𝜕𝛺1; I.V. = 42 m3 (𝐚) coarse mesh (𝐛) fine mesh and I.V. = 180 m3 (𝐜) coarse mesh (𝐝) fine mesh. The boundary
conditions shown in this picture are corresponding to 𝜕𝛺1 and 𝜕𝛺3 of the mass balance equation (12). For the coarse mesh, the number of element is 3180 and ℎ = 2.01 m. For
the fine mesh, the number of element is 14024 and ℎ = 1.10 m.

Fig. 4. Example 1: using 𝑞𝐷 = 2 × 10−4 m∕s at 𝜕𝛺1; I.V. = 42 m3: (𝐚) the rate of change of porosity according to mechanics deformation, 𝜕𝜙𝑚
𝜕𝑡

, see (23), (𝐛) the fluid pressure, 𝑝,
in surface and the displacement, 𝒖, in gray arrows, (𝐜) the rate of change of porosity according to calcite dissolution/precipitation, 𝜕𝜙𝑐

𝜕𝑡
, see (24), (𝐝) the fluid viscosity, 𝜇, and

(𝐞) the magnitude of the fluid velocity, ‖𝒒‖. I.V. = 480 m3: (𝐟) 𝜕𝜙𝑚
𝜕𝑡

, (𝐠) 𝑝 in surface and 𝒖 in gray arrows, (𝐡) 𝜕𝜙𝑐
𝜕𝑡

, (𝐢) 𝜇, and (𝐣) ‖𝒒‖. Note that the magnitude of 𝒖 is from 0.0 to
3.0 × 10−2, and the trend of the results of the 𝑞𝐷 = 1 × 10−4 m∕s at 𝜕𝛺1 case are similar.
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Fig. 5. Example 2: concentration fields, 𝑐; I.V. = 42 m3 using (𝐚) 𝑞𝐷 = 2 × 10−4 m∕s at 𝜕𝛺1 and (𝐛) 𝑞𝐷 = 1 × 10−4 m∕s at 𝜕𝛺1; and I.V. = 180 m3 using (𝐜) 𝑞𝐷 = 2 × 10−4 m∕s at 𝜕𝛺1
and (𝐝) 𝑞𝐷 = 1 × 10−4 m∕s at 𝜕𝛺1. The boundary conditions shown in this picture are corresponding to 𝜕𝛺1 and 𝜕𝛺3 of the mass balance equation (12).
Fig. 6. Example 2: concentration fields, 𝑐, using 𝑞𝐷 = 2×10−4 m∕s at 𝜕𝛺1; I.V. = 42 m3 (𝐚) coarse mesh (𝐛) fine mesh and I.V. = 180 m3 (𝐜) coarse mesh (𝐝) fine mesh. The boundary
conditions shown in this picture are corresponding to 𝜕𝛺1 and 𝜕𝛺3 of the mass balance equation (12). For the coarse mesh, the number of element is 3180 and ℎ = 2.01 m. For
the fine mesh, the number of element is 14024 and ℎ = 1.10 m.
4.2. Example 2

In the second example, we consider three layers (𝛺500 = [0, 100] ×
[10, 20], 𝛺501 = [0, 100] × [20, 30], and 𝛺502 = [0, 100] × [0, 10]) as the
computational domain. See Fig. 1b. In 𝛺500, we set 𝒌 = 8.8×10−10𝐈 m2,
while 𝒌 = 8.8 × 10−11𝐈 m2 in 𝛺501 and 𝛺502. Thus, in this case, the top
𝛺501 and bottom 𝛺502 layers have one order of magnitude of 𝒌 less than
that of the middle layer 𝛺500. All other rock and fluid parameters are
the same as in the first example.

