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For a queueing system with multiple customer types differing in service-time distributions and waiting costs,
it is well known that the cµ-rule is optimal if costs for waiting are incurred linearly with time. In this paper,
we seek to identify policies that minimize the long-run average cost under nonlinear waiting cost functions
within the set of fixed priority policies that only use the type identities of customers independently of the
system state. For a single-server queueing system with Poisson arrivals and two or more customer types, we
first show that some form of the cµ-rule holds with the caveat that the indices are complex, depending on
the arrival rate, higher moments of service time, and proportions of customer types. Under quadratic cost
functions, we provide a set of conditions that determine whether to give priority to one type over the other
or not to give priority but serve them according to first-come-first-served (FCFS). These conditions lead to
useful insights into when strict (and fixed) priority policies should be preferred over FCFS and when they
should be avoided. For example, we find that when traffic is heavy, service times are highly variable, and the
customer types are not heterogenous, then prioritizing one type over the other (especially a proportionally
dominant type) would be worse than not assigning any priority. By means of a numerical study, we generate
further insights into more specific conditions under which fixed priority policies can be considered as an
alternative to FCFS.

History : This paper was first submitted in January 2018, first revision submitted in August 2019, and
second revision submitted in August 2020.

1. Introduction
Many service systems prioritize their customers based on customers’ characteristics such as
expected service time and value to the system in addition to their arrival times to the system.
For example, patients arriving at the emergency department of a hospital are first triaged, i.e.,
assigned a criticality level, and prioritized based on their triage category and arrival order. Another
example is call centers, where customers who have premier membership status are given priority
for order of service. A natural framework for analyzing such systems has been through modeling
them as queueing systems and over the last sixty years numerous articles have been published on
how customers in a queueing system should be prioritized.
Despite significant progress, however, this literature still has important gaps from both academic

and practical points of view largely due to the assumptions imposed on the waiting costs for
analytical tractability. Specifically, an overwhelming proportion of prior work assumes that the
cost of waiting for a customer is a linear function of the customer’s waiting time, an assumption
that is not likely to hold for many systems. For example, the optimality of the well-known cµ-rule
has been established under a variety of conditions but all under the restriction that waiting costs
are linear (see Cox and Smith (1961) for the article that started this literature and see Section 2
for more on the cµ-rule). On the other hand, the work that considered the possibility of nonlinear
waiting costs imposed some other restrictions on the system such as the requirement that the
system operate under heavy traffic and the waiting cost function be convex. More importantly, the
policies proposed (e.g., the generalized cµ-rule by Van Mieghem (1995)) are somewhat sophisticated
requiring the system to keep track of the queue-waiting time of each customer and to have complete
knowledge of the waiting cost function, which may pose a challenge in practice.
While prioritization is prevalent in practice, in many cases, the policies in place are not based

on careful statistical estimation of the waiting cost functions but mostly based on some rough
analysis of limited data, and the service providers’ past experience and beliefs about who needs the
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service more urgently or whose long wait would be more detrimental for the system. For example,
prioritization of patients in emergency departments or in the aftermath of mass-casualty events
is very common in practice yet the precise nature of the effect of passage of time on the patient
survival, which can be seen as waiting cost, is not well understood (see Jenkins et al. (2008), Sacco
et al. (2005) and the discussion on survival probability functions in Sun et al. (2017)). Similarly, in
other settings like healthcare clinics and call centers, there is very limited work on the estimation of
waiting costs. Nevertheless, this does not stop providers from implementing prioritization policies
that they believe to be improving system performance. They also usually stick with simple policies
like classifying customers into a few groups and prioritizing one group over the other without taking
into account state of customers. In this paper, we call such a policy a fixed priority policy because
the priority order assigned to each customer type does not change with time.
Given the fact that waiting cost functions are not known precisely, choosing a fixed priority

policy as opposed to dynamically prioritizing customers based on exact cost information (if one
needs to be chosen) is reasonable. But the question remains as to whether fixed prioritization
makes sense in the first place. The theory supports prioritization among classes when waiting costs
are linear functions of time but what if the waiting costs are not linear? When is there at least
some justification for taking the risk of using prioritization between classes and thereby possibly
alienating customers rather than using a standard first-come-first-served (FCFS) policy, which is at
least largely perceived to be fair? A provider who uses prioritization without knowing the precise
form of the waiting cost functions is in fact implicitly assuming a certain relationship between
the waiting cost functions for different classes. But what are these implicit assumptions? One of
the two main goals of this article is to provide some answers to these questions, which we do by
comparing the performance of applying FCFS across different types with those of assigning fixed
priorities under cost functions that are not necessarily linear.
The second goal of this article is to provide some managerial insights into the type of conditions

that would favor a particular strict priority policy or FCFS over other fixed priority policies. (In this
paper, a strict priority policy is a fixed priority policy under which there is at least one type that
is prioritized over others under all circumstances.) While service providers might find it difficult to
estimate the waiting cost functions precisely, they might have a good sense of the general structure
of the function (convex, concave, quadratic, etc.). Thus, it would be useful to know, assuming that
the cost functions have a particular structure (but not knowing the functions precisely), whether
any one of the policies would stand out by being the best choice under a larger or more realistic set
of cost parameter values than the others and whether the policy that stands out depends on system
conditions such as traffic intensity. For example, if a linear cost model appears to be appropriate
for most customers but a quadratic cost function for one particular class, would any one of the
policies stand out as more likely to be better than the others? Would the answer depend on the
traffic intensity on the system? How about the service time variability?
In the pursuit of the goals stated above, we analyzed an M/G/1 queueing system with two or

more types of customers and each type being characterized by a service time distribution and
a waiting cost function, where the waiting cost function for at least one type is nonlinear. The
performance measure of interest is the long-run average cost, and hence, priority policies that
provide a smaller performance measure are better. Following a review of the relevant literature in
Section 2, we provide more details of our stylized model in Section 3.
Our theoretical analysis starts with a set of conditions that determine the order between three

fixed priority policies that differ only in the priority orders of two types of customers under a general
cost structure; see Section 4. Although these conditions may not be any simpler than directly
comparing long-run average costs under competing fixed priority policies, they demonstrate that
the comparison follows some form of the famous cµ-rule. In Section 5, we continue our theoretical
analysis by taking a closer look at the case with quadratic waiting cost functions, which generates
several interesting and useful insights. For example, we find that the choice between priority policies
depends on the traffic intensity and the proportion of each type in the population unlike in the
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linear-cost case. We also provide results on how the decision to prioritize or not to prioritize changes
with the composition of the population and traffic intensity. To further strengthen these insights,
we study the case with partial information on the waiting cost functions in Section 6 and present
results of a numerical study in Section 7. We provide the most important conclusions from this
study in Section 8. The proofs of our analytical results, some supplemental material, and tables of
notation are provided in the Appendix.

2. Literature review
Queueing systems where certain classes of customers have priority over others are called priority
queues. The study of priority queues dates back to Cobham (1954) who considered a single-server
Markovian queueing system (M/M/1) where customers belong to multiple priority classes and the
service is non-preemptive. For such a system, Cobham (1954) derived expressions for the long-run
average waiting times in the queue for each priority class. This seminal work was followed by
Miller (1960) and Jaiswal (1968), who advanced the analysis of priority queues further, e.g., by
providing Laplace-Stieltjes transforms of the waiting time distributions for M/G/1 priority queues
and considering other priority mechanisms such as preemptive prioritization. Others also considered
probabilistic priority policies, where priorities are assigned randomly among different customer
classes; e.g., Katayama and Takahashi (1992) and Jiang et al. (2002) provided approximations for
the delay performance under such policies.
When the waiting time of customers is penalized linearly with time, Cox and Smith (1961)

established the optimality of the well-known cµ-rule, which minimizes the long-run average waiting
cost in an M/G/1 queue with multiple priority classes. According to the cµ-rule, customers with
larger ciµi index are assigned higher priority, where ci is the waiting cost per unit time and µi is
the service rate for type i customers. Following this seminal paper, the optimality of the cµ-type
policies has been studied under various settings by Kakalik and Little (1971), Klimov (1974, 1979),
Harrison (1975), Pinedo (1983), Nain (1989), Argon and Ziya (2009), Budhiraja et al. (2014) among
others, all under the assumption of linear cost functions. We also refer readers who are interested
in more general conditions for the optimality of cµ-type policies to research on achievable regions
for optimal control of queueing systems, e.g., Shanthikumar and Yao (1992) and Bertsimas (1995).
While this is not the first paper to consider nonlinear waiting costs in queueing systems, it would

