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Tunable Majorana corner modes in noncentrosymmetric superconductors:
Tunneling spectroscopy and edge imperfections
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Majorana corner modes appearing in two-dimensional second-order topological superconductors have great
potential applications for fault-tolerant topological quantum computations. We demonstrate that in the presence
of an in-plane magnetic field, two-dimensional (s + p)-wave superconductors host Majorana corner modes,
whose location can be manipulated by the direction of the magnetic field. In addition, we discuss the effects
of edge imperfections on the Majorana corner modes. We describe how different edge shapes and edge disorder
affect the number and controllability of the Majorana corner modes, which is of relevance for the implementation
of topological quantum computations. We also discuss tunneling spectroscopy in the presence of the Majorana
corner modes, where a lead wire is attached to the corner of the noncentrosymmetric superconductor. The
zero-bias differential conductance shows a distinct periodicity with respect to the direction of the magnetic
field, which demonstrates the excellent controllability of the Majorana corner modes in this setup. Our results
lay the theoretical groundwork for observing and tuning Majorana corner modes in experiments on (s + p)-wave
superconductors.
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I. INTRODUCTION

A central subject in the physics of topological supercon-
ductivity [1–4] is the realization of fault-tolerant topological
quantum computations [5–9] using Majorana zero modes
[10–12]. So far, the existence of the Majorana zero modes has
been experimentally demonstrated in various systems such
as semiconductor-superconductor hybrids [13–27], magnetic
atom chains on superconductors [28–31], superconductors
in coexistence with nontrivial spin textures [32,33], and su-
perconducting topological insulators [34–39]. However, to
achieve the topological quantum computations, we have to
manipulate the position of the Majorana zero modes for per-
forming braiding operations, which is still a challenging task
at the current stage.

Recently, a fresh route for realizing topological quantum
computations has been discussed in the context of higher-
order topological superconductivity [40–65]: An nth-order
topological superconductor in d dimensions can host Ma-
jorana zero modes in d − n dimensions for n � 2, whereas
conventional topological superconductors correspond to the
case with n = 1. Although the study of higher-order topologi-
cal superconductors is still in its infancy, there have already
been several theoretical predictions for two-dimensional
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second-order topological superconductors in which the po-
sition of emergent Majorana corner modes (MCMs) can
be controlled by varying experimentally tunable parameters
[58–65]. Moreover, braiding operations using the advantages
of such tunable MCMs have been demonstrated theoretically
[63–65]. Thus, this recent development in the physics of
tunable MCMs shows great promise for the realization of
fault-tolerant topological quantum computations.

A fundamental strategy for obtaining tunable MCMs is the
application of magnetic fields to time-reversal-invariant topo-
logical superconductors, which host helical Majorana edge
states [43,44,58]. On the basis of this strategy, the presence
of tunable MCMs has been demonstrated in Rashba bilayers
coupled to superconductors [60], semiconductor–iron-based-
superconductor hybrids [59], and spin-triplet helical p-wave
superconductors [59,64]. Even so, since these proposals
have not yet been implemented experimentally, it is im-
portant to continue to propose alternative models hosting
tunable MCMs. Thus, as the first objective of this paper,
we demonstrate that a two-dimensional noncentrosymmetric
(s + p)-wave superconductor [66–72] can harbor the tunable
MCMs by applying in-plane magnetic fields. We mention here
that, according to a range of experiments, such as upper criti-
cal field measurements [73], Knight-shift measurements [74],
and others [75–78], as well as supporting theories [79–82], the
noncentrosymmetric compound CePt3Si is the most promis-
ing candidate for the (s + p)-wave superconductor.

Moreover, while most previous studies on tunable MCMs
consider square superconducting islands with clean edges, ex-
perimental implementations will most certainly deviate from
such an ideal geometry. Thus, as the second objective of
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this paper, we study the effects of edge imperfections on the
MCMs. For a square geometry with clean edges, we can find
two stable Majorana zero modes. However, for more com-
plicated edge configurations, the number of MCMs becomes
more than two and depends on the applied magnetic field
direction. In this case, we can no longer find a stable pair
of Majorana zero modes that can make a full circle around
the system, which complicates the braiding process. Thus, the
edge configuration is an important factor for accomplishing
the topological quantum computations in experiments.

At present, specific theoretical proposals for detecting the
tunability of the MCMs are lacking. Thus, as the third objec-
tive of this paper, we study the tunneling spectroscopy in the
presence of the MCMs, where the normal lead wire is attached
to the vicinity of the corner of the noncentrosymmetric su-
perconductor. We demonstrate that the zero-bias conductance
becomes a periodic function with respect to the direction
of the applied magnetic field. This characteristic periodicity
is understood by the fact that the zero-bias conductance is
enhanced only when the MCM exits at the corner connected
with the lead wire. As a result, we propose a smoking-gun
experiment for the detection of controllable MCMs.

