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Phase diagram of the quantum Ising model on a triangular lattice under external field
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Quantum Ising model on a triangular lattice hosts a finite temperature Berezinskii-Kosterlitz-Thouless (BKT)
phase with emergent U(1) symmetry, and it will transit into an up-up-down (UUD) phase with C3 symmetry
breaking upon an infinitesimal external field along the longitudinal direction, but the overall phase diagram
spanned by the axes of external field and temperature remains opaque due to the lack of systematic investigations
with controlled methodologies. By means of quantum Monte Carlo at finite temperature and ground state density
matrix renormalization group simulations, we map out the phase diagram of triangular quantum Ising model.
Starting from the upper BKT temperature at zero field, we obtain the phase boundary between the UUD and
paramagnetic phases with its 2D q = 3 Potts universality at weak field and weakly first order transition at strong
field. Originated from the lower BKT temperature at zero field, we analyze the low temperature phase boundary
between the clock phase and the UUD phase with Ising symmetry breaking at weak fields and the quantum
phase transition between the UUD and fully polarized phases at strong fields. The accurate many-body numerical
results are consistent with our field theoretical analysis. The experimental relevance towards the BKT magnet
TmMgGaO4 and programmable quantum simulators are also discussed.

DOI: 10.1103/PhysRevB.103.104416

I. INTRODUCTION

Frustrated magnets can host intriguing quantum many-
body states and phenomena that trigger great research interest
recently. For example, the rare-earth compound TmMgGaO4
(TMGO) [1–4] is revealed to realize a triangular lattice
quantum Ising (TLI) model exhibiting the Berezinskii-
Kosterlitz-Thouless (BKT) phase transitions [4–6]. The Ising
spins in the TLI model cooperate in a way such that there
emerges an U(1) symmetry at finite temperature in the BKT
phase, with power-law spin correlation and separating the
low-T clock ordered and high-T paramagnetic phases with
two BKT phase transitions [5,7–9].

Recently, measurements have been performed to explore
the BKT physics in this material [4,10]. In particular, the
nuclear magnetic resonance (NMR) probe found an extended
regime with strong fluctuations that is consistent with an
intermediate BKT phase [4], and the inelastic neutron scat-
tering (INS) detection also suggests the existence of vortex
characteristics at finite temperature [10]. Under external fields
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h, there is also strong interest and experimental progress on
the thermodynamics and dynamical properties of the material
[6,11,12], which raised questions and inspired theoretical ef-
fort to understand the h-T phase diagram of the TLI model.
Despite some initial efforts, there remains open questions on
the nature of field-induced ordered phases and the universal-
ity class of phase transitions between such ordered and the
paramagnetic phase above the upper BKT temperature and
the clock ordered phase below, which are very relevant for
the understanding of TMGO experiments.

In this work, we combine multiple quantum many-body
theoretical tools, including finite-temperature quantum Monte
Carlo (QMC), ground-state density matrix renormalization
group (DMRG), and field-theoretical renormalization group
(RG) analysis, to perform an unbiased study of the TLI model
under the longitudinal fields. At the ground state, we found
two field-induced quantum phase transitions (QPTs) that a
lower-field Ising QPT (at hc1) separating the clock and up-
up-down (UUD) phases and a weakly first-order QPT (at hc2)
between the UUD and polarized phases. We also studied the
finite-temperature fate of these two QPTs: The lower QPT
field hc1 reduces as T increases, and the thermal phase transi-
tion of 2D Ising type is continuously connected to the lower
BKT transition at zero field; on the other hand, the first-order
QPT at hc2 also persists at finite T , with a transition field
that also reduces as T increases and turns into a continuous
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FIG. 1. (a) Phases at low temperature, starting from the clock
phase at zero external magnetic field (left) to the slightly polarized
clock phase at weak field (middle) and the UUD phase under inter-
mediate field (right). The spin-up and spin-down arrows are all along
the external longitudinal field h and the superposition |→〉 is along
the intrinsic transverse field �. (b) The h-T phase diagram of the
model in Eq. (1) with J1 = 1, J2 = 0, and � = 0.2. The two asterisks
(∗ at TU and TL ) along the T axis stand for the upper and lower BKT
temperatures of the model at h = 0. The blue phase boundary is the
continuous phase transition with 2D q = 3 Potts universality starting
from the TU , which separates the PM from the UUD phases; the black
phase boundary is the weakly first-order transition line separating the
same two phases. Inset zooms in at small h and T with the BKT
phase at h = 0 as well as the clock phase (red area) and its Ising
transition to the UUD phase depicted. The Ising transition originates
from the TL at h = 0. The precise position of the phase boundaries is
obtained from QMC (open squares) and DMRG (yellow stars), and
the shape of the phase diagram is consistent with the RG analysis
(see discussions in Appendix C). The red, blue, and black dashed
arrows indicate the representative parameter paths used in Figs. 2
and 3, respectively.

thermal phase transition of 2D q = 3 Potts universality
through a tricritical point, eventually connecting to the higher
BKT transition at zero field [cf. the phase diagram in
Fig. 1(b)], unified with the previous understanding of the zero-
field phase diagram of the TLI model [5,8,9]. Such a phase
diagram is also consistent with the experimental observations
at hand and can be used to guide future ones.