be fair to say that the literature on the topic is scarce. Within this literature, Haji and Newell
(1971) showed that when waiting cost functions are increasing and convex, the optimal policy will
always serve customers of the same type according to the FCFS discipline. Later, Van Mieghem
(1995) proved that when waiting costs are convex in time, a generalized version of the cµ-rule is
asymptotically optimal under heavy traffic, which was followed by a proof by Mandelbaum and
Stolyar (2004) that extended the heavy-traffic optimality of the generalized cµ-rule to more general
settings. The generalized cµ-rule is a dynamic policy that gives priority to the customer who has
the largest C ′

i(t)µi value in the system at every service completion epoch, where Ci(t) is the cost
of a type i customer with a queue-waiting time of t units and C ′

i(t) is its first-order derivative.
Hence, to implement the generalized cµ-rule, one needs to keep track of the waiting times of all
customers in the system and know the cost functions precisely.
Other relevant work that study the optimal scheduling problem in priority queueing systems

under convex cost structures include Ansell et al. (2003), Glazebrook et al. (2003), and Bispo (2013).
Assuming that the holding cost is a function of the number of customers in the system, these papers
developed state-dependent (dynamic) heuristic policies for single-server queueing systems as an
alternative to the simpler generalized cµ-rule. Gurvich and Whitt (2009) considered a multi-server
multi-class service system with convex delay costs that are functions of the queue length. They
introduced a queue-and-idleness-ratio policy and showed that this proposed policy would reduce
to the cµ-rule under linear holding costs and to the generalized cµ-rule under strictly convex costs
and other regularity conditions. Finally, Ata and Tongarlak (2013) and Larranaga et al. (2015)
studied the dynamic control of multi-class queueing systems with abandonments and proposed
state-dependent heuristic policies that would work under possibly nonlinear waiting costs.
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3. Model description
Consider a single-server queueing system with K types of customers, where K is an integer and
2≤K <∞. Customers arrive to the system according to a Poisson process with rate λ > 0, and
each arriving customer belongs to type i ∈ {1,2, . . . ,K} with probability pi > 0, where

∑K

i=1 pi =
1, independently of the arrival process. Service times for type i customers are independent and
identically distributed (i.i.d.) with rate µi > 0 and nth moment τ

(n)
i > 0 for n≥ 2. We define µ≡

1/
∑K

i=1(pi/µi), τ
(n) ≡

∑K

i=1 piτ
(n)
i , ρi ≡ λpi/µi, and ρ≡ λ/µ, which we call the traffic intensity, and

we assume that ρ< 1 for stability. Each type i customer incurs a waiting cost Ci(t) when its waiting
time in the queue is t≥ 0. We assume that Ci(t) is first-order differentiable and non-decreasing in
t for fixed i. (See Appendix A.1 for tables of notation used throughout this paper.)
For such a queueing system, we consider a set of policies Π that only includes non-idling and

non-preemptive queueing policies that assign a fixed (deterministic) priority order to each type of
customers. More specifically, Π consists of policies under which customers are ranked according
to at most K priority orders and any policy π ∈ Π satisfies the following properties: Let Kπ be
the number of distinct priority orders under policy π. Without loss of generality, let {1,2, . . . ,Kπ}
denote the set of priority orders under policy π and assume that a smaller priority order represents
a higher priority for service. (Different customer types may have the same priority order, and hence,
1≤Kπ ≤K.) Priority orders are fixed in the sense that they cannot be modified once the system
starts operating. A customer from a type with priority order k > 1 cannot be taken into service
when there exists a customer in the system that has a priority order smaller than k. Policies in Π
are also non-idling and non-preemptive in the sense that the server does not idle as long as there
is a customer in the system and that service of a customer who has been taken into service has to
be completed without any preemption before the server moves on to serving another customer.
For any policy π ∈Π, define the long-run average cost as

Cπ ≡ lim
t→∞

∑K

i=1

∑ni(t)

k=1 Ci(V
π,x0
i,k )

t
(1)

(whenever the limit exists), where ni(t) is the number of type i arrivals by time t and V π,x0
i,k is the

waiting time of the kth arriving type i customer under policy π and initial state x0. Our objective
is to compare policies in Π in terms of their long-run average waiting costs where smaller the
long-run average cost better the policy. Let W π

i denote the steady-state waiting time of a type i
customer under policy π. We show in the Appendix that the limit in (1) exists and satisfies

Cπ = λ
K∑
i=1

piE
[
Ci(W

π
i )
]

(2)

if Assumption 1 holds.

Assumption 1. For π ∈Π and all i= 1,2, . . . ,K, E
[∣∣Ci(W

π
i )
∣∣]<∞.

In this paper, we focus on policies in the subset ΠF ⊂Π, where customers with the same priority
order are served according to FCFS. These policies are of special interest due to their common use
in practice. Furthermore, if Ci(·) is a convex function (in the non-strict sense) for all i= 1,2, . . . ,K,
then it is sufficient to compare only policies in ΠF to find an optimal policy within Π. More
precisely, Proposition 1 in Haji and Newell (1971) implies that if Ci(t) is convex for all i, then, for
any policy π ∈Π \ΠF , there exists a policy πF ∈ΠF such that CπF ≤ Cπ. (Proposition 1 in Haji
and Newell (1971) assumes two types but can be easily extended to more than two types.)
We conclude this section by noting that Assumption 1 holds under some reasonable conditions

for the cost functions and service time distributions as long as the queueing system is stable. As
an example, see Proposition 1 below for polynomial cost functions.
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Proposition 1. Suppose that for type i ∈ {1,2, . . . ,K} customers, Ci(t) =
∑Ji

ℓ=1 c
(ℓ)
i tℓ, where

Ji < ∞ is the degree of the polynomial function Ci(t) and c
(ℓ)
i are some real numbers such that

C ′
i(t)≥ 0 for all t≥ 0. If ρ < 1 and the first Ji +1 moments of service times for all customers are

finite, then E[(W γ
i )

ℓ]<∞ for ℓ= 1,2, . . . , Ji and γ ∈ΠF , and hence, E [|Ci(W
γ
i )|]<∞.

The condition on the moments of service times in Proposition 1 holds for many common distribu-
tions such as exponential, gamma, Weibull, and lognormal.

4. Comparison under general cost functions: cµ-rule appears again
We start the analysis by comparing policies in ΠF under very general conditions for the waiting
cost functions (i.e., Assumption 1). To understand the complexity of the problem, first consider
the case with two types, under which ΠF has three policies: one that prioritizes type 1 customers,
another that prioritizes type 2 customers, and a third one that prioritizes neither type and follows
FCFS for all customers. When there are three or more types, the number of ways of prioritizing
and/or “pooling” different types of customers will increase dramatically. (In this paper, pooling
means grouping two or more customer types and assigning the same priority order to the group.)
Specifically, there are 13 choices with three types of customers: prioritize each individual type (six
choices), pool two types and assign priorities between the pooled group and the single type (six
choices), or pool all three. Note that the number of policies in ΠF corresponds to the ordered Bell
number in number theory, which can be approximated by K!/ (2(log 2)K+1), see, e.g., Gross (1962).
This shows that it becomes much more difficult to compare all policies in ΠF as K increases.
Although we are not able to compare all policies in ΠF analytically (except for K = 2), as we

show in the remainder of this paper, we can compare policies that are similar in that they share
the same priority order assignment for all types except for two. Such comparisons not only provide
a means to eliminate suboptimal policies, but more importantly, also generate insights into how
priorities should be assigned between two types, especially when the priority orders of other types
are pre-determined.
To present our results, we start by picking a policy π ∈ ΠF . Without loss of generality, we

assume that type i customers have priority order i under policy π, for i = 1,2, . . . ,K. For fixed
k ∈ {1,2, . . . ,K − 1}, we will compare π with two of its variants. We first define policy πk+1 to be
a priority policy where the priority orders of all types are the same as those under policy π except
that the priority orders of type k and type k+1 customers are switched. We also define policy π̄k to
be a priority policy where the priority orders of all types of customers are the same as those under
policy π except that type k and type k+1 customers are pooled and served according to FCFS.
Thus, policies πk+1 and π̄k that are derived from policy π treat all types the same way except
for types k and k + 1: policy πk+1 prioritizes type k + 1 customers over type k and π̄k does not
differentiate between types k and k+1 customers in terms of priority. For notational convenience,
we also define policy πk, which is identical to policy π. Our next result provides necessary and
sufficient conditions for the comparison of πk, πk+1, and π̄k under general cost structures.