The organization of this paper is as follows. In Sec. II we
first derive an effective edge theory describing the emergence
of tunable MCMs in a noncentrosymmetric superconduc-
tor with in-plane magnetic fields. Then we confirm the
validity of the edge theory by employing numerical simula-
tions on a two-dimensional tight-binding model. In Sec. III
we study the effects of edge imperfections on the tun-
able MCMs. Specifically, we calculate the local density of
states (LDOS) for evaluating the stability and controlla-
bility of MCMs in nonsquare superconducting islands. In
Sec. IV the differential conductance of normal-lead-wire–
noncentrosymmetric-superconductor hybrids is calculated by
using lattice Green’s function techniques. We demonstrate
that the zero-bias conductance shows the periodicity as a
function of the direction of the applied magnetic field, which
serves as an identifying characteristic of the controllable
MCMs. A summary and our conclusions are given in Sec. V.

II. EDGE THEORY AND TUNABLE MAJORANA
CORNER MODES

A. Model

Let us consider a two-dimensional noncentrosymmetric
(s + p)-wave superconductor in the presence of an in-plane
magnetic field. We describe the present superconductor by a
minimal Bogoliubov–de Gennes (BdG) Hamiltonian [79–81]

Ȟ (k) = Ȟncs(k) + ȞZ , (1)

with

Ȟncs(k) =
[

ĥ(k) �̂(k)
−�̂∗(−k) −ĥ∗(−k)

]
, (2)

ĥ(k) = ξ (k)σ̂0 + λg(k) · σ̂, (3)

�̂(k) = [�s + d(k) · σ̂](iσ̂2), (4)

ξ (k) = h̄2k2

2m
− μ, d(k) = �t

g(k)

kF
, (5)

and

ȞZ =
[
V Z · σ̂ 0

0 −{V Z · σ̂}∗
]
, (6)

where m is the effective mass of an electron, μ denotes the
chemical potential, kF = √

2mμ/h̄ represents the Fermi wave

number, and k =
√

k2
x + k2

y . The strength of Rashba spin-orbit

coupling, which is due to an intrinsically broken inversion
symmetry along the z axis of the material [75], is given by
λ with g(k) = (ky,−kx, 0). The pair potential �̂(k) contains
both a spin-singlet s-wave component �s and a spin-triplet
p-wave component d(k) satisfying d(k) ‖ g(k) [79]. The Zee-
man potential induced by the externally applied in-plane
magnetic field is described by V Z = (VZ cos θZ ,VZ sin θZ , 0),
with θZ representing the angle of the magnetic field measured
from the x direction. In what follows, without loss of general-
ity, we assume λ,�s,�t ,VZ � 0. The Pauli matrices in spin
space are given by σ̂ = (σ̂x, σ̂y, σ̂z ) and the 2 × 2 unit matrix
is denoted by σ0.

We briefly discuss the topological property of the pure
noncentrosymmetric (s + p)-wave superconductor described
by Ȟncs(k). The positive eigenenergies of Ȟncs(k) are given by

Encs
η (k) =

√
{ξ (k) + ηλk}2 + {�t (k/kF ) + η�s}2, (7)

with η = ±. While the spectrum of Encs
+ (k) has a finite

superconducting gap irrespective of the parameters, the super-
conducting gap in Encs

− (k) vanishes when

�s = �c, (8)

with

�c = �t

⎡
⎣

√
1 +

(
λkF

2μ

)2

+ λkF

2μ

⎤
⎦. (9)

For �s > �c (�s < �c), the BdG Hamiltonian Ȟncs(k) can
be deformed into the BdG Hamiltonian of a pure spin-singlet
s-wave (pure spin-triplet helical p-wave) superconductor
without any gap closing by decreasing λ and �t (�s) adi-
abatically. The spin-triplet helical p-wave superconductor is
well known as a time-reversal-invariant topological supercon-
ductor characterized by a Z2 topological invariant [83,84],
whereas the spin-singlet superconductor is topologically triv-
ial. Since the topological invariant never changes without gap
closing, the noncentrosymmetric (s + p)-wave superconduc-
tor with �s < �c is topologically equivalent to the spin-triplet
helical p-wave superconductor and host the topologically pro-
tected helical Majorana edge states [68–72]. In what follows,
we focus only on the noncentrosymmetric (s + p)-wave su-
perconductor in the topologically nontrivial phase (i.e., �s <

�c).
Then we discuss the effects of the Zeeman potential against

the bulk energy spectrum. Within first-order perturbation the-
ory with respect to VZ , the energy spectrum is given by

Eη(k) = Encs
η (k) + ηVZ sin(θk − θZ ), (10)

with θk = arctan ky/kx. Although the Zeeman potential causes
a nonmonotonic energy shift, it is clear that the Zeeman po-
tential suppresses the superconducting gap size, and a large
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FIG. 1. Edge of the superconductor and relevant spatial
coordinates.

enough Zeeman potential may bring the system into a gapless
superconducting state similar to the case of the pure helical p-
wave superconductor discussed in Ref. [85]. Thus, throughout
this paper, we only assume weak enough Zeeman poten-
tials such that the bulk superconducting gap remains finite
and large enough. Although the superconducting gap remains
finite, the noncentrosymmetric (s + p)-wave superconductor
is no longer characterized by the Z2 topological invariant
due to broken time-reversal symmetry. Nevertheless, in the
following, we demonstrate that the noncentrosymmetric (s +
p)-wave superconductor under the in-plane magnetic field
becomes a second-order topological superconductor hosting
MCMs.

