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HERMITE-HADAMARD INEQUALITY FOR SEMICONVEX FUNCTIONS
OF RATE (k1, k2) ON THE COORDINATES
AND OPTIMAL MASS TRANSPORTATION

PING CHEN AND WING-SUM CHEUNG

We give a new Hermite—Hadamard inequality for a function f : [a, b] X [c, d] C R? — R which is semi-
convex of rate (kj, k») on the coordinates. This generalizes some existing results on Hermite—Hadamard
inequalities of S. S. Dragomir. In addition, we explain the Hermite—Hadamard inequality from the point
of view of optimal mass transportation with cost function c(x, y) := f(y —x)+ k2_1 lx1 —y1)2+ % lx2 — y212,
where f(-):[a, b] X [c, d] — [0, 00) is semiconvex of rate (k;, k;) on the coordinates and x = (x1, x3),
y =1, y2) €la, bl x[c,d].

1. Introduction

The classical Hermite-Hadamard inequality, first published in [6], gives an estimate of the mean value
of a convex function f on [a, b]:

b
(1-1) f(‘”f) f/f(x)dx < M

A simple proof of inequality (1-1) is given in [3]. In the two-dimensional situation, for any function
f :la, b] x [c,d] — R which is convex on the coordinates on [a, b] X [c, d], Dragomir proved in 2001
the following two-dimensional Hermite—Hadamard inequality (Theorem 1 in [1]):

b d 17 1 b d 1 d b
(1-2) f(a;,ﬁ; )_z[b /f(xl,‘:; )dx1+dT f(“; ,xz)dxz]

b rd
/f(xl,xz)dxldxz

<;/
“(b—a)(c—4ad)

Z[b— /f(xl C)dx1+—/f(xl d)dx;

| /\

)

_Sfaot+flad+ .o+ fbd
- 4

2010 AMS Mathematics subject classification: 26B25, 26D15, 49Q20.
Keywords and phrases: convex functions, Hermite—Hadamard integral inequality, optimal mass transportation.
Received by the editors on November 26, 2019.

2011
DOLI: 10.1216/rmj.2020.50.2011 © Rocky Mountain Mathematics Consortium


https://doi.org/rmj.2020.50-6
https://doi.org/10.1216/rmj.2020.50.2011

2012 PING CHEN AND WING-SUM CHEUNG

Interested readers are also referred to [2] for more details. On the other hand, Hermite—Hadamard type
inequalities involving two functions, and Hermite—Hadamard’s inequality for log-convex functions are
established in [7] and [11]. We also refer to [4] for Hadamard type inequalities for twice differentiable
functions.

Inspired from the Hermite-Hadamard inequality for semiconvex functions f : [a, b] — R in [8], we es-
tablish a refinement of the Hermite—-Hadamard inequality (1-2) for a function f : [a, b] X [c¢, d] C R?2 —> R
which is semiconvex of rate (k;, k») on the coordinates. Dragomir’s result (1-2), the Hermite-Hadamard
inequality for one- and two-dimensional semiconvex functions (see Theorem 2.2 and Theorem 2.9, re-
spectively) can all be seen as special cases. Finally, we interpret the meaning of the new Hermite—
Hadamard inequality obtained in the previous section from the point of view of optimal mass transporta-
tion problems by studying and comparing the transportation costs of various transportation plans of a
Kantorovich problem.

2. Two-dimensional Hermite-Hadamard inequality for semiconvex functions of rate (k;, k) on
the coordinates

We first recall some preliminaries on semiconvexity and the one-dimensional Hermite—Hadamard in-
equality for semiconvex functions f : [a, b] — R of rate k.

Definition 2.1 [5; 8]. A function f : [a, b] — R is said to be semiconvex of rate k € R if the function
By = )+ 5]
is convex in [a, b], that is,
FUU=2)x+39) = (1=3) ) +AF () + 5401 =) x =y
for all x, y € [a, b] and all A € [0, 1].

Theorem 2.2 [8]. If i is a Borel probability measure on an interval a, b] with barycenter

b
2-1) b, :/xd,u(x),
then for every semiconvex function f : [a, b] — R of rate k, we have
b k b
22 fb) < / F@ e+ / x = by dp(x),
_b-by
(2-3) 2=t 5 )+ f(b) +5 (b —a)(b—by).