Proposition 2. Suppose that Assumption 1 holds under policies πk, πk+1, and π̄k for fixed
k ∈ {1,2, . . . ,K − 1}, and let

δγ1,γ2i ≡
E
[
Ci(W

γ1
i )
]
−E

[
Ci(W

γ2
i )
]

E
[
W γ1

i

]
−E

[
W γ2

i

] , (3)

for i∈ {k, k+1}, γ1, γ2 ∈ {πk, πk+1, π̄k}, and γ1 ̸= γ2. Then, we have:
(a) Cπk

≤Cπ̄k
if and only if δ

πk,π̄k
k µk ≥ δ

πk,π̄k
k+1 µk+1;

(b) Cπk+1
≤Cπ̄k

if and only if δ
πk+1,π̄k
k+1 µk+1 ≥ δ

πk+1,π̄k
k µk; and

(c) Cπk
≤Cπk+1

if and only if δ
πk,πk+1
k µk ≥ δ

πk,πk+1
k+1 µk+1.
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Proposition 2 is not difficult to prove as can be seen in the Appendix but it has an elegant
interpretation: the ordering among long-run average costs under πk, πk+1, and π̄k follows a gener-
alized version of the famous cµ-rule. To see this more clearly, note that δγ1,γ2i defined in (3) can
also be expressed as δγ1,γ2i =E[C ′

i(U
γ1,γ2
i )], where Uγ1,γ2

i is a random variable that is defined by a
probabilistic analogue of the mean value theorem (see Remark A.1 in the Appendix). In particular,
Uγ1,γ2

i can be considered as the “mean value” of steady-state waiting times W γ1
i and W γ2

i . Thus,
δγ1,γ2i can be interpreted as the expected marginal change in cost for type i customers when the
policy switches from γ1 to γ2, or vice versa. Then, parts (a) and (b) of Proposition 2 say that
prioritizing type i customers over type j customers, for i, j ∈ {k, k + 1} and i ̸= j, is better than
pooling them if and only if switching from policy π̄k to πi results in a larger expected marginal
decrease in cost per unit service time for type i customers than the expected marginal increase
in cost per unit service time for type j customers. Similarly, part (c) of Proposition 2 says that
prioritizing type k over type k+1 is better than the opposite if and only if switching from policy
πk+1 to πk results in a larger expected marginal decrease in cost per unit service time for type k
customers than the expected marginal increase in cost per unit service time for type k+1.

As long as precise expressions for the cost functions for the two types under comparison are
known, it is not difficult to numerically determine δγ1,γ2i , and thus, to identify the best policy within
{πk, πk+1, π̄k}, which is ΠF itself for K = 2. Indeed, as we show in Corollary A.1 in the Appendix,
we only need to compute δ

γ,π̄k
i for i ∈ {k, k+1} and γ ∈ {πk, πk+1} to find the best policy among

πk, πk+1, and π̄k using Proposition 2. Hence, in the rest of this paper, we simplify the notation by
letting δγi ≡ δ

γ,π̄k
i for i ∈ {k, k+1} and γ ∈ {πk, πk+1}. Furthermore, under certain assumptions on

the structure of the waiting cost functions, it is possible to obtain closed-form expressions for δγi
as we demonstrate for quadratic functions in Section 5. Finally, note that the computation of δγi
for i∈ {k, k+1} and γ ∈ {πk, πk+1} does not require knowledge of cost functions of other types but
only those of the two types of customers we compare, which is practically appealing.

5. Comparison under quadratic cost functions
Polynomial waiting cost functions – especially quadratic costs – have been widely used in the study
of queueing systems with nonlinear waiting costs; see, e.g., Ata and Tongarlak (2013) and Parlar
and Sharafali (2014). These functions have been popular not only because they are suitable for
analysis but also because they fit well to the perceived cost of waiting in several applications. For
example, in a recent empirical study, Ding et al. (2019) find that the marginal waiting cost of critical
patients (from the decision makers’ perspective) at four large Canadian emergency departments
can be approximated by a piece-wise linear increasing function. With this motivation, we focus on
polynomial cost functions with a degree of at most two in the rest of this paper to derive more
insights into our main research question: when to assign priorities if waiting costs are nonlinear?
To apply Proposition 2 to the quadratic-cost case, we need to define

Mγ
i ≡

E
[
(W π̄k)

2
]
−E

[
(W γ

i )
2
]

E [W π̄k ]−E [W γ
i ]

, (4)

for i ∈ {k, k+ 1} and γ ∈ {πk, πk+1}. (We drop the subscript from W
π̄k
i for i ∈ {k, k+ 1} because

W
π̄k
k and W

π̄k
k+1 are identical.) In words, Mγ

i represents the change in second moments of steady-
state waiting times of type i customers per change in their mean steady-state waiting times by
switching from priority policy γ to π̄k. As can be seen in Proposition 3 below, we need Mγ

i to
characterize the best policy among πk, πk+1, and π̄k under quadratic costs. Closed form expressions
of Mγ

i are given in Equations (EC.8) and (EC.9) in the Appendix and show that Mγ
i is a function

of the arrival rate, proportions of customer types, and first three moments of service times.

Proposition 3. Suppose that Assumption 1 holds, and for fixed k ∈ {1,2, . . . ,K − 1} and i ∈
{k, k+1}, cost functions satisfy Ci(t) = c

(2)
i t2 + c

(1)
i t, where t≥ 0 and c

(1)
i , c

(2)
i ≥ 0. Then, δπi

i ≤ δ
πj

i
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for i, j ∈ {k, k+1} and j ̸= i, where δγi = c
(2)
i Mγ

i + c
(1)
i for γ ∈ {πk, πk+1}, and the inequality holds

strictly if and only if c
(2)
i > 0. Furthermore, the best policy among πk, πk+1, and π̄k is characterized

as follows:
(a) if δ

πk
k µk > δ

πk
k+1µk+1, then πk is the best (and πk+1 is the worst);

(b) if δ
πk+1
k+1 µk+1 > δ

πk+1
k µk, then πk+1 is the best (and πk is the worst); and

(c) otherwise, i.e., if δ
πk
k µk ≤ δ

πk
k+1µk+1 and δ

πk+1
k+1 µk+1 ≤ δ

πk+1
k µk, π̄k is the best.

Proposition 3 is a generalization of the classical cµ-rule to the quadratic-cost setting. (One can
recover the cµ-rule by setting c

(2)
i = 0 for all i = 1,2, . . . ,K and applying Proposition 3 multiple

times.) Possibly the most important difference from the classical cµ-rule is that in the quadratic-cost
case prioritizing one type or the other may be worse than not prioritizing. (By the first statement
of Proposition 3 on the strict order between δπi

i and δ
πj

i and part (c), we know that there is a
non-empty region where π̄k is the best.) In particular, when there are only two types of customers,
this result suggests that FCFS can be better than prioritizing either type under quadratic cost
functions while FCFS is suboptimal under linear costs. The reason is that when costs are linear,
unlike in the non-linear case, each additional unit of waiting adds the same amount to the total
cost regardless of how long the wait has been. Hence, in the case of non-linear costs, priority among
customers should depend not only on their types but also on how long they have waited. (This has
been noted by others including Van Mieghem (1995).) Therefore, a fixed deterministic policy that
prioritizes one type over the other can lead to excessive waits for the non-priority type whereas
this would not be the case in FCFS due to the randomized order of arrivals of different types.
Proposition 3 also states that serving both types k and k+1 according to FCFS, i.e., not giving
priority between types k and k+ 1, is never the worst policy. This can be best explained by the
strict order between δπi

i and δ
πj

i for i, j ∈ {k, k+1} and i ̸= j, because it implies that the expected
marginal decrease in cost for type i by switching from π̄k to πi is (strictly) less than the expected
marginal increase in cost for the same type by switching from π̄k to πj. In other words, when costs
are quadratic, the harm caused by giving lower priority to a type is more than the benefit gained
by prioritizing it in terms of its expected marginal cost.
To gain further insights, we next study the case where c

(1)
k µk = c

(1)
k+1µk+1, e.g., when c

(1)
k = c

(1)
k+1 =

0. (Argon et al. (2009) and Ata and Tongarlak (2013) are examples of work that studied similar
cost structures.)
Assumption 2. For k ∈ {1,2, . . . ,K − 1} and i∈ {k, k+1}, we have Ci(t) = c

(2)
i t2 + c

(1)
i t, where

c
(1)
i ≥ 0, c

(2)
i > 0, and c

(1)
k µk = c

(1)
k+1µk+1.