B. Effective edge Hamiltonian

In order to discuss the emergence of MCSs in the present
system intuitively, we derive an edge theory, similar to the
ones discussed in Refs. [46,48,59,60]. We assume here that
the present superconductor has an edge perpendicular to n =
(cos γ , sin γ , 0), where the spatial coordinate along the di-
rection perpendicular (parallel) to the edge is represented
by x⊥ (x‖) and the superconductor occupies the entire half
space x⊥ � 0 (see Fig. 1). In addition, we apply periodic
boundary conditions in the direction parallel to the edge (i.e.,
the direction along the x‖ axis). To obtain an effective edge
Hamiltonian, we rewrite the BdG Hamiltonian in momentum
space as

Ȟ (k) = Ȟ0(k) + Ȟ‖(k) + ȞZ , (11)

Ȟ0(k) =
[

ĥ0(k) �̂0(k)

−�̂∗
0(−k) −ĥ∗

0(−k)

]
, (12)

ĥ0(k) = ξ (k)

(
h̄2k2

2m
− μ

)
σ̂0 + λk⊥σ̂‖, (13)

�̂0(k) =
[
�s + �t

kF
k⊥σ̂‖

]
(iσ̂2), (14)

Ȟ‖(k) =
[

λ̂‖(k‖) �̂‖(k‖)

−�̂∗
‖(−k‖) −λ̂∗

‖(−k‖)

]
, (15)

λ̂‖(k‖) = λk‖σ̂⊥, �̂‖(k‖) = �t

kF
k‖σ̂⊥(iσ̂2), (16)

ȞZ =
[
V⊥σ̂⊥ + V‖σ̂‖ 0

0 −{V⊥σ̂⊥ + V‖σ̂‖}∗
]
, (17)

with

k⊥ = kx cos γ + ky sin γ , (18)

k‖ = −kx sin γ + ky cos γ , (19)

σ̂⊥ = σ̂x cos γ + σ̂y sin γ , (20)

σ̂‖ = −σ̂x sin γ + σ̂y cos γ , (21)

V⊥ = VZ cos(θZ − γ ), V‖ = VZ sin(θZ − γ ), (22)

where k⊥ (k‖) represent the momentum perpendicular (par-
allel) to the edge of the superconductor. In what follows, we
treat Ȟ‖(k) and ȞZ as the perturbations. This approximation is
justified when k‖/kF � 1 and when VZ is significantly smaller
than the superconducting gap. Moreover, in the following
analysis, we assume �s,�t � λkF , μ.

For the zeroth-order perturbation, we replace k⊥ → −i∂x⊥
and find zero-energy states satisfying the equation

Ȟ0(−i∂x⊥ , k‖)ψ (x⊥) = 0, (23)

with the boundary condition ψ (0) = ψ (−∞) = 0. As a re-
sult, we find the two solutions

ψ+,k‖ (x⊥) = 1

2

⎡
⎢⎢⎣

e−iγ /2

ieiγ /2

−eiγ /2

−ie−iγ /2

⎤
⎥⎥⎦ϕ+(x⊥), (24)

ψ−,k‖ (x⊥) = 1

2

⎡
⎢⎢⎣

−ie−iγ /2

−eiγ /2

ieiγ /2

e−iγ /2

⎤
⎥⎥⎦ϕ−(x⊥), (25)

ϕζ (x⊥) = 2
√

κ sin
(√

k2
F + k2

λx⊥
)
eiζkλx⊥eκx⊥ , (26)

κ = m�t

h̄2kF
, kλ = mλ

h̄2 , (27)

with ζ = ±, where we neglect the insignificant terms of

O(
k2
‖

k2
F
, �s

μ
, �t

μ
). The matrix elements of the perturbation terms

Ȟ‖(k) + ȞZ within the first order are calculated as

aζ ,ζ ′ =
∫ 0

−∞
dx⊥ψ

†
ζ (x⊥){Ȟ‖(k) + ȞZ}ψζ ′ (x⊥). (28)

As a result, we obtain an effective edge Hamiltonian

H′ =
[

a+,+ a+,−
a−,+ a−,−

]
=

[
V‖ αk‖

α∗k‖ −V‖

]
, (29)

α = β(�t − iλkF )

kF
, β = �t

λkF

4μ2 + (λkF )2

4μ2
, (30)

which is unitarily equivalent to

H =
[
γ k‖ V‖
V‖ −γ k‖

]
, (31)
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FIG. 2. (a) LDOS at zero energy of the tight-binding model on a
square lattice with 201 × 201 lattice sites. Specifically, we plot the
spatial distribution of log10(ρS/ρN ). The four corners are labeled as
A, B, C, and D, respectively. (b) DOS as a function of energy E .

with γ = β

√
�2

t + (λkF )2/kF . From Eq. (31) we clearly find
that the mass term for the linearly dispersive helical edge
states is given by V‖ = VZ sin(θZ − γ ). Importantly, the sign
of the mass term is determined only by the relative angle
between the Zeeman field V Z and the edge normal vector n:

V‖ > 0 for 0 < θZ − γ < π,

V‖ < 0 for − π < θZ − γ < 0,

V‖ = 0 for θZ − γ = 0, π. (32)

Thus, there is a possibility that two adjacent edges of the
system have the mass terms with opposite signs. In such a
case, we obtain zero-energy states bounded in the vicinity of
the corner (i.e., MCMs) because the mass term has a kink
there [46,48,59]. In the next section, we confirm the validity
of our edge theory by performing numerical calculations of a
tight-binding model.