II. MODEL, METHODS, AND ORDER PARAMETER

We study the TLI model under the external longitudinal
field as

H = J1

∑
〈i, j〉

Sz
i Sz

j + J2

∑
〈〈i, j〉〉

Sz
i Sz

j −
∑

i

(
�Sx

i + hSz
i

)
, (1)

where J1 = 1 is the nearest-neighbor antiferrimagnetic inter-
action and set as the energy unit, and J2 represents a small
next-nearest-neighbor interaction. Although setting J2 = 0 in

this work, we note that the small J2 in the model and material
could trigger interesting incommensurate phase and string
magnetic excitations as discussed in Refs. [13,14]. � = 0.2
represents the intrinsic transverse field in the material and
h represents the external magnetic field along the longitudi-
nal direction. Figure 1(a) is the sketch of the 2D triangular
lattice, with the J1, J2 interactions and the spin orientation
from the clock phase (left, h = 0) to the slightly polarized
clock phase at intermediate field (middle, 0 < h < hc1) and
the UUD phase (right, hc1 < h < hc2). The obtained phase
diagram is shown in Fig. 1(b), where the rich phases and
transitions will be discussed below.

To solve the model in an unbiased manner, we imple-
ment the stochastic series expansion QMC method [15–18]
to simulate the model on finite lattice sizes and temperatures
(with the linear system size L up to 21 and T down to
1/64) and by means of the finite size analysis, map out the
finite-temperature phase diagram and distinguish the different
phase transitions. The ground state properties are computed
with DMRG on a cylindrical geometry of size YC W × L
with W up to 12 and L to 45. The retained states are up to
D = 1024, with truncation errors ε � 10−7 guaranteeing the
convergence of the DMRG calculations. The phase diagram
has also been analyzed with RG in qualitative manner. Details
of the numerical and field-theoretical implementations are
given in Appendices C and D.

The TLI model without external field has been thoroughly
studied [5,7–9]. As shown in Fig. 1(b), along the T axis,
starting from the paramagnetic phase (PM) the system will
first enter a BKT phase with emergent U(1) symmetry and
power-law spin correlations and then turn into a clock phase
at lower temperature. The upper and lower BKT tempera-
tures are denoted as the asterisks (∗) in Fig. 1(b). The clock
phase (and the UUD phase under external field) can be con-
veniently detected by the following complex order parameter
[8,9], meiθ ≡ (m1 + m2ei(4π/3) + m3ei(−4π/3))/

√
3, where the

mi with i = 1, 2, 3 represent the magnetization of the three
sublattices; m and θ represent the magnitude and the phase
of the complex order parameter, respectively. meiθ exhibits
an emergent U(1) symmetry in the BKT phase and falls into
one of six minima at (2n − 1)π

6 in the clock phase, with
n = 1, 2, . . . , 6 [cf. the red dots in Fig. 2(f)].

When an external field h is applied, the model develops
a UUD phase. RG analysis in Appendix C shows that h is a
relevant perturbation in the BKT phase, leading to the UUD
phase at infinitesimal field. However, above and below the
BKT temperature range, the PM and clock phases are both
gapped and thus stable under an infinitesimal field. Therefore,
it is expected that the phase boundaries between the UUD
phase and the PM/clock phases appear at finite h, extrapolat-
ing to zero field at the upper(lower) temperature of the BKT
phase, respectively.

The universality class of the phase transitions can be un-
derstood as follows. The UUD phase can also be represented
by the complex order parameter meiθ with θ taking one of
three minima at π and ±π/3 [the green dots in Fig. 2(f)]. On
the other hand, the clock phase, in the presence of h, still has
six minima. However, their locations move to (2n − 1)π

6 +
(−1)n−1δ, where δ is an h-dependent angle, as indicated by
the arrows in Fig. 2(f). When δ = 0, the minima are evenly
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FIG. 2. (a)–(e) Histogram of meiθ from h = 0 to h = 0.01 with
interval �h = 0.0025. In QMC simulations, the temperature is T =
1/64 and the system size is L = 9; the parameter path is from the
clock phase to the UUD phase indicated by the red dashed arrow in
the inset of Fig. 1(b). (f) The six red points represent the locations
of six minima of complex order parameter in clock phase. The three
green points represent the locations of three minima of complex order
parameter in the UUD phase. Their movements (indicated by the
white arrows) are shown in (a)–(e) with real QMC data.

distributed around a circle in the complex plane, which repre-
sent the clock state at h = 0 [9]. When δ = π

6 , they become
the three minima of the UUD phase, and the state of UUD
phase will spontaneously break this discrete C3 symmetry.