Corollary 1. Under Assumptions 1 and 2, the best policy among πk, πk+1, and π̄k is character-
ized as follows: πk+1 is the best (and πk is the worst) if c

(2)
k µk/(c

(2)
k+1µk+1)<Rπk+1; πk is the best (and

πk+1 is the worst) if c
(2)
k µk/(c

(2)
k+1µk+1)>Rπk ; and π̄k is the best if Rπk+1 ≤ c

(2)
k µk/(c

(2)
k+1µk+1)≤Rπk ,

where Rγ ≡Mγ
k+1/M

γ
k for γ ∈ {πk, πk+1} and Rπk+1 <Rπk . Furthermore, Rπk+1 < 1<Rπk if types

k and k+1 are identical in terms of the first two moments of their service times.

Corollary 1 completely characterizes the best policy among πk, πk+1, and π̄k for quadratic cost
functions with c

(1)
k µk = c

(1)
k+1µk+1. In particular, it states that πk is the best if c

(2)
k µk is sufficiently

larger than c
(2)
k+1µk+1, πk+1 is the best if c

(2)
k µk is sufficiently smaller than c

(2)
k+1µk+1, and π̄k is

the best if the values of c
(2)
k µk and c

(2)
k+1µk+1 are not significantly different. Note particularly the

non-empty optimality region for the pooled policy π̄k, i.e., where c
(2)
k µk/(c

(2)
k+1µk+1)∈ [Rπk+1 ,Rπk ].

Using the work conservation law (see, e.g., Kleinrock (1965)), Rγ can be interpreted as the ratio
of changes in the second moment of steady-state waiting times for type k + 1 customers versus
type k customers when switching from priority policy γ to π̄k, adjusted by their respective traffic
intensity. Corollary 1 also implies that under quadratic cost functions if all customers have the
same first and second moments of service times, then Rπk+1 < 1<Rπk for all k = 1,2, . . . ,K − 1,
and hence, policies that give priority to customer types with smaller values of c

(2)
i should not be

considered.
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5.1. Effects of system parameters on conditions for prioritization
In this section, we focus on the case with K = 2 and investigate how the intervals for
c
(2)
k µk/(c

(2)
k+1µk+1) given in Corollary 1, over which one policy is better than the others, change with

system parameters like the arrival rate. Such an analysis leads to insights into the question of when
to prioritize and is especially useful if the service provider has reason to believe that quadratic
functions would accurately capture the waiting costs but cannot determine c

(2)
k and c

(2)
k+1 precisely.

More specifically, we study how the prioritization decision for the case with two types of cus-
tomers changes with the traffic intensity ρ, proportion of type 1 customers p1, and the service time
distributions under quadratic cost functions Ci(t) = c

(2)
i t2 for c

(2)
i > 0 and i ∈ {1,2}. First, note

that when there are two types of customers in the system, πi is the priority policy that prioritizes
type i ∈ {1,2} customers, π̄1 corresponds to FCFS, and ΠF = {π1, π2,FCFS}. Then, Corollary 1
provides a complete characterization of the best policy in ΠF : π1 is the best if c

(2)
1 µ1/(c

(2)
2 µ2)>Rπ1 ,

π2 is the best if c
(2)
1 µ1/(c

(2)
2 µ2)<Rπ2 , and FCFS is the best otherwise. We start by providing some

numerical examples to visually depict these optimality regions and how they change with ρ (or
equivalently with λ) and p1.
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Figure 1 Regions of optimality for FCFS, π1, and π2 as a function of ρ (or equivalently λ) under exponential
service times and quadratic waiting costs with Ci(t) = c

(2)
i t2 for t≥ 0 and i∈ {1,2}.
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Figure 2 Regions of optimality for FCFS, π1, and π2 as a function of p1 under exponential service times and
quadratic waiting costs with Ci(t) = c

(2)
i t2 for t≥ 0 and i∈ {1,2}.

Figures 1 and 2 show how the optimal policy shifts from π2 to FCFS first and then to π1

as c
(2)
1 µ1/(c

(2)
2 µ2) increases in agreement with Corollary 1. (Figures 1 and 2 present the most

representative plots from a more detailed numerical study.) Furthermore, it appears from Figure 1
that the region where FCFS is the best policy enlarges as λ increases and that both Rπ1 and Rπ2
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monotonically change with λ but they are not necessarily increasing or decreasing in all cases. (By
the symmetry between the two types and the right-most plot in Figure 1, we know that there is also
a case where both Rπ1 and Rπ2 increase with ρ.) We also notice from Figure 2 that Rπ1 and Rπ2

do not always change monotonically in p1 except when all service times are i.i.d. In Propositions 4
and 5, we prove some of these observations on the monotonicity of Rπ1 and Rπ2 , and also provide
their limits in heavy traffic.

Proposition 4. (a) Rπ1 increases in λ if τ
(2)
2 µ2 ≥ τ

(2)
1 µ1(1− 2ρ1)/(2− 2ρ1).

(b) Rπ2 decreases in λ if τ
(2)
1 µ1 ≥ τ

(2)
2 µ2(1− 2ρ2)/(2− 2ρ2).

(c) Rπ1 → p1µ
−1
1 +2p2µ

−1
2

p2µ
−1
2

and Rπ2 → p1µ
−1
1

2p1µ
−1
1 + p2µ

−1
2

as λ→ µ= (p1/µ1 + p2/µ2)
−1.

Proposition 5. When the first three moments of service times are identical for all customers,
Rπ1 and Rπ2 both increase in p1 (and hence decrease in p2).

Propositions 4 and 5 provide several useful insights into when prioritization should be considered
over FCFS and when not. In the following, we provide an itemized list of these insights, where
each item first states the insight followed by how it is derived from Proposition 4 or 5. Later in
Section 7.1, we observe through a numerical study that most of these insights could be generalized
to systems with more than two customer types.

• If τ
(2)
i µi values for the two customer types are relatively close, specifically, one is not more

than twice as large as the other, then the region where FCFS is the best gets larger as the traffic
intensity grows while the optimality regions for the priority policies get smaller: From parts (a) and
(b) of Proposition 4, if 1/2< τ

(2)
1 µ1/(τ

(2)
2 µ2)< 2, then Rπ1 increases and Rπ2 decreases with λ.

• The region where prioritizing the proportionally dominant type is the best shrinks as the arrival
rate increases and the traffic intensity of that type surpasses 1/2 : If ρ1 ≥ 1/2 [ρ2 ≥ 1/2], then the
condition in part (a) [(b)] of Proposition 4 is automatically satisfied, and hence, Rπ1 increases [Rπ2

decreases] with λ. This can be also observed in Figure 1.
• Under heavy traffic, the boundaries of optimality regions depend only on customer mix in the

population and the first moment of service times: This is immediate from Proposition 4 (c) and
is consistent with heavy traffic analysis of other queueing systems in the literature with nonlinear
penalties for waiting. For example, see Van Mieghem (1995), Ata and Tongarlak (2013), Ata and
Peng (2018), where order of policies depends on first moment measures (such as service rates
and/or abandonment rates) and not on higher moments under heavy traffic.

• When the first three moments of service times are identical for the two types, as the propor-
tion of one type increases, the optimality region for giving priority to that type shrinks while the
optimality region for prioritizing the other type enlarges: This directly follows from Proposition 5
and can be also seen from the left-most plot in Figure 2.

• Under heavy traffic, if one type significantly dominates the other in terms of proportion of
population, then giving priority can only be justified for the type with the smaller proportion and
that justification also requires that its c

(2)
i µi is at least twice as large as that of the other type.