The concentration field 𝑐 for two different injection scenarios (as
discussed in example 1) for the three-layer porous medium are pre-
sented in Fig. 5. Unlike the single-layer porous medium, even though
the concentration fields at the early time are similar between the high,
𝑞𝐷 = 2 × 10−4 m∕s, and low, 𝑞𝐷 = 1 × 10−4 m∕s, injection rates,
the progression of concentration field is different at the later time. It
appears that the dynamic of the coupled processes controlled by the
injection rate can impact the development of the dominant finger in the
middle layer. Note that since the top and bottom layers, 𝛺501 and 𝛺502,
have lower permeability than the middle layer, 𝛺500, the flow mainly
goes through the middle layer. Similar to the previous example, one of
the two initial fingers becomes the main path connecting the inlet and
the outlet boundaries.

We also perform the simulation using different mesh sizes for this
example. Our results are shown in Fig. 6 for the 𝑐 field and Fig. 7 for
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the 𝑐 contour. Again, we note that the number of element is 3180 and
ℎ = 2.01 m for the coarse mesh, and the number of element is 14024
and ℎ = 1.10 m for the fine mesh. Initially the coarser mesh results in
slightly different size of fingers (Figs. 5a, 6a, 6b). The 𝑐 result, however,
converges to the similar behavior when we decrease the mesh size (ℎ)
(Figs. 7).

In Fig. 8, the behavior of the concentration and velocity fields,
together with temporal porosity alteration ( 𝜕𝜙𝑐𝜕𝑡 ), are illustrated for
both injection scenarios. As mentioned earlier, due to the difference
of viscosity (𝜇) between that of the injected 𝑐 and the in-situ 𝑐, two
fingers developed at the beginning, see Fig. 8a and e. For the high
injection rate, the top finger, however, disappeared while the bottom
finger progresses until it reaches the outlet 𝜕𝛺3, see Figs. 8b–d. One
could see that the reaction front shown by 𝜕𝜙𝑐

𝜕𝑡 progresses similarly
to the concentration front shown by the black contours. Besides, as
the concentration field develops, the change in 𝜇 enhances the flow
channeling illustrated by velocity arrows.

For the low injection rate case shown in Fig. 8e–h, the development
of the concentration field is dissimilar to that of the high injection rate
case as the top finger becomes a preferable path instead of the bottom
one. Note that the dissolution and precipitation are shown in Fig. 8 are
a combined effect of injecting water that is unsaturated with respect
to calcite and fluid pressure changes. It is clear that the majority of
the dissolution occurs due to the transport of the injected water in
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Fig. 7. Example 2: concentration contours, 𝑐, using 𝑞𝐷 = 2×10−4 m∕s at 𝜕𝛺1; (𝐚) I.V. = 42 m3 and (𝐛) I.V. = 180 m3 for three meshes — number of element is 3180, ℎ = 2.01 m, (in
red), number of element is 7852, ℎ = 1.47 m, (in blue), and number of element is 14024, ℎ = 1.10 m, (in green). The boundary conditions shown in this picture are corresponding
to 𝜕𝛺1 and 𝜕𝛺3 of the mass balance equation (12). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
Fig. 8. Example 2: the results of the rate of change of porosity according to calcite dissolution/precipitation ( 𝜕𝜙𝑐
𝜕𝑡

) shown in surface plot, concentration (𝑐), shown in black contour
(10 contours ranging from 0.12 to 1.6), and the fluid velocity (𝒒) shown in arrows with 𝑞𝐷 = 2 × 10−4 m∕s at 𝜕𝛺1; (𝐚) I.V. = 36 m3 (𝑡 = 6000 s), (𝐛) I.V. = 72 m3 (𝑡 = 12000 s), (𝐜)
I.V. = 156 m3 (𝑡 = 26000 s), and (𝐝) I.V. = 360 m3 (𝑡 = 60000 s), and with 𝑞𝐷 = 1 × 10−4 m∕s at 𝜕𝛺1; (𝐞) I.V. = 36 m3 (𝑡 = 1200 s), (𝐟) I.V. = 72 m3 (𝑡 = 24000 s), (𝐠) I.V. = 156 m3

(𝑡 = 32000 s), and (𝐡) I.V. = 360 m3 (𝑡 = 120000 s).
the porous domain. For the animated version of Fig. 8, please refer to
Videos 1 and 2. These videos represent the flow and concentration field
as well as 𝜕𝜙𝑐

𝜕𝑡 and illustrate the applicability of the presented coupled
model for heterogeneous porous media.