It is interesting to see that such symmetry analysis can be
verified by QMC simulation. As shown in Figs. 2(a)–2(e),
we plot the histograms of the complex order parameter meiθ

at different h [starting from h = 0 and increasing with foot-
step �h = 0.0025 to h = 0.01, the path is shown by the red
dashed arrow in the inset of Fig. 1(b)] at low temperature
T = 1/64 with system size L = 9. The positions of bright
spots represent the locations of minima, and they move as
expected. Figure 2(f) shows the locations of minima of meiθ

in theoretical symmetry analysis, and the white arrows indi-
cate the movement of the bright spots. The finite (but low)
temperature continuous transition between the clock and the
UUD phases therefore belongs to the 2D Ising universal class,
as each green dot minimum of θ further splits into two red
ones. On the other hand, the continuous transition from the
PM to the UUD phases, as we will discuss below, belongs
to the 2D q = 3 Potts universal class, as θ falls into one of
the three green dot minima. Physically, the transitions at these
two phase boundaries break the threefold rotation and mirror
reflection symmetries of the lattice, respectively.

III. PHASE DIAGRAM

Our phase diagram is shown in Fig. 1(b); the PM, UUD,
BKT, and clock phases are in place. Our numerical results
reveal that the UUD-PM phase transition is continuous and
belongs to the 2D q = 3 Potts universality at weak field (h <

1.5) and becomes weakly first order at strong field (h > 1.5)
[19,20] (see Appendix B for details). The boundary of the
UUD phase extrapolates to the upper BKT temperature at
h = 0.
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FIG. 3. (a) shows the Binder cumulant U (q) of the 2D q = 3
Potts transition. At h = 0.5 the temperature reduces from the PM to
UUD phases. The cross of U for different system sizes indicate the
continuous phase transition point between PM at high temperature
and the UUD phase at low temperature, with Tc = 0.23(2). In (b),
we perform the data collapse of Binder cumulant with 2D q = 3
Potts critical exponent ν = 5/6 as (T − Tc )L1/ν close to Tc. (c) shows
the wider temperature range of the Binder cumulant compared with
the zoom-in in (a)—denoted as the blue rectangle box. U varies
continuously from 0 at high temperature to 1 at low temperature.
The nature of this continuous transition is revealed in (a) and (b). In
(d), along the path of black dashed arrow in Fig. 1(b), the transition
from the UUD phase to the polarized PM phase is weakly first order,
as indicated by the negative dip in the U .

To study the UUD-PM phase transition and its finite size
scaling in QMC, we employ the Binder cumulant for the q-
state Potts phase transition, U (q) = q+1

2 (1 − q−1
q+1

〈m4〉
〈m2〉2 ), where

m is the order parameter, and 〈 〉 means the statistical average
in QMC. For a continuous transition, U extrapolates to the
saturation value 1 when T < Tc and decays to 0 at high tem-
perature when T > Tc, and curves of different sizes cross at Tc

[21,22]. This is what we saw in Figs. 3(a) and 3(c), in which
the QMC results of U (q = 3) along the path of blue dashed ar-
row in Fig. 1(b) are shown. Figure 3(c) is the overall scale with
a wide temperature range and we note that U (q = 3) indeed
reduce from 1 to 0 as temperature increases. Figure 3(a) is a
zoom-in in the critical region [as denoted by the blue rectangle
in Fig. 3(c)], here U crosses at a critical point for different L
and one can readily read Tc = 0.23(2). We further collapse
U with the 2D q = 3 Potts exponent ν = 5/6 according to
the scaling relation U (q) = f ((T − Tc)L1/ν ), and the results
are shown in Fig. 3(b). This good data collapse evidence that
UUD-PM transition is continuous and indeed belongs to the
q = 3 Potts universality. The other blue square phase bound-
ary points in Fig. 1(b) are determined in a similar manner.
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At large h, the transition between UUD and PM becomes
weakly first order, and this can also be seen from the Binder
cumulant [23]. As shown in Figs. 3(c) and 3(d), we make a
comparison between the Potts transition and the first order
transition, along the two different parameter paths indicated
by the blue and black dashed arrows in Fig. 1(b). In Fig. 3(c)
the continuous 2D Potts transition is shown, and one sees
that the U changes continuously and always above zero, and
the different curves cross at the Tc = 0.23(2) [as shown in
Fig. 3(a)]. The contrast is very obvious in Fig. 3(d). Here we
fix the temperature at T = 1/32 and scan the field h. It is clear
that close to the UUD to PM (here means polarized phase)
transition, the U develops a negative dip at the transition
point; this is the signature of a first-order phase transition,
where the system in the Monte Carlo simulations can be either
inside the ordered phase or inside the disordered phase [23].
When h > 2.9, the system enters the PM phase. We note
that the transition is actually of weakly first order, as the U
didn’t diverge at the present L, this is also consistent with the
experiment in TmMgGaO4 with the magnetic excitation gap
observed to be very small near the high transition field [11].