C. Tunable Majorana corner modes

We consider here a square superconducting island as
shown in Fig. 2(a), where the four corners are labeled as A,
B, C, and D, respectively. When we apply the Zeeman field
along θZ = 0.25π , according to Eq. (32), the edges AB and
DA have negative mass terms, whereas the edges BC and CD
have positive mass terms. Therefore, based on the effective
edge theory, we can expect MCMs at the corners B and D. To
confirm the above statement, we numerically calculated the
LDOS by using the formula ρS (r, E ) = −Tr[Im{Ǧ(r, r, E +
iδ)}]/π , where Ǧ(r, r′, E ) represents the Green’s function and
Tr denotes the trace in spin and Nambu spaces. In addition,
δ is a small imaginary part added to the energy E . The
Green’s function is calculated on a tight-binding model by
use of a recursive Green’s function technique [86], where we
replace ξ (k) → 2t (1 − cos kx ) + 2t (1 − cos ky) − μ, g(k) →
(sin ky,− sin kx, 0), and �t/kF → �t . The explicit expression
of the BdG tight-binding Hamiltonian is given in Appendix. In
Fig. 2(a) we show the LDOS at zero energy for a 201 × 201
square island. We use the parameters μ = t , λ = 0.5t , �t =
0.5t , �s = 0.2�t , VZ = 0.5�t , and δ = 10−4�t . The LDOS
is normalized by ρN = 〈ρN (r, E = 0)〉, where ρN (r, E ) repre-
sents the LDOS for the normal state (i.e., �t = �s = 0) and
〈· · · 〉 means the averaged value with respect to the lattice sites.

FIG. 3. LDOS at zero energy with (a) θZ = 3π/8, (b) θZ = π/2,
(c) θZ = 5π/8, and (d) θZ = 3π/4.

Moreover, we plot log10(ρS/ρN ) instead of the raw data of
ρS . As shown in Fig. 2(a), the LDOS at zero energy has a
significant amplitude only in the vicinity of the corners B and
D. This result confirms the presence of MCMs, as expected. In
Fig. 2(b) we show the density of states (DOS) as a function of
the energy. The DOS is calculated by DS (E ) = ∑

r∈S ρS (r, E ),
where

∑
r∈S represents the summation over the lattice sites in

the superconductor island. The results are normalized by the
DOS in the normal state DN = (201 × 201)ρN . As shown in
Fig. 2(b), the DOS exhibits a sharp zero-energy peak inside
the superconducting gap �eff = 0.31�t . Due to particle-hole
symmetry of the superconductor, the two MCMs can de-
part from zero energy only when they hybridize with each
other, thereby becoming conventional electronlike and hole-
like quasiparticle modes. Therefore, as long as the two MCMs
are spatially separated and protected by the superconducting
gap �eff , they can remain robust at zero energy.

Next we discuss the controllability of the MCMs. In Fig. 3
we show the LDOS at zero energy with various magnetic field
directions, namely, θZ = 0.375π [Fig. 3(a)], 0.5π [Fig. 3(b)],
0.625π/8 [Fig. 3(c)], and 0.75π [Fig. 3(d)]. When θZ =
0.375π , according to Eq. (32), the kinks of the mass term are
located at the corners B and D. As a result, although the spatial
distributions of the MCMs are slightly modulated from the
case with θZ = 0.25π , we can still find them at the corners
B and D. When θZ = 0.5π , the mass term becomes zero at
the entire edges AB and CD. As a consequence, zero-energy
Majorana edge states appear on the entire edges AB and CD.
The emergence of Majorana edge states in a time-reversal-
invariant topological superconductor under a Zeeman field
with a certain direction has been discussed in terms of the
Majorana Ising spin [70,87–89] and it has been shown that the
energy spectrum of the edge states becomes gapless (strictly
speaking, the energy spectrum is discrete due to the finite-size

023007-4



TUNABLE MAJORANA CORNER MODES IN … PHYSICAL REVIEW RESEARCH 3, 023007 (2021)

FIG. 4. Nonsquare island obtained by removing an Lc × Lc

square from the upper right corner of a bigger square.

effect) [46,70,87–89]. When θZ exceeds 0.5π , the positions
of the mass term kink move to the corner A and C. As a
consequence, for θZ = 0.625π and 0.75π , the MCMs appear
at the corners A and C. By varying the direction of the Zeeman
field from θZ = 0.25π to 0.75π , the MCMs originally located
at corner B hop to corner A. In the same way, the pair of the
MCMs can make a full circle around the system by rotating
the direction of the Zeeman field by 2π .

III. EFFECT OF EDGE IMPERFECTIONS

In the above, we have demonstrated that the noncentrosym-
metric (s + p)-wave superconductor can host tunable MCMs.
However, in real experiments, the superconducting island
generally deviates form the perfect square shape. Thus, in
this section we study the effects of different island shapes
(Sec. III A) and of edge disorder (Sec. III B).