Importantly, this example has illustrated the capability of our pro-
posed method – which is equipped with the EG method – for handling
discontinuous material properties across different layers and the sharp
interface of the concentration species. Moreover, we have again ob-
served the expected physical and chemical phenomena, including solid
deformation, viscous fingering, and dissolution/precipitation.

4.3. Example 3

In the given computational domain 𝛺500 = [0, 100]×[0, 30], we inves-
tigate the setup with the heterogeneous 𝒌 values as shown in Fig. 1c.
11
A random field generator (Nick et al., 2009) is utilized to generate a
heterogeneous permeability field with a given mean permeability of
𝒌 = 1 × 10−10𝐈 m2, variance of 0.5, and correlation lengths in 𝑥- and
𝑦-direction of 5 and 1 m, respectively. The heterogeneous permeability
field varies in two orders of magnitude. All other physical parameters
are the same as in the previous examples.

Here, we focus on the interplay between the heterogeneous per-
meability and the HMC coupled processes. Similar to the previous
examples, two different injection rates are applied. In Fig. 9, the
concentration fields are illustrated for two different injection rates at
different injected fluid volumes (I.V. = 42 m3 and I.V. = 180 m3).
Unlike the two previous examples, the preferential paths are established
not only because of the flow instability resulting from the 𝜇 difference
but also due to the high 𝒌 channels inherited from the nature of
heterogeneous porous media. During the early time, the concentration
field of the high, 𝑞 = 2×10−4 m∕s, and low, 𝑞 = 1×10−4 m∕s, injection
𝐷 𝐷

https://figshare.com/s/8a26a94fb3aa1e920433
https://figshare.com/s/8a26a94fb3aa1e920433
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Fig. 9. Example 3: concentration fields, 𝑐; I.V. = 42 m3 using (𝐚) 𝑞𝐷 = 2 × 10−4 m∕s at 𝜕𝛺1 and (𝐛) 𝑞𝐷 = 1 × 10−4 m∕s at 𝜕𝛺1; and I.V. = 180 m3 using (𝐜) 𝑞𝐷 = 2 × 10−4 m∕s at 𝜕𝛺1
and (𝐝) 𝑞𝐷 = 1 × 10−4 m∕s at 𝜕𝛺1. The boundary conditions shown in this picture are corresponding to 𝜕𝛺1 and 𝜕𝛺3 of the mass balance equation (12).
Fig. 10. Example 3: the results of the rate of change of porosity according to calcite dissolution/precipitation ( 𝜕𝜙𝑐
𝜕𝑡

) shown in surface plot, concentration (𝑐), shown in black contour
(10 contours ranging from 0.12 to 1.6), and the fluid velocity (𝒒) shown in arrows with 𝑞𝐷 = 2 × 10−4 m∕s at 𝜕𝛺1; (𝐚) I.V. = 36 m3 (𝑡 = 6000 s), (𝐛) I.V. = 72 m3 (𝑡 = 12000 s), (𝐜)
I.V. = 156 m3 (𝑡 = 26000 s), and (𝐝) I.V. = 360 m3 (𝑡 = 60000 s), and with 𝑞𝐷 = 1 × 10−4 m∕s at 𝜕𝛺1; (𝐞) I.V. = 36 m3 (𝑡 = 1200 s), (𝐟) I.V. = 72 m3 (𝑡 = 24000 s), (𝐠) I.V. = 156 m3

(𝑡 = 32000 s), and (𝐡) I.V. = 360 m3 (𝑡 = 120000 s).
rate cases are similar, see Fig. 9a–b. The results of the concentration
with the effects from the reaction are different at a later time (see
Fig. 9c–d). During the early time for both cases, the developed fingers
follow the high permeable paths. At a later time, however, the results
of the two scenarios are very different. For the high injection rate case,
the top finger continues developing while the middle and the bottom
12
fingers disappear. The result of the low injection rate case, however,
shows that the top and the bottom fingers perish while the middle
finger progresses.