Otherwise, it is better to use FCFS: By Proposition 4 (c), under heavy traffic, Rπ1 → 2 and Rπ2 → 0
as p1 → 0, whereas Rπ1 →∞ and Rπ2 → 1/2 as p1 → 1. Hence, under heavy traffic, type i customers
should not be prioritized if the proportion of this type is close to one; instead, the other type, i.e.,
type 3− i, should be served first if c

(2)
3−iµ3−i > 2c

(2)
i µi, and otherwise FCFS should be applied.

In this section, we also compare the values of Rπ1 and Rπ2 under two different service time
distributions with the same means to observe effects of service time distributions (or equivalently
second moments in the quadratic-cost case). For γ ∈ {π1, π2}, let Rγ

exp and Rγ
det denote the values

of Rγ under exponential and deterministic service times for all customers, respectively.

Proposition 6. (a) Rπ1
exp ≥Rπ1

det if and only if µ1 ≥ µ2(1− ρ1)/(2− ρ1).
(b) Rπ2

exp ≤Rπ2
det if and only if µ1 ≤ µ2(2− ρ2)/(1− ρ2).
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Proposition 6 implies that if µ2
µ1

∈
(

1−ρ2
2−ρ2

, 2−ρ1
1−ρ1

)
, then Rπ2

exp ≤Rπ2
det <Rπ1

det ≤Rπ1
exp, and hence, when the

mean service times are not significantly different for the two types of customers, FCFS is preferable
for a wider range of values of c

(2)
1 /c

(2)
2 under exponential service times than under deterministic

service times. This suggests that when the two types are not too different in terms of mean service
times, higher service time variability makes FCFS a better choice under a larger range of waiting
cost scenarios.When service times have higher variance, waiting times will also have higher variance
regardless of whether FCFS or a strict fixed priority policy is in place. Nevertheless, due to the
convexity of the waiting cost functions, the impact will be larger on the strict priority policies
because of the longer waits experienced by at least some of the lower priority customers.
It is important to note however that if mean service times are sufficiently different between the

two types, lower variability might make prioritizing the type with smaller mean service time more
desirable. Specifically, Proposition 6 also says that if one type is sufficiently faster to serve in the
mean sense, say, µ2/µ1 > (2− ρ1)/(1− ρ1), then Rπ2

exp ≤Rπ2
det and Rπ1

exp ≤Rπ1
det, which implies that

under deterministic service times, π2 (prioritizing the faster type) is preferred for a wider range of
values of c

(2)
1 /c

(2)
2 , and π1 (prioritizing the slower type) is preferred for a narrower range of values

of c
(2)
1 /c

(2)
2 than that under exponential service times.

We would like to conclude this section with a summary of insights that could be most useful to
managers. Higher arrival rates favor FCFS over strict priority policies and these priority policies are
justifiable only if there is a high level of heterogeneity between types (in terms of cost parameters,
first two moments of service times, and proportions) under heavy traffic. Moreover, under heavy
traffic, if a strict fixed priority is better than FCFS, then it must be the one that gives priority
to the type with a smaller proportion of the customer population. Hence, when there are concerns
about the heterogeneity among types or when service times are suspected to be highly variable,
managers should be cautious about replacing FCFS with strict priority policies in heavily loaded
systems with quadratic waiting costs.

5.2. Could prioritization be a fair policy?
In this section, we discuss the implications of our results on quadratic cost functions on the problem
of minimizing the variance of steady-state waiting times when the mean service times for all
customers are the same but the variance and higher moments are possibly different. Minimization
of variance of steady-state waiting times has been of great interest in the context of fairness in
queueing systems. In particular, Kingman (1962), Avi-Itzhak and Levy (2004), and references
therein use variance of waiting times as a measure of fairness in a queueing system in that a policy
that has a smaller variance of waiting times is regarded as a fairer policy. Kingman (1962) and
Vasicek (1977) prove that FCFS minimizes the variance of waiting times among all non-idling
queueing disciplines and thus is the “fairest” discipline for various queueing systems with a single
class of customers. Avi-Itzhak and Levy (2004) propose a new fairness measure that computes the
expected number of positions that a job is pushed ahead or backwards under a policy compared
to FCFS but conclude that for G/G/c queues with c parallel servers, variance of the steady-state
waiting time can be used as an appropriate measure of fairness. To the best of our knowledge, all
earlier work on minimization of variance of waiting times considered customers from a single class.
Here, we study the variance minimization problem for an M/G/1 queue with multiple classes of
customers with equal service rates but possibly different service-time distributions.
For identical service rates for all customers, the steady-state mean waiting times are the same

under any policy in Π, as can be verified by the work conservation law. Hence, minimizing the
variance of the steady-state waiting times within Π is equivalent to minimizing its second moment,
which corresponds to letting Ci(t) = t2 (t ≥ 0) for all i in our formulation. Then, we can use
Corollary 1 to prove the following result.

Proposition 7. Suppose that λ, µi, τ
(2)
i , and τ

(3)
i are finite and µi = µ> λ for all i= 1,2, . . . ,K,

and without loss of generality, pk ≤ pk+1 for fixed k ∈ {1,2, . . . ,K − 1}. Let π∗
k be a policy that

minimizes the variance of the steady-state waiting times within the set {πk, πk+1, π̄k}.
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(a) If ρ≥
(∑k+1

j=1 pj +
√
(pk + pk+1)pk

)−1

, then π∗
k = π̄k.

(b) If
(∑k+1

j=1 pj +
√
(pk + pk+1)pk+1

)−1

≤ ρ <
(∑k+1

j=1 pj +
√
(pk + pk+1)pk

)−1

, then there exists a

threshold ξk > τ
(2)
k+1 such that

π∗
k =

{
π̄k, if τ

(2)
k ≤ ξk;

πk+1, if τ
(2)
k > ξk.

(c) If ρ<
(∑k+1

j=1 pj +
√
(pk + pk+1)pk+1

)−1

, then there exist thresholds ξk > τ
(2)
k+1 and ξ̃k < τ

(2)
k+1 such

that

π∗
k =


πk, if τ

(2)
k < ξ̃k;

π̄k, if ξ̃k ≤ τ
(2)
k ≤ ξk;

πk+1, if τ
(2)
k > ξk.

Proposition 7 explicitly shows the effects of traffic intensity, proportions of types, and service
time variances on the selection of the fairest policy. In particular, from Proposition 7 (a), we can
see that if the traffic intensity is sufficiently large, then prioritizing either type over the other is
worse than pooling these two types together. After a closer examination of this lower bound on ρ in
part (a), we find that this condition could possibly hold for ρ< 1 if and only if the total proportion
of the two types under consideration is sufficiently large (i.e., pk + pk+1 >

√
2
∑K

j=k+2 pj) and the
dominant type (i.e., type k + 1 because pk ≤ pk+1) does not heavily dominate the other type in

proportion (i.e., 1≤ pk+1/pk <
(
(pk + pk+1)

/∑K

j=k+2 pj

)2

− 1); see proof of part (a) of Proposition

7 in the Appendix. (These two conditions are automatically satisfied when K = 2.) Proposition 7
(a) also implies that FCFS is better than any policy that groups the types into two priority classes

if ρ ≥
(
1+

√
min(p1, p2, . . . , pK)

)−1

, i.e., if traffic is sufficiently heavy and/or none of the types

constitute too small a portion of the population.
Proposition 7 (b) states that if the traffic is not as heavy as in part (a) but also is not too light,

then prioritizing the type with a smaller proportion can never minimize the variance of steady-state
waiting times, and which of the remaining two policies is best depends on the service time variances
of the two types under consideration. More specifically, since service rates are the same for types
k and k+1, comparison of τ

(2)
k and τ

(2)
k+1 is the same as the comparison of service time variances.

Hence, under mediocre traffic intensity, prioritizing the proportionally dominant type is the best if
the service time variance for the other type is significantly larger than that of the dominant type,
or otherwise pooling the two types is the best.
Finally, Proposition 7 (c) shows that when the traffic is light, giving priority to one type over

the other is preferable if and only if its service time variance is sufficiently smaller than that of the
other type. However, when variances of service times for the two types are similar, then serving
them according to FCFS can still be better than prioritizing either type even though the traffic is
light. Note that we can obtain closed-form expressions for thresholds ξk and ξ̃k in Proposition 7,
but in the interest of space, we provide these in the proof of Proposition 7 in the Appendix.