A. Nonsquare geometry

As an example of a nonsquare shape, we consider a square
island, where a square region of size Lc × Lc has been re-
moved from the upper right corner B [46], as shown in Fig. 4.
We label the six corners as A, BI, BII, BIII, C, and D. We
first consider the MCMs for a field applied along the direction
θZ = 0.25π . Under this circumstance, according to Eq. (32),
the mass term changes its sign at the four corners BI, BII,
BIII, and D. In Fig. 5 we show the LDOS at zero energy for
an island with the shape of Fig. 4 with Lc = 60 [Fig. 5(a)]
and Lc = 15 [Fig. 5(b)]. In accordance with the edge theory,
as shown in Fig. 5(a), we find four MCMs for the island
with Lc = 60. However, for an island with Lc = 15, there are
only two MCMs, where one of them is spread across the
corners BI, BII, and BIII. This implies that the three MCMs
originally located at BI, BII and BIII hybridize with each other,
thereby becoming nondegenerate, with two states at small
nonzero energy and one state at zero energy, in accordance
with particle-hole symmetry. In fact, the edge theory is valid
only when the edges are sufficiently longer than the decay
length of the MCMs because, to derive the edge theory, we
apply the periodic boundary condition in the direction parallel
to the edge and do not take into account the length of the edge.
Roughly speaking, the decay length of the MCM is evaluated

FIG. 5. LDOS at zero energy for the nonsquare island of Fig. 4
with (a) Lc = 60 and (b) Lc = 15. (c) DOS at zero energy as a func-
tion of Lc, where the DOS is normalized by Dsq(E = 0) representing
the DOS of the ideal square island.

by the inverse of the superconducting gap [90], i.e., ξeff ≈
t/�eff , where ξeff = 6.5 with the present parameter choices.
Thus, when Lc exceeds ξeff significantly, we obtain the MCMs
at the three corners BI, BII and BIII. In Fig. 5(c) we show the
DOS at zero energy as a function of Lc, where the DOS is
normalized by Dsq(E = 0), representing the zero-energy DOS
for the ideal square island, calculated in Fig. 2(b). When Lc is
large enough (i.e., Lc � 30), we find DS/Dsq = 2. Although
the DOS does not count directly the number of states, the
relation of DS/Dsq = 2 implies that the number of MCMs
in the present island is twice as much as that in the ideal
square island: There are four MCMs as shown in Fig. 4(a). For
Lc � 16, we find DS/Dsq ≈ 1, suggesting the presence of two
MCMs as shown in Fig. 4(b). In the intermediate region (i.e.,
16 � Lc � 30), the DOS shows nonmonotonic oscillations,
which originate from interference effects between the three
MCMs, which modify their mutual couplings.

In Fig. 6(a) we show the DOS at zero energy as a func-
tion of the angle of the Zeeman field, where we vary 0 �
θZ � 0.625π and choose Lc = 60. We find DS/Dsq ≈ 2 for
0.1π � θZ � 0.4π , whereas DS/Dsq ≈ 1 for 0 � θZ � 0.06π

and 0.45π � θZ . Therefore, the number of MCMs changes
by rotating the Zeeman potential. To see more details, in
Figs. 6(b)–6(i) we present the LDOS at zero energy for eight
different values of θZ . When θZ = 0, as shown in Fig. 6(b),
we find the Majorana edge states at the edge BIIIC, whereas
there is no significant enhancement in the LDOS at the edge
BIBII. When θZ = 0.03π , as shown in Fig. 6(c), an MCM
appears at the corner BIII, where the wave function is extended
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FIG. 6. (a) DOS at zero energy as a function of the angle of the
Zeeman field θZ , where we choose Lc = 60. (b)–(i) LDOS at zero
energy for the eight different values of θZ indicated in (a): (b) θZ = 0,
(c) θZ = 0.03π , (d) θZ = 0.06π , (e) θZ = 0.1π , (f) θZ = 0.4π , (g)
θZ = 0.45π , (h) θZ = 0.5π , and (i) θZ = 0.625π .

towards corner C. In addition, we find a small enhancement
of the LDOS at the edge BIBII. Strictly speaking, this small
enhancement originates not from exact zero-energy states but
from the finite-energy states having energy extremely close to
zero. We cannot eliminate contributions from such low-energy
states because, although the strict definition of the LDOS
is given by ρS (r, E ) = − limδ→0+ Tr[Im{Ǧ(r, r, E + iδ)}]/π ,
the small imaginary part of δ is always set to be finite in our
numerical calculations. As shown in Fig. 6(d), the LDOS at
the edge BIBII increases by increasing θZ . When θZ = 0.1π ,
as shown in Fig. 6(e), we find that the zero-energy LDOS is
significantly enhanced in the vicinity of corners BI and BII.
As already shown in Fig. 5(a), with θZ = 0.25π , we obtain
three distinct MCMs at the three corners BI, BII, and BIII.
As a consequence, by increasing θZ from zero to 0.25π , two
additional MCMs are created at corners BI and BII, while a
single MCM stays constantly at corner BII. When θZ = 0.4π ,
as shown in Fig. 6(e), the wave function of the MCM at corner
BIII is extended towards corner BII such that the MCMs at
corners BII and BIII start to overlap with each other. When
θZ = 0.45π , as shown in Fig. 6(e), the LDOS at the edge
BIIBIII is strongly suppressed. With θZ = 0.5π , we can no
longer find the enhancement of the LDOS at the edge BIIBIII,
whereas we find a single Majorana edge state at the edge ABI.
With θZ = 0.625π , we find only two MCMs at corners A and
C. Therefore, by increasing θZ from 0.25π to 0.625π , the
MCMs at corner BII and that at BIII start to hybridize with