Fig. 10 provides further insight into the reactive flow dynamics. It
shows for both injection scenarios how the reaction fronts and flow
fields evolve in time. As mentioned earlier, all the initial fingers at
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Fig. 11. Example 3: the illustration of the local mass conservative property with 𝑞𝐷 = 2 × 10−4 m∕s at 𝜕𝛺1; (𝐚) I.V. = 36 m3 (𝑡 = 6000 s), (𝐛) I.V. = 72 m3 (𝑡 = 12000 s), (𝐜)
I.V. = 156 m3 (𝑡 = 26000 s), and (𝐝) I.V. = 360 m3 (𝑡 = 60000 s), and with 𝑞𝐷 = 1 × 10−4 m∕s at 𝜕𝛺1; (𝐞) I.V. = 36 m3 (𝑡 = 1200 s), (𝐟) I.V. = 72 m3 (𝑡 = 24000 s), (𝐠) I.V. = 156 m3

(𝑡 = 32000 s), and (𝐡) I.V. = 360 m3 (𝑡 = 120000 s).
the beginning vanish except one that reaches the outlet 𝜕𝛺3. The flow
velocity field variations in time depict the emergence of the dominant
finger. Note that the magnitude of the mechanical deformation is higher
than that of the calcite dissolution/precipitation and similar to what
was observed in example 1. Therefore changes in porosity due to
chemical reaction have a second-order effect on permeability compared
to that of induced by the mechanical deformation. Videos 3 and 4
representing the flow and concentration field as well as 𝜕𝜙𝑐

𝜕𝑡 illustrate
the applicability of the presented coupled model for heterogeneous
porous media.

Next, we investigate the local mass conservation property of the
proposed framework in the heterogeneous domain. The local mass
conservation of each cell at each time step, rnmass, is calculated by

rnmass ∶= ∫𝑇

(

1
𝑀

+ 𝛼2

𝐾

)

𝑝𝑛 − 𝑝𝑛−1

𝛥𝑡𝑛
+ 𝛼
𝐾
𝜎𝑛𝑣 − 𝜎

𝑛−1
𝑣

𝛥𝑡𝑛
+
𝜙𝑐

𝑛 − 𝜙𝑛−1𝑐
𝛥𝑡𝑛

𝑑𝑉

+
∑

𝑒∈ℎ
∫𝑒
𝒒̄𝑛 ⋅ 𝐧|e 𝑑𝑆,

(59)

and the discrete numerical flux approximated by BDM, 𝒒̄𝑛 ⋅ 𝐧|e, is
defined by

𝒒̄𝑛 ∶= 𝒒𝑛ℎ ∀𝑇 ∈ ℎ, (60)

𝒒̄𝑛 ⋅ 𝐧|e ∶= −𝑞𝐷 ∀𝑒 ∈ 𝑁,𝑚ℎ , (61)

𝒒̄𝑛 ⋅ 𝐧|e ∶= −𝒒𝑛ℎ ⋅ 𝐧 ∀𝑒 ∈ 𝐷,𝑚ℎ . (62)

In Fig. 11, the values of rnmass are illustrated for each case and time.
One could see that the magnitude of rnmass is always less than 1 × 10−5,
which is the tolerance set for the fixed-stress loop, see Algorithm 1;
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therefore, the framework is locally mass conservative. We note that the
high injection rate case tends to the higher value of the magnitude of
rnmass than that of the low injection rate case.