6. Prioritization under imperfect cost information
In Sections 4 and 5, we provided analytical comparisons of policies that prioritize certain types
over others and those that pool them under the assumption that cost functions for the types under
consideration are completely known. In certain situations, however, we may have reliable estimates
on the exact functional form of waiting cost of one type but only have partial information on the
waiting cost of other types such as a range of their marginal waiting costs. For example, if we use
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regression models to estimate the cost function from data for different types of customers, we may
not be able to obtain good regression models for all types but for certain types we can estimate a
range for the marginal costs.
In this section, we present a result, namely, Corollary 2, that orders the long-run average costs

under policies πk, πk+1, and π̄k, which are defined in Section 4 for fixed k ∈ {1,2, . . . ,K}, when we
have only partial cost information on one of the two types under consideration. Specifically, we
assume that Ck(t) is completely known, but we only know the range of values that C ′

k+1(t) could
take. (Corollary 2 also holds if we switch the indices k and k+1).

Corollary 2. Suppose that Assumption 1 holds under policies πk, πk+1, and π̄k.
(a) If C ′

k+1(t)≥max{δπk
k , δ

πk+1
k }µk/µk+1 for all t≥ 0, then Cπk+1

≤Cπ̄k
≤Cπk

.
(b) If C ′

k+1(t)≤min{δπk
k , δ

πk+1
k }µk/µk+1 for all t≥ 0, then Cπk

≤Cπ̄k
≤Cπk+1

.
(c) If δ

πk
k µk/µk+1 ≤C ′

k+1(t) ≤ δ
πk+1
k µk/µk+1 for all t≥ 0, then Cπ̄k

≤Cπk+1
and Cπ̄k

≤Cπk
.

Corollary 2 provides bounds on C ′
k+1(t) for all t≥ 0, namely, δ

πk
k µk/µk+1 and δ

πk+1
k µk/µk+1, to

compare policies πk, πk+1, and π̄k. Specifically, C
′
k+1(t) has to be bounded from either above or

below for all t≥ 0 (which is true, for example, when the cost function is concave) for the conditions
of the corollary to hold. We next look at two special cases to demonstrate how this result could be
useful.
Quadratic cost for one type: Suppose type k customers are known to have a quadratic cost
function, i.e., Ck(t) = c

(2)
k t2 + c

(1)
k t for c

(1)
k ≥ 0 and c

(2)
k > 0, but we do not know the exact form

of Ck+1(t). In this case, we have δγk = c
(2)
k Mγ

k + c
(1)
k , where Mγ

k is given by (4) for γ ∈ {πk, πk+1}
and δ

πk
k < δ

πk+1
k (see the proof of Proposition 3). Then, Corollary 2 implies that if the waiting cost

for type k+ 1 customers increases at a sufficiently large rate at all times, i.e., C ′
k+1(t) is at least

δ
πk+1
k µk/µk+1, then type k+ 1 customers should be prioritized over type k; if the waiting cost of
type k+1 customers increases at a small rate at all times, i.e., C ′

k+1(t) is at most δ
πk
k µk/µk+1, then

type k customers should be prioritized over type k+1; and if the derivative of Ck+1(t) lies between
δ
πk
k µk/µk+1 and δ

πk+1
k µk/µk+1 at all times, then assigning the same priority to these two types is

the best. Furthermore, we notice that δ
πk
k , δ

πk+1
k , and the difference δ

πk+1
k − δ

πk
k all increase in λ

(see (EC.8), (EC.9), and (EC.10) in the Appendix), which implies that the bounds δ
πk
k µk/µk+1

and δ
πk+1
k µk/µk+1, and the length of the interval (δ

πk
k µk/µk+1, δ

πk+1
k µk/µk+1) are all increasing as

λ becomes larger. Indeed, both δ
πk
k and δ

πk+1
k go to infinity as λ approaches µ for k=K−1, which

leads to an important conclusion: if one type has a quadratic cost function and the derivatives of
the cost functions of all the other types are bounded from above, then it is never the best to assign
the lowest priority to the type with quadratic cost when the traffic intensity is heavy no matter what
the service time and cost parameters are for the other types.
Linear cost for at least one type: Suppose that type k customers are known to have a linear
cost function, i.e., Ck(t) = ckt for t≥ 0 and ck > 0, but we do not know the exact form of Ck+1(t).
Then, we have δ

πk
k = δ

πk+1
k = ckµk, and by Corollary 2, if C ′

k+1(t) ≥ ckµk/µk+1 for all t ≥ 0, then
Cπk+1

≤ Cπ̄k
≤ Cπk

; and if C ′
k+1(t)≤ ckµk/µk+1 for all t≥ 0, then Cπk

≤ Cπ̄k
≤ Cπk+1

. This means
that even if we do not know the exact waiting cost function for type k+1 customers, if we know
that their marginal waiting cost at any amount of wait is greater than [less than] ckµk/µk+1, then
prioritizing type k + 1 [type k] customers is better than prioritizing the other type or pooling
these two types. This result also leads to another practical finding for systems that have linear
cost functions for all types but one. More specifically, suppose that Cj(t) = cjt for t ≥ 0, cj > 0,
and j = 2,3, . . . ,K. If C ′

1(t)≥maxj=2,...,K{cjµj}/µ1 for all t≥ 0, then Corollary 2 implies that type
1 should receive the highest priority and all other types should follow the cµ-rule. Similarly, if
C ′

1(t)≤minj=2,...,K{cjµj}/µ1 for all t≥ 0, then type 1 should receive the lowest priority while all
other types follow the cµ-rule. To demonstrate further, consider convex-concave (or S-shaped) cost
functions that are commonly discussed in service operations literature. If we suspect that one type
has such a cost function and can estimate the smallest marginal cost for this type over all waiting
times t, then our result can provide a simple sufficiency condition for the optimality of prioritizing
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Figure 3 Optimal policy in ΠF with K = 3, pi = 1/3, Ci(t) = cit
2 for i∈ {1,2,3}, c2 = 1, ρ∈ {0.3,0.7,0.9}, and

exponentially distributed service times with mean one.

this type over all other types with linear costs. As an example, suppose that C1(t) = h3t
3−h2t

2+h1t
for t≥ 0, where h1, h2, h3 are positive constants such that C ′

1(t)> 0, i.e., h2
2 < 3h1h3. (It is easy to

see that this cubic cost function is S-shaped.) Then, our result implies that type 1 should receive
the highest priority if mint≥0C

′
1(t) = h1 −h2

2/(3h3)>maxj=2,...,K{cjµj}/µ1.

7. Numerical study
To obtain a better understanding of priority assignment in systems with multiple types of cus-
tomers, we conducted a numerical study on a system with three types as presented in Section 7.1.
We also conducted an exploratory numerical analysis into when it would be desirable to consider
more complex policies that take into account the waiting times of customers; see Section 7.2.

7.1. Fixed priority policies for systems with three types of customers
Consider a system with K = 3, where service times are i.i.d. exponentially distributed with rate
µ= 1 for all customers types, and the cost function for type i customers is in the form of Ci(t) = cit

2

for i= 1,2,3. (For notational convenience, we drop the superscript of c
(2)
i throughout Section 7.)