FIG. 7. (a) LDOS at zero energy and (b) DOS as a function of
the energy E for the superconducting island with the rough edge
(p, X ) = (0.1, 20).

each other and move away from zero energy. At the same
time the single MCM originally located at corner BI hops to
corner A, while the single MCM of corner D hops to corner C.
Importantly, in this process, the MCMs originally appearing
at BII and BIII vanish by hybridizing with each other and never
reappear at any other corner. To accomplish the braiding pro-
cess in topological quantum computations, we must exchange
the positions of the two Majorana zero modes forming a pair.
In the present edge configuration, however, we can no longer
find a stable pair of MCMs that can fully circle the edges of
the superconductor, and therefore fail the braiding process. To
avoid the emergence of additional and undesired MCMs, as
also shown in Fig. 5, we have to eliminate additional corners
whose adjacent edges are longer that the decay length of the
MCMs.

B. Edge roughness

Next we consider a square island with rough edges. To
described the rough edges, we remove the outermost sites
from an ideal square island with probability p and repeat this
etching process X times [91,92]. With this process, there is a
possibility that small debris separated from the largest island
is created. Thus, we also remove such debris. In Figs. 7(a)
and 7(b) we show the LDOS at zero energy and the DOS
as a function of the energy, respectively. We apply the Zee-
man field along θZ = 0.25π and consider a rough edge with
(p, X ) = (0.1, 20). We find that the zero-energy LDOS in
the vicinity of corners B and D is enhanced significantly.
In addition, as shown in Fig. 7(b), the DOS retains a steep
zero-energy peak structure, whereas we also find a finite DOS
inside the effective superconducting gap in the clean limit
�eff = 0.31�t . As also discussed in Sec. II C, the MCMs are
protected by the particle-hole symmetry as long as they are
sufficiently separated spatially. Thus, the MCMs remain ro-
bust even in the presence of weak or moderate edge roughness
that does not destroy the superconducting gap completely.

In Fig. 8(a) we show the normalized DOS at zero energy
as a function of the direction of the Zeeman field. For the
solid red line, we use the same superconducting island as in
Fig. 7(a), i.e., (p, X ) = (0.1, 20). For the dotted black line, we
consider an island with weaker roughness (p, X ) = (0.1, 5).
At first, we concentrate on the results with (p, X ) = (0.1, 20),
shown by the solid red line. For 0.1π � θZ � 0.4π and for
0.69π � θZ � 0.89π , we find DS/Dsq ≈ 1, suggesting the
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FIG. 8. (a) DOS at zero energy as a function of the angle of the
Zeeman field θZ . The solid red line denotes the result with the same
island as in Fig. 7(a) [i.e., (p, X ) = (0.1, 20)] and the dotted black
line denotes the result for the island with weaker roughness (p, X ) =
(0.1, 5). (b) and (c) LDOS at zero energy with θZ = 0.47π . In (b) we
use the same island as in Fig. 7(a) [i.e., (p, X ) = (0.1, 20)]. In (c),
for comparison, we show the result with clean edges.

presence of distinct MCMs. However, in the vicinity of θZ =
0, 0.5π , and π , the DOS shows a nonmonotonic dependence
and becomes clearly larger than one, i.e., DS/Dsq > 1. To
see more details, in Fig. 8(b) we show the LDOS at zero
energy with θZ = 0.47π , where we use the same supercon-
ducting island for calculating the solid red line in Fig. 8(a).
For comparison, in Fig. 8(c) we also show the result with
the clean edge. With the rough edge, we find that the LDOS
is enhanced not only in the vicinity of corners B and D
but also around the center of the edge AB and at corner C.
According to the effective edge theory, when θZ is close to
0.5π , the mass term V‖ = VZ sin(θZ − γ ), which is the source
of the energy gap in the edge spectrum, is suppressed at the
edges AB and CD. In particular, the mass term of the edges
AB and CD vanishes completely at θ = 0.5π . The results in
Fig. 8 suggest that the already small energy gap is reduced
further by the edge roughness such that states with extremely
low (but finite) energy appear at the edges AB and CD. In
the topological quantum computations, the energy gap which
energetically separates the MCMs from other finite-energy
states plays an essential role in suppressing the decoherence
during the braiding operations. Therefore, the edge roughness
causing damage to the energy gap in the edge spectrum affects
negatively the braiding processes of the MCMs. As shown by
the dotted black line in Fig. 8(a), the undesirable enhancement

FIG. 9. Schematic image of the normal-lead-wire–(s + p)-wave
superconductor junction.

in the low-energy DOS is suppressed by decreasing the edge
roughness.