Definition 2.3. (i) A function f : [a, b] X [c¢, d] — R is said to be semiconvex of rate k € R if the function
k
h(-) = f()+31 P

where | - | denotes the Euclidean norm in R?, is convex in [a, b] x [c, d].
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(i) If ki, kp € R, f:la,b] x [c,d] — Ris said to be semiconvex of rate (ky, k) on the coordinates if
for all x| € [a, b] and x; € [c, d], the partial map

o) e, d] =R, fo (u):= fxr,u)
is semiconvex of rate k,, and the partial map
fo@) la,b] > R, fr,(v) = f(v, x2)
is semiconvex of rate k.
Now the main two-dimensional Hermite-Hadamard inequality is given as follows.

Theorem 2.4. If i1, 1y are Borel probability measures on an interval [a, b] and [c, d] respectively, then
for every semiconvex function f :[a, b] x [c, d] — R of rate (ki, k») on the coordinates, we have
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Proof. Set
b b
b, = / xdpi(x) €la,bl, by, = f xdus(x) €lc, d].

It follows from Definition 2.3 that f,(x1) := f(x1, x2) and fy, (x2) := f(x1, x2) are semiconvex of rate
k1 and k», respectively.
Applying Theorem 2.2 to f,(x1) and fy, (x2) respectively, one has
b

k b
fxz(bm)S/fxz(xl)dul(xl)-i-?l/ X1 — by, 1> dpr (x1)

b kl b ) k )
2-9) - / o Gy s (xn) 5 f < dpua o) — 502,
b b - k
(2-10) ot (@) + ‘“ fo<b>+51<bm—a><b—bm>,
and
d k d
For(buy) < / o () diaa ) + 2 / 12— by P dpaa(x2)
d ky [ ko
2-11) _ / o ) dpia2) + 2 / By~ 22,
d—>b ko
(2-12) <o+ “2 £ o)+ 2 b~ O =)

Taking x, = b, in (2-9), x; = b, in (2-11), and addlng the two resulting inequalities, one has

1 b d
f(blle b[tz) S 5[/ f(xl’ b,uz) dlu'l(xl) +/ f(b,ul’XZ) dlu'Z(XZ)}

ki bzd k2 dzd b2 k2b2
+ ; X ,U«l(xl)+z ) x) Mz(Xz)—Z w ™ g P
This proves (2-5).
Integrating (2-9) and (2-10) with respect to x;, over [c, d] we have
(2-13)
/ S () dpa(xa) < / / fx1, x2) dpy @ palxy, x2) + —/ xpdpi(xy) — Ebil

b—b — ki
5/ |: b_/“ Jx, (@) + Zl_ fxz(b):| duy(x) + — ( " —a)(b_bm)‘

Integrating (2-11) and (2-12) with respect to x; over [a, b], we get

b d prb k2 d ) k )
(2-14) /fxl(bm)dm(xl)if/f(m,xz)dm®uz(x1,xz)+5/xzduz(xz) Zb

w2
c 2

d—>b ko
S/[ fol()Jr “2 fxl(d)]dﬂl(xl)+ (bu, —c)(d = by,).
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Adding (2-13) and (2-14), we have

1 d b
[ et it + [0 den|

1 k
5[/ / [ 614 fr, (x2)] dm@m(xl,xz)] n / X du1(X1)+—f x5 dpa(x2)— 4be jbiz

= ()+bm_ (D) | dpa( )+k( —a)(b—>by,)
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d—by,
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k
2(d fx1 (d)] dpy(x1)+— ( py —Od = Dby,),

and so

1 d b
(2-15) 5[ / Foabpy) dita(x) + f fxl<bﬂ2>dm<x1)}
2 k> 2
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C a

1272 e 2 ] dno + dpi (x1)
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b _
[ s e+ 5

2(d —c) 2(d —

fxl (d)] dpi(xr) + —/ x5 d o (x2)
+ Zl[(“ +b)by, —ab]+ ZZ[(chd)bM —ed],

which shows (2-6) and (2-7).
Taking x, = ¢, d in (2-10) and x| = a, b in (2-12), then (2-15) is
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(b—byu)(d—by,) b bMJ<bM2
= T —wd=0 T T aa- “fad
(b —a)(d—by,) (b, a)(buz K k B
o D p b, dy+ X S L(a-+b) by —abl+ = [(e+d) by, —cd),
which proves (2-8). U

Definition 2.5 [1]. A function f : [a, b] X [¢, d] — R is said to be convex on the coordinates if for any
X1 € [a, b] and x; € [c, d], the partial maps

fa@):lc,d] =R, fi(u):= f(x1,u) and fo):ila, bl =R, fi,@):= f(v,x2)
are convex.