With the high field phase boundary between the UUD and
PM determined, we now look for the low field ones between
the clock phase and the UUD phase, as indicated in the inset of
Fig. 1(b). The RG calculation in Appendices C predicted the
shape of the phase boundary and find it lies very close to the
vertical T axis with h = 0 (see Fig. S3), and our numerical
result is consistent with such a prediction. The symmetry
analysis reveals that this is an Ising transition since the clock
and UUD phases differs by a Z2 symmetry (cf. Fig. 2). Since
the temperature here turns out to be too low to have large-scale
QMC simulations, we turn to DMRG computation directly at
T = 0.

IV. DMRG STUDY OF THE GROUND-STATE PHASE
DIAGRAM

DMRG calculations are employed to compute the ground-
state phase diagram. In Fig. 4, we show the numerical
evidence of two QPTs at lower (hc1) and higher (hc2) critical
fields, respectively. In the calculations, we introduce two kinds
of pinning fields on the outmost two columns of the cylindrical
system, which, respectively, favor the clock and UUD order
and compute the observables in the bulk (see Appendix D).
Such pinning fields, although applied only on the boundary
of the system, can nevertheless stabilizes the two types of
ordered states in the bulk, and can be used to discern the subtle
competition between different quantum states at low magnetic
fields.

In Fig. 4(a), we plot the bulk energy measured in the very
center of the long cylinder, and see that the clock phase is
energetically more favorable at lower fields, while the UUD
phase takes the place as the true ground state at higher fields,
with the crossing point at hc1 � 0.001 (for width W = 12),
which could be extrapolated to 0.0036 for 1/W → 0, as
shown in the inset of Fig. 4(a). As the field further increases,
the UUD order would also get suppressed, and a phase tran-
sition to polarized phase takes place at around hc2 � 2.89. As
shown in Fig. 4(b), the local magnetization in the UUD phase,
mz(A) = mz(B) 	= mz(C) on the three sublattices A, B, and C,
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FIG. 4. (a) The bulk energy curves eg calculated by DMRG on
the YC12 × 30 cylinder under different (clock and UUD) boundary
pinning fields exhibit a crossing at hc1 � 0.001. In the inset, the
crossing fields hc1 calculated under system widths W = 6, 9, and
12 are extrapolated to 1/W → 0, from which we determine hc1 �
0.0036 as the transition point between the two phases. (b) The QPT
near the upper critical field hc2 � 2.89. The magnetization mz results
provide clear evidence of a three-sublattice UUD order for h < hc2,
while mz becomes uniform in the polarized phase for h>hc2. The data
are from DMRG calculations on a YC9 × 45 cylinder.

becomes uniform mz(A) = mz(B) = mz(C) in the polarized
phase. The obtained ground state hc1 and hc2 are denoted as
the yellow stars in the phase diagram of Fig. 1(b), and are
well connected with the finite temperature phase boundaries
of QMC.

V. EXPERIMENTAL RELEVANCE

Our results have immediate connections to experiments
on the rare-earth compound TmMgGaO4 [1–5], where the
existence of BKT transitions and an intermediate floating
phase has been theoretically proposed [5] and experimen-
tally detected in NMR [4]. There is currently upsurging
research interest on further experimental exploration of the
BKT physics [10] and the field-tunable quantum states in
the compound [11]. Our results, combining finite-temperature
QMC and ground-state DMRG calculations, unambiguously
pinpoint the two quantum phase transitions, at the lower-field
hc1 (clock to UUD) and upper-field hc2 (UUD to polarized).
Although the model parameters in this work are simplified
[5], we can still resolve the two QPTs and the upper field
hc2 is very close to 3.7 T when taking J1 = 1 meV, in good
agreement with experiments [2–4].

Moreover, we show numerical evidence from large-scale
QMC calculations that there exists a continuous thermal phase
transition that belongs to the three-state Potts universality
class, under finite external fields. Such a Potts transition
gradually changes into a weakly first-order phase transition
around hc2. These theoretical predictions can be confirmed
in future thermodynamic and dynamical measurements of the
material, which should exhibit universal scaling near the tran-
sition point. Our model could also be implemented and further
detected in the programmable quantum simulators based on
Rydberg atom arrays [24–26] and superconducting qubits
[27,28], where geometry frustration and quantum dynamics
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of quantum Ising models have been proposed and partially
realized.
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APPENDIX A: SSE-QMC METHOD

In this section, we describe the implementation of SSE-
QMC algorithm of the quantum Ising model [16–18].