In the above, we have shown that, although the MCMs
exist robustly, the braiding operation of them may be dis-
turbed by edge imperfections. The simplest countermeasure
would be fabricating superconducting islands with clean and
smooth edges. Even so, establishing a practical way to to make
the braiding process more robust would be a desirable work
[63–65].

IV. TUNNELING SPECTROSCOPY

Finally, we propose an experiment for detecting the tunable
MCMs. Let us consider a normal-lead-wire–superconductor
junction, where the normal lead wire is attached to a corner
of the superconductor as shown in Fig. 9. We describe the
present junction with a tight-binding model, where a lattice
site is indicated by r = jx + my, with x (y) representing the
unit vector in the x (y) direction. The superconductor (lead
wire) is located at 1 � j � ∞ (−∞ � j < 1) and 1 � m �
WS (1 � m � WN ), where WS (WN ) denotes the width of the
superconductor (lead wire). The superconducting segment is
described by the BdG Hamiltonian used also in the above
numerical calculations, and the normal lead wire is described
by setting �t = �s = 0 and λ = 0. The hopping integral be-
tween the superconductor and the lead wire (i.e., j = 0 and
j = 1) is given by tint. The explicit form of the BdG Hamil-
tonian describing the present junction is given in Appendix.
In the following calculations, we set the parameters as μ =
t , λ = 0.5t , �t = 0.5t , �s = 0.2�t , VZ = 0.5�t , tint = 0.1t ,
WN = 10, and WS = 101. We assume a sufficiently low trans-
parency at the junction interface (i.e., tint = 0.1t) such that the
bias voltage is mainly dropped at the interface. Under this
circumstance, we can calculate the differential conductance
at zero temperature by using the Blonder–Tinkham–Klapwijk
formula [93–95]

G(eV ) = e2

h

∑
ζσ ,ησ ′

[
δζσ ,ησ ′ − ∣∣ree

ζσ ,ησ ′

∣∣2 + ∣∣rhe
ζσ ,ησ ′

∣∣2]
E=eV , (33)
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FIG. 10. (a) Zero-bias conductance as a function of the angle of
the Zeeman field θZ . (b)–(g) Differential conductance as a function
of the bias voltages for (b) θZ = 0.25π , (c) θZ = 0.375π , (d) θZ =
0.5π , (e) θZ = 0.75π , (f) θZ = π , and (g) θZ = 1.125π .

where ree
ζσ ,ησ ′ and rhe

ζσ ,ησ ′ denote a normal and an Andreev
reflection coefficient at energy E , respectively. The index ζσ

(η′
σ ′ ) labels an outgoing (incoming) channel with spin σ (σ ′).

These reflection coefficients are calculated using recursive
Green’s function techniques [86,96].

In Fig. 10(a) we show the zero-bias conductance G(eV =
0) as a function of the angle of the Zeeman field θZ . We
find the conductance plateaus at 2e2/h for 0 < θZ < 0.5π and
π < θZ < 1.5π . For these θZ , according to the effective edge
theory in Sec. II B, the MCM appears at the corner attached
to the lead wire. Therefore, it is clear that the conductance
plateau is caused by the resonant tunneling through the MCM
[97–100]. To see more details, in Figs. 10(b)–10(g) we show
the differential conductance as a function of the bias voltage
for various θZ . At θZ = 0.25π , as shown in Fig. 10(b), we find
a steep zero-bias conductance peak, where the conductance
spectrum for finite energies displays an almost hard-gap struc-
ture. For θZ = 0.375π , we still find the clear peak, whereas
the superconducting gap edge has now a tail that was absent
for θZ = 0.25π . When θZ = 0.5π , the Majorana edge mode
appears along the edge perpendicular to the junction interface.
Since the Majorana edge mode is not bounded along the
junction interface, it cannot cause resonant tunneling [101].
As a result, as shown in Fig. 10(d), the zero-bias conductance
peak disappears when θZ = 0.5π . At θZ = 0.75π , there are
no zero-energy states in the vicinity of the corner attached to
the lead wire. As a consequence, we find a hard gap in the
conductance spectrum. When θZ = π , the gapless Majorana
edge states appear at the edge along the junction interface.

Here we must note that the energy levels of the Majorana edge
states are discretized owing to the finite size of the system.
As a consequence, as shown in Fig. 10(f), the conductance
spectrum exhibits many spikes for low-bias voltages. When
we prepare a sufficiently large superconductor, the energy
levels of the Majorana edge states will form a continuum
such that the conductance spectra show a broad peak structure
instead of a collection of sharp peaks. With θZ = 1.125π ,
the MCM again appears at the corner attached to the lead
wire. As a consequence, as shown in Fig. 10(g), the con-
ductance spectrum exhibits a zero-bias peak, whereas we
also find significant enhancement in low-bias voltages. When
θZ = 1.25π , the conductance spectrum returns to that in
Fig. 10(b).

The periodicity of the zero-bias conductance with respect
to the direction of the Zeeman field is smoking gun evidence
for the existence of controllable MCMs. In real experiments,
finite-temperature effects and other perturbations may mod-
ify the details of the conductance spectrum. Moreover, the
edge roughness may disturb the stepwise change in the zero-
bias conductance shown in Fig. 10(a) because, according to
Sec. III B, the edge roughness affects significantly the spec-
trum of the edge states around θ = 0, 0.5π , π , and 1.5π .
Nonetheless, our proposal is still valid for identifying the
controllable MCMs because we only need the distinct peri-
odicity in the zero-bias conductance and we do not need any
detailed and quantitative information about the conductance
spectrum.