It is obvious that if a function is convex on the coordinates then it is semiconvex of rate (0, 0) on
the coordinates. As a direct consequence of Theorem 2.4, we have the following Hermite—-Hadamard
inequality for convex functions on the coordinates which include Dragomir’s result (1-2) as a special
case.

Corollary 2.6. Let (11, uy be two Borel probability measures on the intervals [a, b] and [c, d], respec-
tively. If f :la, b] x [c, d] — R is convex on the coordinates, then

T b d b pd
f(bm,bm)ii[/ f(xl,buz)dﬂl(xl)+ff(bm’)’l)dﬂz()’l)] 5/ff(xl»xz)dllvl(xl)@)MZ(XZ)

< l/db bﬂl l’vl b d fbd Mn2 MZ d d
) . bh— fxz( )+ bh_ fxz( ) MZ(x2)+2 , d— fxl( )+ fxl( ) Ml(xl)

(b—by,)d—Dby,) (b—Dbu)(by, —c)
=S h—ad=0 T G- @?
( a)(d b/tz) ( ny )( n2
b, b, d
el (b e ) b, d).

Remark 2.7. In case u; := ﬁv“a,b], Uy = ﬁv“c,d], where v is the one-dimensional Lebesgue mea-
sure, then b, = (b+a)/2, by, = (c+d)/2, and Corollary 2.6 reduces to Dragomir’s result (1-2).

Another consequence of our Theorem 2.4 is a Hermite—Hadamard inequality for two-dimensional
semiconvex functions of rate k. We start with the following.

Lemma 2.8. Let f : [a, b] X [c, d] — R be semiconvex of rate k, then f is semiconvex of rate (k, k) on
the coordinates.

Proof. 1t follows from the semiconvexity of f that the function

h(xy, x2) := f(x1,x2) + 5 (x1 +x3)

is convex in [a, b] X [c,d]. As a result, h(x;, xp) is convex on the coordinates (see Lemma 1 in [1]).
That is, for any x; € [a, b] and x, € [c, d], both

hy,(x1) :=h(x1,x2) 1 [a,b] = R and hy (x2) :=h(x1, x2) : [c,d] = R
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are convex. As a result, for any x| € [a, b] and x; € [c, d],

&x, (V) = f(v, x2) + gvz :la,b] = R and gy (u) := f(x1,u)+ %uz le,d]— R
are convex. Therefore, for any x; € [a, b] and x1 € [c, d], fy,(v) and f, (u) are semiconvex of rate k. [

Theorem 2.9. If u1, o are Borel probability measures on an interval [a, b] and [c, d] respectively, then
for every semiconvex function f : [a, b] x [c, d] — R of rate k, we have

Fbuybuy) + = (b2 +b,)
b d k
EL/fﬁn,uﬁdudxo+/pfwupyoduﬂyn] {/x%dumxof/x%duﬂxg]+zw;+b@)

k b d
//f(X1 x2) dpy (x1) ® p2(x2) + = [/ xlzdm(x1)+/ xzzduz(xz)]

b—by, - ) |d ) k bzd (
/|:2(b Jx(a )+2(b )fxz ):| w2 (x2 +4/ax1 wi(xy)

d_buz buz
+f [2(d NG )+2(d fxl(d)} dpi(x1)

k d
+4/ x5y dua(x2) + — |:(a—|-b)bu1 +(c+d) by, —ab— d:|
C

(b—by)(d —by,) (b—by,)(bu, — )
S Th—ad—o @Ot <—)w—) fia.d)
(b“l_'“)(d__b“z)f(b,c)4—( “)(b“z f(b d)+ - [(a—kb)bul4—(c4—d)bu2——ab——cd]

(b—a)(d—c) (b—a)(d—

Before ending this section, we remark that Theorem 2.2 which is a one-dimensional Hermite-Hadamard
inequality can also be seen as a special case of Theorem 2.4.