1. SSE on σz basis

The Hamiltonian for our model is H = J1
∑

〈i, j〉 Sz
i Sz

j +
J2

∑
〈〈i, j〉〉 Sz

i Sz
j − ∑

i(�Sx
i + hSz

i ); we can decompose this
Hamiltonian into diagonal or off-diagonal site and bond op-
erators

H0,0 = I

H−1,i = �

2
(S+

i + S−
i )

H0,i = h0 + hSz
i

H1,b = J1

(
1

4
− Sz

b(1)S
z
b(2)

)

H1,b′ = J2

(
1

4
− Sz

b′(1)S
z
b′(2)

)
(A1)

with H = −∑
i(H−1,i + H0,i ) − ∑

b,b′ (H1,b + H1,b′ ), noting
we add some constants into it which do not change the
physics. Here b (b′) means the NN (NNN) bond, H0,0 denotes
the identity operator, H−1,i (H0,i) denotes the off-diagonal (di-
agonal) operator on site i, and H1,b (H1,b′ ) denotes the diagonal
operator on bond b (b′). b(1) [b′(1)] and b(2) [b′(2)] represent
the two sites connecting the bond b (b′). S+

i = Sx
i + iSy

i and
S−

i = Sx
i − iSy

i represent the creation and destruction operator
of spin-1/2. In order to make these site and bond operators
positive, we add 1

4 in H1,b (H1,b′ ) and have to set the constant
h0 � h/2.

It is well known that the partition function Z = Tr e−βH

can be expressed as a power series expansion:

Z =
∑

α

∑
SM

βn(M − n)!

M!

〈
α

∣∣∣∣∣
M∏

i=1

Hai,pi

∣∣∣∣∣α
〉
, (A2)

where β is the inverse of temperature, and M is the truncation
of the expansion series n. Taking Sz as a complete set of basis
for the system, the nonzero matrix elements for site operators
and bond operators are

〈↑ |H−1,i| ↓〉 = 〈↓ |H−1,i| ↑〉 = �

2

〈↑ |H0,i| ↑〉 = h0 + h

2

〈↓ |H0,i| ↓〉 = h0 − h

2

〈↓↑ |H1,b| ↓↑〉 = 〈↑↓ |H1,b| ↑↓〉 = J1

2

〈↓↑ |H1,b′ | ↓↑〉 = 〈↑↓ |H1,b′ | ↑↓〉 = J2

2
.

(A3)

The updating scheme includes the diagonal update which
either inserts or removes a diagonal operator between two
states with probabilities regulated by the detailed balanced
condition and the cluster update which flips all the spins as the
following scheme. The configurations of the updating scheme
are shown in Fig. 5.

We describe the updating scheme in the following steps:
(1) Diagonal update
We go through the operator strings and either remove or

insert a diagonal operator according to the following proce-
dures.

(a) For a null operator (H0,0), we substitute it with a
diagonal operator H0,i, H1,b, or H0,b′ by the procedures
below.

First we make the decision of which position for diago-
nal operators to insert with a probability 1/(N + Nb + Nb′ ),
where N means the number of total sites, and Nb (Nb′ )
means the number of total NN (NNN) bonds. If the chosen
bond to insert a bond operator has an antiparallel configu-
ration, then the insertion of a bond operator at this place is
prohibited. After the decision is made, accept the insertion
of an operator with probability

P = min

(
β(N + Nb + Nb′ )〈Ha〉

M − n
, 1

)
. (A4)

The Ha means H0,i, H1,b, or H0,b′ which depends on the
position we have chosen.

(b) For a diagonal operator Ha, we removed it with
probability,

P = min

(
M − n + 1

β(N + Nb + Nb′ )〈Ha〉 , 1

)
. (A5)

(c) For an off-diagonal operator, we ignore it and go to
the next operator in the operator strings.
(2) Cluster update

(a) We generally follow two rules to construct the clus-
ters: (1) Clusters are terminated on site operators H−1,i or
H0,i, and (2) the four legs of a bond operator H1,b (H1,b′ )

104416-5



YUAN DA LIAO et al. PHYSICAL REVIEW B 103, 104416 (2021)

FIG. 5. SSE-QMC configuration of the quantum Ising model.
Golden bars represent Ising bond operators. Filled squares plaquette
are off-diagonal site operators, and open plaquettes denote the diag-
onal site operators. Arrows represent periodic boundary conditions
in the imaginary time direction. The red solid circles and the light
blue open circles indicate spin up and down. Solid and dashed purple
lines illustrate the spin states (spin up or down).

belong to one cluster. We carry out this procedure until all
the clusters are built, and a configuration of clusters are
shown in Fig. 5.