We fix c2 to be one and without loss of generality, we set the cost parameters such that c1 > c2 > c3.
Recall that there are thirteen policies in ΠF when K = 3 as discussed at the beginning of Section

4. Instead of computing and comparing the long-run average costs for all thirteen policies to
identify the best policy π∗ in ΠF , we first eliminate some of these policies using Corollary 1 and
the assumption that c1 > c2 > c3. In particular, we can eliminate policies that give priority to types
with smaller values of ci; see the discussion in the paragraph following Corollary 1. Hence, out of
the six policies in ΠF that assign a different priority order to each type, we only need to consider
the one that assigns priority order i to type i customers for i= 1,2,3. Furthermore, for any policy
in ΠF that pools types k and ℓ for 1≤ k < ℓ≤ 3, the waiting cost function for the pooled group of
customers will be Ckℓ(t) = ckℓt

2, t≥ 0, where ckℓ = (pkck + pℓcℓ)/(pk + pℓ). Then, since c12 > c3 and
c1 > c23, we can eliminate the policy that prioritizes type 3 over the pooled group of types 1 and 2
as well as the policy that prioritizes the pooled group of types 2 and 3 over type 1.
After eliminating seven policies from ΠF , we numerically compute and compare the long-run

average costs for the remaining six policies to find π∗ for different values of c1 > 1> c3 when the
proportion of each type pi is 1/3 and the traffic intensity is ρ∈ {0.3,0.7,0.9}. For these parameters,
our numerical results show that π∗ can only be one of the following four policies: (i) policy π̂ that
assigns priority order i to type i customers for i= 1,2,3; (ii) policy π̂12 that prioritizes the pooled
group of types 1 and 2 customers over type 3; (iii) policy π̂23 that prioritizes type 1 customers over
the pooled group of types 2 and 3; and (iv) FCFS. The two policies that pool types 1 and 3 and
prioritizes either the pooled group or type 2 were never the best under all tested parameters. (The
comparisons for distinct values of pi’s are similar and are provided in Appendix A.4.)
Corollary 1 provides the following partial comparison of the remaining four policies:
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(i) For k ∈ {1,2} and ℓ= k+1, Cπ̂ ≤Cπ̂kℓ
if and only if

ck
ck+1

≥ Γk ≡ 1+
ρ̄k−1

(
ρ̄ −1
k+1 + ρ̄ −1

k − 1
)

ρ̄k
(
ρ̄ −1
k+1 + ρ̄ −1

k + ρ̄ −1
k−1 − 1

) ;
(ii) CFCFS ≤Cπ̂12

if and only if
c12
c3

≤ Γ12 ≡
2− ρ1 − ρ2 +(1− ρ)(1− ρ1 − ρ2)

−1

2− ρ1 − ρ2 − ρ
; and

(iii) CFCFS ≤Cπ̂23
if and only if

c1
c23

≤ Γ23 =
2− ρ1 +(1− ρ)(1− ρ1)

−1

2− ρ1 − ρ
.

Figure 3 provides plots of optimality regions determined partially by bounds Γ1,Γ2,Γ12, and
Γ23 provided above. More specifically, the upper left-most corner is where π̂ is better than π̂12

and π̂23 (determined by lines c1 = Γ1 and c3 = Γ−1
2 , respectively) and lower right-most corner is

where FCFS is better than π̂12 and π̂23 (determined by lines c1 = Γ12(1 + p2/p1)c3 − p2/p1 and
c1 = Γ23(p2 + p3c3)/(p2 + p3), respectively). By using numerical comparisons, we also find that π̂
and FCFS are indeed the best in ΠF in these respective regions. The optimality regions for π̂12 and
π̂23 are found numerically in Figure 3. (Our analytical results do not provide comparisons between
FCFS and π̂ or between π̂12 and π̂23.) We make the following observations from Figure 3, and
Figures A.1 and A.2 in Appendix A.4, which extend most of our analytical observations for the
case with two types of customers in Section 5.1 to the case with three types:
(1) Assigning different priority orders to individual types (policy π̂) is the best if the cost coeffi-

cients for all types are significantly different, i.e., c1/c2 ≥ Γ1 > 1> 1/Γ2 ≥ c3/c2.
(2) FCFS is the best when the cost coefficients of all three types are close to each other, i.e, c1/c2

and c3/c2 are both close to 1.
(3) As λ (and hence ρ) increases, the region where assigning individual priority is the best shrinks,

and the region where FCFS is the best enlarges.
(4) Pooling types k and k + 1 is better than assigning individual priority order or FCFS if the

cost coefficients of the pooled types are close but are significantly different from that of the
remaining type. For example, if c1/c2 ≤ Γ1, and c3 is sufficiently small, then pooling type 1 and
type 2 together and prioritizing the group over type 3 is the best (the lower-left corner).

(5) The optimality region for policies that prioritize a particular type (or group) over the others
shrinks if the proportion of that type (or group) increases. For example, if p1 increases, then the
regions where type 1 should be prioritized over the remaining customers (i.e., the optimality
regions for policies π̂ and π̂23) shrink; and if p2 increases (for fixed p1), then the optimality
region of policy π̂ becomes smaller.

(6) A proportionally dominant type (or group) should be prioritized under heavy traffic only if its
cost coefficient is much larger than that of the remaining type(s).

7.2. Comparison of fixed priority policies with a dynamic priority policy (G-cµ rule)
In this section, we numerically compare the performance of the best policy within ΠF with the
performance of a well-known dynamic policy that takes into account the waiting times of customers
for prioritization. In particular, we compare the best policy π∗ in ΠF with the generalized cµ (G-cµ)
rule under a wide range of parameter settings. Our goal is to identify conditions under which it
would be worthwhile to use the G-cµ rule as opposed to π∗ and also conditions under which the
additional complexity of the G-cµ rule does not bring much benefits. (Recall that G-cµ rule gives
priority to the customer with the largest C ′

i(t)µi value.) The comparison was made with the G-cµ
rule, a heuristic, because we were not able to identify the optimal dynamic policy within the set
of all policies that take into account waiting times due to a large state space. Note that the G-cµ
rule is optimal for convex cost functions under heavy traffic (Van Mieghem 1995).
Here, we present our results for systems with K = 2, but note that our study on systems with

three types yields similar conclusions (see Appendix A.4). Assume that service times for type i ∈
{1,2} customers are exponentially distributed with rate µi, where µ2 is fixed at one per unit time,
and the cost functions take the form C1(t) = c1t

2 and C2(t) = t2, t ≥ 0. We consider 81 different
scenarios corresponding to all combinations of ρ∈ {0.3,0.7,0.9}, p1 ∈ {0.1,0.5,0.9}, µ1 ∈ {0.2,1,5},
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and c1 ∈ {0.1,0.9,5}. We can identify the best fixed priority policy in ΠF by computing the values
of Rπ1 and Rπ2 in Corollary 1 (reported in Table A.4 in the Appendix): π2 has the smallest cost
if c1µ1 < Rπ2 ; π1 has the smallest cost if c1µ1 > Rπ1 ; and FCFS has the smallest cost if Rπ2 ≤
c1µ1 ≤ Rπ1 . To obtain the long-run average cost under the G-cµ rule (denoted by CG), we built
a simulation model (using Simio 11 simulation software), where we computed a priority index for
each customer in the queue and assigned non-preemptive priority to the one with the largest index.
Under the specific cost structure and experimental setting of this section, the priority index for a
type i customer who waited for t≥ 0 time units, and determined by the G-cµ rule, is given by 2citµi.
We ran 100 independent replications of length 60,000 minutes for each scenario and truncated the
first 6,000 minutes based on a warm-up period analysis. We report the mean relative cost difference
by using the G-cµ rule over the best fixed priority policy, i.e., (CG−Cπ∗)×100/Cπ∗ (in percentage)
and a 95% confidence interval (C.I.) on this relative cost difference from the simulation runs. If
the C.I. does not contain zero, then we conclude that there is statistical evidence that π∗ and the
G-cµ rule are different, where the comparison is in favor of π∗ for a positive C.I. and the G-cµ rule
for a negative one. Figure 4 presents these results.
From these simulation results, we find that the cost difference between the best fixed priority

policy and the G-cµ rule is insignificant in most scenarios, especially when the traffic intensity
is light or moderate, and the G-cµ rule may have smaller costs in scenarios under heavy traffic.
In several scenarios, e.g., c1 = 5, µ1 = 5, p1 = 0.9 with traffic intensity 0.7 or 0.9 (where π∗ = π1),
and c1 = 0.1, µ1 = 0.2, p1 = 0.1 with traffic intensity 0.7 (where π∗ = π2), the best fixed priority
policy performs better than the G-cµ rule. In these scenarios, we find that the prioritized type
has significantly higher proportion, cost coefficient, and service rate. Furthermore, we notice that
when FCFS is the best fixed priority policy, either its performance is similar to that of the G-cµ
rule or the G-cµ rule outperforms it. We also observe that for heavy-traffic scenarios, where the
parameters fall close to the thresholds that characterize the optimal fixed priority policy reported
in Table A.4 (possibly suggesting that none of the fixed priority policies stands out), the G-cµ rule
performs better than the best fixed priority policy. Hence, it would be worthwhile to consider the
more complex G-cµ rule over a fixed priority policy when the traffic is heavy and there is not a
clearly more “important” type. One could assess whether there is clearly a more important type
or not by considering how far the system parameters land from the thresholds of the best fixed
priority policy. If they are closer to a threshold, such as in scenarios c1 = 5, µ1 = 1, p1 = 0.9, ρ= 0.9
or c1 = 0.9, µ1 = 0.2, p1 = 0.1, ρ= 0.9, then this could be taken as an indicator that there is not a
clearly more important type and hence G-cµ rule should be considered. On the other hand, when
the traffic is light or the system parameters fall farther away from the thresholds, e.g., when one
type has a substantially larger cost, service rate, and proportion, then it is not necessary to use
the G-cµ rule and in fact it could be better to use the best fixed priority policy, which does not
require knowing the cost function precisely and is much simpler to implement.