Remark 2.10. Theorem 2.2 which is a one-dimensional Hermite—Hadamard inequality can also be seen
as a special case of Theorem 2.4. In fact, observe that when the interval [c, d] degenerates to a point,
the function f(x, y) in Theorem 2.4 reduces to a semiconvex function f(x) : [a, b] — R. With suitable
modifications, (2-5), (2-6), (2-7) and (2-8) in Theorem 2.4 reduce to (2-2) and (2-3) in Theorem 2.2.

3. Optimal mass transportation meaning of Theorem 2.4

We interpret the meaning of the new Hermite—-Hadamard inequality obtained in the previous section from
the point of view of optimal mass transportation problems.
A typical optimal mass transport problem is the Kantorovich problem, which is formulated as

(3-1) min / c(x, y)dy(x,y),
yell(v2,12) Joxo
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where Q2 C R", vy, v, € P(€2) = the space of Borel probability measures on €2, c(x, y) : 2 x Q2 — [0, +00)
is a cost function, and

[MT(vy, v2) :=={y € P(2 x Q) : (m)zy =1, (m2)zy =12}

is the set of transport plans between vy and v,. Here my, 75 : R” x R* — R” are the canonical projections
on the first and second factors, respectively. We refer to [9; 10] for more information and references on
optimal mass transportation theory.

For the sake of simplicity, in what follows we will only consider a Kantorovich problem on R?. For
fixeda, b, ¢, d € R, let

Q := [min{a, b, 0}, max{a, b, 0}] x [min{c, d, 0}, max{c, d, 0}] C R?,

and consider a cost function c(x, y) : 2 x  — [0, +00) given by

. ki 2 ko 2
(3-2) clx,y) = f(x—y)-i-?lm—ml +EIX2—y2I ,
where

Sfliapixie,ar : la, bl x [c, d] — [0, +00)

is semiconvex of rate (kq, k) on the coordinates.

Before proceeding, we first recall some standard notations. Let w;, i, be two Borel probability
measures on the intervals [a, b] and [c, d], respectively, and using the notation in Theorem 2.2, b,,, will
denote the barycenter of w;, for i =1, 2. If §, denotes the Dirac measure at the point x € R, then the
product measure Sbm ® 8;,“2 of 6;,“' and ‘Sbuz is given by

1 if b, €A, by, €B

d 0p, (AX B) =
buy ® Oy, (A X B) {0 otherwise

for any Borel measurable A C [min{a, b, 0}, max{a, b, 0}] and B C [min{c, d, 0}, max{c, d, 0}]. Note
that 8}’#1 ® 8”#2 e P(Q).

In what follows, we will consider the Kantorovich problem with cost function c(x, y) as defined
in (3-2), for various mass distributions v; and v, and compare the transfer costs by applying Theorem 2.4.

Example 3.1. Take v; = Bbm ® 5b,L2, V) =80 ® &g € P(2), then IT1(vy, v2) = {v; ® 1} is a singleton, and
the optimal transportation cost from vy to v; is

| crnanue.y
QxQ
= fx —yl,xz—yz)-l-?(xl -y + E(Xz—yz) ~dép, ®p,, ® 8 ® do(x1, X2, y1, y2)
QxQ

ki ko
= f(bu, bu,) + (Ebil + Eb/iz)’

which is expression (2-4) in Theorem 2.4.
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Example 3.2. Take v = %,ul ® 5% + %5;,1” & U2, V2 =360 g € P(2), then IT(vy, 1) ={v; ®1y}isa
singleton, and the optimal transportation cost from v; to v, is

/ c(x,y)dvi®@(x,y)
QxQ

1 k k
= —f F@1 =y X2 —y2) + = (1 — Y1)+ = (2 — y2)* | -dpuy ® 8p,,, ® 80 ® So(x1, X2, Y1, ¥2)
2 Jaxa 2 2 2

1 k ka
+—/ F =y, X2 =) + = (61— y1) 2+ = (22— y2)° ~ddp, ® U2 ® 80 ®0(x1, X2, Y1, y2)
2 Jaxa 2 2 ]

17 [? d
= §|:-/; f(-xl, blLZ)d/-'L] ()’1) +‘/{j f(bl“ y )Cz) d/-'LZ(XZ)]

ki bz k> dz klz k22
+ Y axl dﬂl(x1)+z szduz(n) + 4b,“+ 41?#2 ;

which is expression (2-5) in Theorem 2.4.