V. CONCLUSION

We have demonstrated that a two-dimensional noncen-
trosymmetric (s + p)-wave superconductor in the presence
of an in-plane magnetic field can host tunable MCMs. We
also show that the number of MCMs depends sensitively on
the edge shape of the noncentrosymmetric superconductor.
We find that with irregular edge shapes there are no stable
pairs of MCMs that can fully circle around the edges of
the superconductor, a property that is important for braid-
ing. We have also studied the effects of edge roughness on
the MCMs and found that the MCMs are in general robust
to edge roughness. However, edge roughness suppresses the
edge gap and may cause undesirable decoherence effects dur-
ing the braiding process. As a result, although the MCMs
can be found to be insensitive to the edge configurations, the
edge imperfections may disturb the realization of topologi-
cal computations. Therefore, developing practical measures
to stabilize the braiding process of tunable MCMs, as well
as fabricating clean devices, would be important future tasks
for realizing topological quantum computations. In addition,
we discuss the tunneling spectroscopy in the presence of the
MCMs, where a normal lead wire is attached to a corner
of the noncentrosymmetric superconductor. The periodicity
in the zero-bias conductance with respect to the magnetic
field direction is smoking-gun evidence of the existence of
controllable MCMs. The proposed experiment is promising
for observing tunable MCMs, because we can expect the
periodicity in the zero-bias conductance to be insensitive to
the details of the model. In conclusion, we have provided
groundwork knowledge for designing specific experiments
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for detecting tunable MCMs, which is an essential step
for realizing future topological quantum computations using
higher-order topological superconductors.
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APPENDIX: BOGOLIUBOV–DE GENNES HAMILTONIAN
IN A TIGHT-BINDING MODEL

In this Appendix we show the explicit form of the BdG
Hamiltonian in the tight-binding model. A lattice site is indi-
cated by r = jx + my, with x (y) representing the unit vector
in the x (y) direction. We assume that the superconductor is
occupied for 1 � j � LS and 1 � m � WS and the hard-wall
boundary condition is applied in both the x and y directions.
The BdG Hamiltonian reads H = HN + H�, with

HN = − t
∑

σ=↑,↓

[
LS−1∑
j=1

WS∑
m=1

{c†
r+x,σ cr,σ + c†

r,σ cr+x,σ } +
LS∑

j=+1

WS−1∑
m=1

{c†
r+y,σ cr,σ + c†

r,σ cr+y,σ }
]

+
LS∑
j=1

WS∑
m=1

∑
σ

(4t − μ)c†
r,σ cr,σ

+ iλ

2

∑
σ,σ ′

[
LS−1∑
j=+1

WS∑
m=1

(σ̂ )σ,σ ′ {c†
r+x,σ cr,σ ′ − c†

r,σ cr+x,σ ′ } −
LS∑

j=+1

WS−1∑
m=1

(σ̂x )σ,σ ′ {c†
r+y,σ cr,σ ′ − c†

r,σ cr+y,σ ′ }
]

+
LS∑
j=1

WS∑
m=1

∑
σ,σ ′

(V Z · σ̂)σ,σ ′c†
r,σ cr,σ ′ (A1)

and

H� = i�t

4

∑
σ,σ ′

[
−i

LS−1∑
j=+1

WS∑
m=1

δσ,σ ′ {c†
r+x,σ c†

r,σ ′ − c†
r,σ c†

r+x,σ ′ } −
LS∑

j=+1

WS−1∑
m=1

(σ̂z )σ,σ ′ {c†
r+y,σ c†

r,σ ′ − c†
r,σ c†

r+y,σ ′ }
]

+
LS∑
j=1

WS∑
m=1

�sc
†
r,↑c†

r,↓ + H.c., (A2)

where c†
r,σ (cr,σ ) is the creation (annihilation) operator of an

electron at r with spin σ =↑,↓, t denotes the nearest-neighbor
hopping integral, and μ is the chemical potential. The strength
of the Rashba spin-orbit coupling is represented by λ. The
Zeeman potential due to the externally applied in-plane
magnetic field is given by V Z = (VZ cos θZ ,VZ sin θZ , 0).
The spin-singlet s-wave and spin-triplet p-wave pair po-
tentials are denoted by �s and �t , respectively. The Pauli
matrices in spin space are given by σ̂ = (σ̂x, σ̂y, σ̂z ). The
normal lead wire in Fig. 9 is described by HN with re-

placing LS → −∞, WS → WN , and λ → 0. The coupling
between the lead wire and the superconductor is described
by

Hint = −tint

WN∑
m=1

∑
σ

[c†
j=1,m,σ c0,m,σ + c†

0,m,σ c1,m,σ ], (A3)

where tint denotes the hopping integral at the junction inter-
face.
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A. Matos-Abiague, I. Žutić, and J. Shabani, Phase Signature
of Topological Transition in Josephson Junctions, Phys. Rev.
Lett. 126, 036802 (2021).
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