(b) Due to the external field breaks Z2 symmetry, the
probability of cluster update should be modified [29–31].
Clusters identified from the above rules are then flipped
with probability Wnew

Wold+Wnew
. Here Wnew/old is the weight

after/before cluster update.

APPENDIX B: q = 3 POTTS TO FIRST ORDER
TRANSITION

As mentioned in the main text, the UUD-PM phase tran-
sition is continuous when the external magnetic is relatively
small (h < 1.5), and the UUD-PM phase transition becomes
the first order when the external magnetic is large enough
(h > 1.5). To prove that, we plot the three-states Binder cu-
mulant U (q = 3) as a function of temperature T at different
external magnetic h = 1, h = 1.5, and h = 2 for different sys-
tem sizes L = 6, 9, 12, 15, as shown in Fig. 6. We notice that
the U (q = 3) decay smoothly at h = 1 for L = 6, 9, 12, 15,
however U (q = 3) begins to develop a negative dip at h = 1.5
for L = 12 and L = 15, which is the typical behavior close
to a first-order phase transition [19,20,23]. When h = 2, the

T

U
(q

=
3
)

(a) h=1

0.2 0.4 0.6 0.8

0

0.2

0.4

0.6

0.8

1

L=6
L=9
L=12

L=15

T
0.4 0.6 0.8

T
0.4 0.6 0.8

(b) h=1.5 (c) h=2

FIG. 6. Binder cumulant U (q = 3) of the q = 3 Potts transition
at (a) h = 1, (b) h = 1.5, and (c) h = 2.

dips go to more negative, which means the first-order phase
transition is more noticeable.

However, we note that the negative dip in the Binder cu-
mulant along our phase boundary has not developed into the
divergence which is usually the case for the standard first
order phase transition, this is consistent with the fact that the
3D q = 3 Potts (or its 2D quantum version in the present case
at T = 0 from UUD to PM) is known to be a weakly first
order, in fact, “almost second order” phase transition [32].

APPENDIX C: RG ANALYSIS

In this section, we describe how to construct the Ginzburg-
Landau theory of the three-sublattice order parameter to the
triangular lattice quantum Ising model and analyze the phase
transitions at very small external field by renormalization
group (RG) methods.

1. Ginzburg-Landau theory

To study the low-energy effective theory of the trian-
gular lattice transverse field Ising model, we start from
the formulation of the three-sublattice ordering standard
Ginzburg-Landau (GL) theory. To capture physics of the
three-sublattice ordered structure, the order parameter is de-
fined at the K point:

ψ (r) = |ψ (r)|eiθr =
∑

i

mz
i e

iK·Ri , (C1)

where K = (2π/3, 2π/3) is the corner of the hexagonal Bril-
lioun zone (BZ), and Ri, i = 1, 2, 3 represents coordinates at
three sublattice sites in the unit cell at r.

Traditional symmetry analysis [33–37] provides a coarse-
grained order parameter field Ginzburg-Landau free energy
density [37]:

Fts[ψ] = κ|∇ψ |2 + r|ψ |2 + u4|ψ |4 + u6|ψ |6

+ λ6|ψ |6 cos(6θ ) + λ12|ψ |12 cos(12θ ) + . . . .

(C2)

In the phase transitions we want to study, we expect local
amplitude of the order parameter |ψ | retains nonzero and is
slowly variant, and the fluctuation of phase θr is dominant.
From the following analysis, we will see why λ12 term is
not important. These result in the further simplification of the
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model Eq. (C2) into

Fts[θr] = 1

4πg
(∇θ )2 + λ cos(6θ ), (C3)

where g(T ) is monotonously tuned by temperature T , and λ is
the rescaled coupling constant of cos(6θ ) term.

From the definition of the three-sublattice order parameter,
i.e., in Eq. (C1), we find when λ > 0 the phase θ falls in six
minima that represent a sixfold degenerate clock phase, while
λ < 0 represents the up-up-down (UUD) phase with nonzero
net magnetization. We expect similar critical behaviors to a
six-state clock model [38,39].

A further observation [36], however, pointed out that the
above three sublattice order parameter does not capture the
physics of uniform magnetization mode, like in the UUD
phase, at the 
 point:

mr ≡
∑

i

mz
i . (C4)

Regarding the same S3 × Z2 symmetry as the original GL
theory when the net magnetization is present, a coarse-grained
Ising field, and—most importantly—a coupling between three
sublattice phase mode and uniform magnetization Ising mode,
are included in the model:

F[θr, mr] = Fts[θr] + FIsing[mr] − cmr cos(3θr). (C5)

The last term, when uniform magnetization is linearly po-
larized by the external uniform longitudinal field h and thus
the Z2 symmetry is broken, becomes a coupling between h
and cos(3θ ). Focusing on the phase degree of freedom, the
GL theory is written as:

F[θr, h] = 1

4πg
(∇θ )2 + λ cos(6θ ) − h cos(3θ ). (C6)

Here we rescale h to absorb a nonuniversal coupling coeffi-
cient, and its sign (the direction of external field) selects which
three minima are the ground states.