Example 3.3. Take vi = 1 ® 2, v2 =8y ® 8o € P(2), then IT(vy, v2) = {v; ® v} is a singleton, and
the optimal transportation cost from vy to v; is

/ c(x,y)dvi®uv(x,y)
QxQ

ki ko
=/ |:f(x1 — Y1, X2—y2) + (E(xl — )i+ ?(xz —Y2)2):| ~dp @ 2 Q8o ® So(x1, X2, Y1, ¥2)
QxQ

k
/ f e x2) dpn (x1) dpa (x2) + / / ( Ly )dm(xl)dmuz)

k k (¢
=f / f(x1,xz)dm(x1)duz(m)+[31/ deul(m)Jrf/ X§duz(xz)}

which is expression (2-6) in Theorem 2.4.

Example 3.4. Take

b s, 4 Do ® 6+ 20 5 @ iy 4 L1~
2d -0t ud—)”‘ T - PP T 20 —a)

in P(£2), then IT(vy, 12) = {v] ® 1} is a singleton, and the optimal transportation cost from v; to v, is

5b®M2, V2 = 8o ® &g

V1 =

/ c(x,y)dvi®va(x,y)
QxR

d—b ky (? k
== f(xl—yl,xz—yz)dul®80®80®8o(x1,xz,yl,yz)+—1/ i dp () + e
2(d c) QxQ 2 a 2

by, —c

ki b 2 ky
— V1, Xp — d 84 R RS , X2, V1, — d —d
2(d—c)|: ngzf(xl Vi, X2 —y2) dp1® 84 ® 8o ® 8o (X1, X2, y1, ¥2) + 2LX1 p(x) + >
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b_bul

ki ky (¢
[ FOx1 =1, x2—y2) d8, ® 2 ® 8o @80 (x1, X2, y1, y2) + —a*+ —/ x5 duz(xz)]
2(b_a) QAxQ 2 2 c

by, —a

k ky (¢
f(xl_}’1»x2—y2)d5b®,u2®50®50(x1,xz,yl,)’2)+_1b2+_/ x5 dpa(x2)
2(b—a) [ Jaxe 2 2Je

1 (%b—b by, —a ki [?
=5/ T fe(@+ ﬁxmmMuﬁ+i/thwm>

bag—b
+5/ - mfxl( )+ 52 fxl(d)d,ul(xl)-i-—f x5 dpa(xa)

b —by) o il =) o kald =) 5 kb —0)

T b —a) 4d—c) Hd—o)
dh—b _
:f 2 Hi fxz( )+2(b fo(b)d,le(xZ)—i——/ xl duy(x1)
ba —
+/ Z(d— )fxl( )+2(d )fxl(d)dﬂl(xl)'i‘—/ xzd,uz(xz)

k
Zl[ (a+Db) by, —ab] + Z[(c+d)bm —cd]:|,

which is expression (2-7) in Theorem 2.4.
Example 3.5. Take
_ (b—=by,)(d—by,)

T e-wd-o
(b, —a)(d —by,) (b, —a)(by, — ) (b—by,) by, — )
><G“®&*' b-ad—o " omaa-o P T o—ad-o ®&9
V2 = 8o ® o,

in P(£2), then IT(vy, 12) = {v; ® 1} is a singleton, and the optimal transportation cost from v; to v, is

/ c(x,y)dvi®@wn(x,y)
QAxQ

s R
((b_Z;EZ b’“)[f(b o+ —= b2 kz“}Jr(bz‘];:Z;EZ’“ [f(b d) + b2+k2d2}

SO 4 0 bm;ggm P G
((b_Z;EZ“Z f, d)+ L[(a+b) by, — ab]—i—E[(c—i-d)sz—cd],

which is expression (2-8) in Theorem 2.4.
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X X X;
2 2 2 XZ x2
d d d d
by Vi buz [ W T B Vi d "
c ¢ c C c
V2 V2 V2 V2 i
0 X 0 b X % X
a by b M a PH1 o M 0 a b X 0| a b 0 a b 7

Figure 1. Mass transportation: Examples 3.1, 3.2, 3.3, 3.4, 3.5.

As the transport costs from v; to v; in Examples 3.1, 3.2, 3.3, 3.4 and 3.5 equal to each term in the
Hermite—Hadamard inequality in Theorem 2.4, respectively, it follows that the transfer costs in these
examples become more and more expensive (see Figure 1).
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