4.4. Example 4

Lastly, we investigate the performance of the proposed framework
when the permeability field is anisotropic, and the grid is unstructured,
as shown in Fig. 1d. In the computational domain 𝛺500 = [0, 100] ×
[0, 30], see Fig. 1a, we consider the anisotropic permeability field to
emphasize the capability of our proposed algorithm. The permeability
tensor of this example is defined as follows:

𝒌 ∶=
[

𝑘𝑥𝑥 0.0
0.0 0.1𝑘𝑥𝑥

]

, (63)

where 𝑘𝑥𝑥 = 8.8 × 10−10 m2 and all other parameters are similar to all
other cases.

Fig. 12 shows the reactive flow dynamics and the residual of mass.
We observe that the flow in the horizontal direction dominates the flow
in the vertical direction since the permeability in the horizontal direc-
tion is ten times higher than that of the vertical direction. Fig. 12d–f
illustrate that the proposed framework is locally mass conservative as
the residual of mass values are always less than 1 × 10−5, which is the
tolerance set for the fixed-stress loop.

4.5. Discussion

The main observations of the foregoing numerical examples can be
summarized as follows:

https://figshare.com/s/8a26a94fb3aa1e920433
https://figshare.com/s/8a26a94fb3aa1e920433
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Fig. 12. Example 4: the results of the rate of change of porosity according to calcite dissolution/precipitation ( 𝜕𝜙𝑐
𝜕𝑡

) shown in surface plot, concentration (𝑐), shown in black
contour (10 contours ranging from 0.12 to 1.6), and the fluid velocity (𝒒) shown in arrows with 𝑞𝐷 = 2 × 10−4 m∕s at 𝜕𝛺1; (𝐚) I.V. = 180 m3 (𝑡 = 30000 s), (𝐛) I.V. = 480 m3

(𝑡 = 80000 s), and (𝐜) I.V. = 720 m3 (𝑡 = 120000 s), and the local mass conservative property; (𝐝) I.V. = 180 m3 (𝑡 = 30000 s), (𝐞) I.V. = 480 m3 (𝑡 = 80000 s), and (𝐟) I.V. = 720 m3

(𝑡 = 120000 s).
1. The injection rate supplied at the inlet boundary is critical in
defining flow behavior. The preferential flow paths developed
through time are significantly different with different injec-
tion rates. Besides, the injection flow rate also controls the
development of the advection and reaction fronts.

2. Using the applied set of the input parameters resulted in a
more noticeable mechanical effect on the change in 𝜙 (and
subsequently in 𝒌) compared to that of the calcite dissolu-
tion/precipitation effect. We note that this observation could
vary with different sets of input parameters and required to be
further investigated. The change in 𝜇 resulted from the change
in 𝑐 is significant, resulting in the development of preferential
flow paths.

3. The results of both homogeneous and heterogeneous as well
as isotropic and anisotropic permeability field show that our
framework preserves mass locally. This property is essential for
the coupled HMC system.

In terms of computational efficiency, it is noted that the iteration
number for the fixed-stress iteration was around three (four for the
example 3) at the initial time stage, but it only required two itera-
tions for the rest of the time for all the presented examples. For all
examples, we have 31934, 23818, 7852, 11910 degrees of freedom for
the displacement, flux, pressure, and concentration fields, respectively.
The computational time was around 4.78 × 10−5 second per degrees
of freedom per each time step. All simulations were computed on
XeonE5_2650v4 with a single thread.

5. Conclusion

This paper has presented a mixed finite element framework for
coupled hydro-mechanical–chemical processes in heterogeneous porous
media. The main advantage of the proposed framework is its rela-
tively affordable cost to attain local conservation regardless of material
anisotropy, thanks particularly to the use of the EG method. Through
14
several numerical examples, we have demonstrated the performance
and capabilities of the proposed framework with a focus on local
conservation. The numerical results have highlighted how the overall
behavior is influenced by different processes, including solid deforma-
tion, calcite dissolution, and fluid viscosity alteration. The developed
numerical model can provide insight into how the interactions among
HMC processes and heterogeneity manifest themselves at a larger scale.
Future work includes an extension of the modeling framework to cou-
pled thermo-hydro-mechanical–chemical processes in heterogeneous
and/or fractured porous media.
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