2. RG equations

The model Eq. (C3) proposed above is well known for
the existence of a power-law correlation quasi-long-range
ordered intermediate Berezinskii-Kosterlitz-Thouless (BKT)
phase [40]: 〈

ei(pθ (r)−p′θ (0))
〉 ∼ r−p2gδpp′ , (C7)

when g(T ) = η(T ) ∈ ( 1
9 , 1

4 ) for the triangular lattice quantum
Ising model [8]. In the renormalization group (RG) language,
the gradient term in Eq. (C3) is exactly marginal along the en-
tire λ = 0 line [41–44]. The sixfold anisotropy term is relevant
only when g < 1

9 , and symmetry-breaking long-range order
is thus formed at low T ; when g > 1

4 the vortex term comes
in, and the vortex proliferate phase arises at high T [38]. The
intermediate BKT phase is a critical phase formed by a line of
central charge c = 1 fixed points [36], where no anisotropy is
relevant and an emergent U (1) symmetry is present.

The above first order RG analysis is performed in zero
field. When nonzero uniform magnetic field is present, how-
ever, the h cos(3θ ) term is relevant everywhere g < 2

9 , from
zero temperature to somewhere deep in the disordered phase.

To study how this term interacts with the sixfold anisotropy
term and vortex term, a detailed second order analysis is
needed.

From the momentum shell RG, if we nondimensionalize
coupling constants of every term in the theory and write it as

S =
∫

dDx
∑

n

νn�
D−�nφn(x), (C8)

where D is the spatial dimension, � is the large-momentum
cutoff, and �n and νn are the scaling dimension and di-
mensionless coupling constant of operator φn, the 2nd order
general RG equation involving operator product expansion
(OPE) is [41]

dνk

dl
= (D − �k )νk − SD

2

∑
nm

νnνmCnmk + . . . = β(νk ).

(C9)
Here Cnmk is the structure constant of OPE, and SD is the
spherical phase factor in D dimension.

We first study the RG equations near the lower BKT critical
point TL, where gL ≡ g(TL ) = 1

9 and sixfold anisotropy term
is marginal. In the D = 2 Kosterlitz RG we are interested
in here, we denote φ0 the operator (∇θ )2 and φp the vortex

operator eipθ . The scaling dimensions �0 = 2, and �p = p2g
2

from Eq. (C7), resulting in the aforementioned first order
analysis of sixfold degenerate order and relevance of external
field coupling [45].

The OPE calculated by 2D free boson CFT [41,43] tells us
[46]:

Cn,−n,0 = −π�n, Cn,m,n+m = 1. (C10)

When only one pair of vortex operators φ±n are in place, only
the first structure constant is nontrivial to the second order.
The substitution of Eq. (C10) into the general RG equation
Eq. (C9) results in the well-known hyperbolic RG flows of
sine-Gordon model. However, when there is more than one
pair of vortex operators—exactly the case for our nonzero
field theory—the coupling between constants plays an impor-
tant role in determining the nature of the phase diagram.

Investigate Eq. (C6), with straightforward substitutions
of nonzero coupling constants into Eq. (C9), and we write
out RG equations when both cos(6θ ) and cos(3θ ) terms are
present in the theory:

dλ

dl
= (2 − 18g)λ − π

2
h2, (C11)

dh

dl
=

(
2 − 9

2
g − πλ

)
h, (C12)

dg

dl
= −9π2g3(4λ2 + h2) � −π2

81
(4λ2 + h2). (C13)

The above equations shows the existence of a Ising class
phase transition. While the strong relevance of h cos(3θ ) term
drives the parameter flow to λ → −∞, i.e., the UUD phase,
in most parts of the parameter space, a parameter flow starting
from λ � |h| when g < gL will suppress the increase of h
according to Eq. (C12), thus in turn go to λ → ∞, the clock
phase. Therefore, if the system is in the clock phase when
temperature is low enough and no external field is applied, it
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0.4 2
0

0.1

0.3

Phase boundary given by RG
g 0.2

0.8 1.2 1.60

h/λ (h/y)

FIG. 7. The phase boundaries given from RG analysis. Here we
set dimensionless λ = y = 0.001. The top orange line is where Potts
phase transition occurs, and the bottom blue line is where Ising phase
transition occurs.

will undergo an Ising phase transition into the UUD phase at
some finite field strength when the external uniform magnetic
field is turned on and increased. gL, h = 0 is a tricritical point,
where clock phase, UUD phase, and BKT phase boundaries
merges at one point.

Here we complete the RG analysis near gL, and we now
turn to study the phase transition near upper BKT temperature
gU ≡ g(TU ) = 1

4 . In this regime the sixfold anisotropy is no
longer relevant, and the relevance of the vortex term y cos(φ)
defined on the dual lattice interacts with the external field
term. Given the complexity of duality mapping, the result is
expected to be complicated. However, Ref. [38] gave a concise

argument that up to the second order, the coupling constants h
and y do not interact:

dh

dl
=

(
2 − 9

2
g

)
h, (C14)

dy

dl
=

(
2 − 1

2g

)
y, (C15)

dg

dl
= π3

g
y2 − 9π2g3h2. (C16)

It is based on two facts: the relation when doing duality
mapping between lattices:

9g ⇔ 1

g
, y ⇔ h, h ⇐ y, (C17)

and the invariance of RG equations when h → −h. If any gh
or h2 term appears in one of Eqs. (C14) and (C15), then a
counterpart will also appear in the other equation, and it will
break the invariance of RG equations under h → −h.

Because the h cos(3θ ) term is always relevant near the crit-
ical point, and the gapped disordered phase by the vortex term
should be more robust to the perturbation than the gapless
BKT phase, the phase boundary between the UUD and disor-
dered phase should be extrapolated directly to gU . Therefore,
the decoupled nature of multiple relevant perturbations also
suggests a tricritical point at gU and h = 0 [40], where BKT
phase, UUD phase, and disordered phase boundaries come
into one point.

3. Phase diagram

To see the explicit phase transition analysis of RG at
the small field regime, the best way is to show it is in the
phase diagram. Here we plot the obtained RG phase dia-
gram in Fig. 7. The parameter points in the phase diagram

A B C A B C A B C A B C A B C A B C A B C A B C A B C A B C

C A B C A B C A B C A B C A B C A B C A B C A B C A B C A B

B C A B C A B C A B C A B C A B C A B C A B C A B C A B C A

A B C A B C A B C A B C A B C A B C A B C A B C A B C A B C

C A B C A B C A B C A B C A B C A B C A B C A B C A B C A B

B C A B C A B C A B C A B C A B C A B C A B C A B C A B C A

periodic
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FIG. 8. (a) Illustration of the three-sublattice spin structure on the YC6×30 cylinder in the clock order phase, with the parameters J1 = 1,
J2 = 0, � = 0.2, h = 0 and the clock-type field hp = 10−4 pinning on the left two columns of the system (the gray area). The red and blue
color represent spin up (mz > 0) and spin down (mz < 0) along the magnetic easy axis, and the black one stands for the superposition of spin
up and down with zero net z component (mz � 0). The brightness of the color represents the absolute strength of local magnetization. (b) shows
the bulk energy ub vs pinning field hp, and (c) shows the bulk magnetization mz on the sublattice C. The bulk sites involved in the calculations
are indicated in (a) within the red parallelogram.
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are the starting parameter points of RG flows. The top or-
ange line distinguishes whether |h| or y goes to unity first.
The former is identified as the UUD phase, and the latter
the disordered phase, and the transition between them is in
the three-state Potts universal class. The bottom blue line
is the boundary below which h no longer flows to unity
but to zero and is identified as clock phase, above which
|h| flows to unity faster than λ and the UUD phase is
clarified here. Thus this transition is in the Ising universal
class.

APPENDIX D: DMRG RESULTS

As mentioned in the main text, in the ground state the
system develops a clock order at field h = 0, which, how-
ever, is fragile under longitudinal fields. To help stabilize the
order in a finite-size system and discern the subtle competi-

tion between different magnetically ordered ground states, we
applied a small clock-type pinning field hp from very small
(10−4) to a moderate value (hp = 1) on the left boundary of
the system. The calculated onsite magnetization mz on a YC
6 × 30 cylinder, as shown in Fig. 8. Three-sublattice order can
be clearly identified by the different colors on each site, which
represents the sign of local mz. The absolute values of mz on
sublattice C and A are two orders of magnitude larger than
that on sublattice B, thus indicating a clock spin configuration.
In Fig. 8(c), we see even the smallest (hp = 10−4) field can
induce a clock order, and the latter is converged to about 0.43
for hp � 10−2. Besides, in Fig. 8(b) we observe that eg quickly
converges as the pinning field hp increases, and the energy
result eg has converged to six digits for hp > 0.1. Therefore,
in the main text we fix the pinning field hp = 1 and perform
the calculations at low magnetic fields as shown in Fig. 4(a)
of the main text.
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