8. Conclusions
In order to answer some fundamental questions surrounding prioritization of certain customer
groups in a service system, we studied a single-server queueing model with stationary Poisson
arrivals of multiple types of customers with possibly distinct service time distributions and non-
linear waiting cost functions. When waiting costs are nonlinear functions of time, it is known that
in general, the priority policy that minimizes the long-run average waiting costs is dynamic, i.e.,
dependent on the durations of time customers in the queue have already spent waiting, in addition
to their types. However, in practice, the most commonly employed policies are still first-come-first-
served (FCFS) and strict fixed priority policies that give exclusive priority to one of the types
of customers independently of the system state. In this paper, we compared these fixed prior-
ity policies (including FCFS) in terms of their long-run average performance and derived several
managerial insights by focusing mostly on the case with quadratic waiting costs.



Ouyang, Argon, and Ziya: Assigning Priorities (or not) with Nonlinear Waiting Costs 16

p
1
 = 0.1

p
1
 = 0.5

p
1
 = 0.9

 = 0.3

 = 0.7

 = 0.9

p
1
 = 0.1

p
1
 = 0.5

p
1
 = 0.9

-20% -10% 0% 10%

p
1
 = 0.1

p
1
 = 0.5

p
1
 = 0.9

-20% -10% 0% 10% -20% -10% 0% 10%

Figure 4 95% C.I. of the relative cost difference between G-cµ rule and π∗ for the case with K = 2, where
negative values indicate that G-cµ rule has a smaller cost than π∗.

It is well known that if all customers have linear waiting costs, then only the product of the rates
of service and waiting cost will affect the characterization of optimal policies, and the higher the
number of priority classes the better it is – FCFS being the worst. However, this is no longer the case
when cost functions are nonlinear. More specifically, for quadratic cost functions, we concluded that
splitting the customer population into as many priority classes as possible may actually increase
the long-run average waiting costs if one were to apply only fixed priority policies. Fixed priority
policies can perform better than FCFS when there is sufficient heterogeneity in the population,
and hence, the benefit gained by prioritizing one group over the other compensates for the damage
caused by lowering the priority of the rest. For quadratic costs, we found that the heterogeneity
of the population is determined by the population mix (i.e., proportions of each customer type in
the population) and first three moments of service times as well as cost parameters. Furthermore,
we showed that the arrival rate has a direct effect on the decision to prioritize or not to prioritize.
Specifically, we observed that the parameter region where FCFS is best enlarges as the arrival rate
increases. Hence, haphazardly replacing FCFS discipline with a strict fixed priority policy without
considering system parameters such as traffic intensity and service-time variability may lead to
inferior system performance when there is any concern that the waiting cost functions might not
be linear. We found that one should be especially cautious with prioritizing types that constitute
a large proportion of the population mix. One setting where it would be safe to replace FCFS
discipline with a strict fixed priority policy is when one type has a quadratic cost function and
the derivative of the cost function of all other customers is bounded from above (as in a linear
cost function). In such a case, a policy that prioritizes the type with quadratic cost is better under
heavy traffic regardless of the service time distributions.
As a byproduct of our study on quadratic costs, we also obtained some useful results on the

problem of minimizing the variance of steady-state waiting times, which is widely accepted to be
equivalent to maximizing fairness in queueing systems. Earlier work showed that FCFS is the fairest
policy when the population is homogenous in terms of service time variability. For a population
with heterogenous service time variability, we showed that FCFS is still the fairest policy if the
traffic intensity is sufficiently large and no type is significantly dominant in numbers. In particular,
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one of our results imply that FCFS is better than any policy that groups customer types into two
priority classes if the traffic intensity is larger than 1/(1+

√
p), where p is the smallest proportion

of any type in the population. However, if the traffic intensity is not heavy, then we showed that
prioritizing the type with smaller service-time variance could actually be fairer than FCFS.
Since the focus of this work was on the use (or misuse) of simple but popular fixed priority policies

in systems with non-linear waiting costs, we mostly excluded more complex priority policies such
as those that use waiting time information of customers while giving priority decisions. Perhaps the
most well-known policy in this set is the G-cµ rule, which is shown to be optimal under heavy traffic
and convex waiting costs. An important future research direction would be to study conditions
under which it would be better to use these more complex policies. In this paper, we provided
an exploratory analysis to facilitate interest on this research question by conducting a simulation
study that compares the best fixed priority policy with the G-cµ rule under quadratic waiting
costs. We found that the G-cµ rule performs better than the best fixed priority policy for a heavily
loaded system when the customer population is not sufficiently heterogeneous. On the other hand,
when the traffic is not heavy, or one type has substantially larger cost of waiting, service rate, and
proportion of the demand, then the best fixed priority policy, which is much easier to implement
and does not require precise knowledge on the waiting cost function, performs similarly or even
slightly better than the G-cµ rule. We believe that more research is needed to support these claims
especially given that the G-cµ rule is not always an optimal dynamic policy. Studying randomized
priority policies, where the priority is not fixed but randomly assigned to different types, would be
an interesting and useful future research direction as well because these policies would be a good
compromise between simple fixed priority policies and more complex state-dependent ones.
Another interesting future research direction would be to study the same problem under other

specific waiting-cost structures in more detail such as cost functions with exponential or concave
growth. For some preliminary results in this direction, we refer interested readers to Section 2.7 in
Ouyang (2016).
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Appendix
In this Appendix, we provide proofs of theoretical results and other supplemental material.

A.1. Notation, definitions, and lemmas

We first provide three tables of notation used in the main paper and the Appendix.

Table A.1 Notation for System Parameters

λ arrival rate of all customers

pi probability that an arriving customer belongs to type i

µi service rate of type i customers

τ
(n)
i nth moment of service time of type i customers for n≥ 2

ρi traffic intensity for type i customers, i.e., λpi/µi

ρ̄k 1−
∑k

j=1 ρj for k= 1, . . . ,K and ρ̄0 = 1

ρ traffic intensity for all customers, i.e.,
∑K

j=1 ρj

µ service rate for a random customer, i.e., (
∑K

j=1 pj/µj)
−1

τ (n) nth moment of service time for a random customer, i.e.,
∑K

j=1 pjτ
(n)
j , for n≥ 2

Ci(·) waiting cost function for type i customers

Cγ long-run average waiting cost under policy γ

Kγ number of priority orders under policy γ

γ(i) priority order of type i customers under policy γ, where γ(i)∈ {1,2, . . . ,Kγ}

pγ[j] probability that an arriving customer has priority order j under policy γ, i.e.,
∑

{i:γ(i)=j} pi

µγ
[j] service rate of customers with priority order j under policy γ

τ
(n),γ

[j] nth moment of service time of customers with priority order j under policy γ for n≥ 2

ργ[j] traffic intensity for customers with priority order j under policy γ

ρ̄γ[k] 1−
∑k

j=1 ρ
γ
[j] for k= 1, . . . ,Kγ and ρ̄γ0 = 1

Λγ
≤k arrival rate of customers with priority order k or smaller under policy γ, i.e., λ

∑k

j=1 p
γ
[j]
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Table A.2 Notation for random variables (RV), their cumulative density functions (CDF), and Laplace-Stieltjes
transforms (LST)

RV CDF LST Definition

V γ,x0
i,k - - waiting time of the kth arriving type i customer under policy γ and

initial state x0

W γ
i - W̃ γ

i (·) steady-state waiting time of a type i customer under policy γ

W π̄k - - steady-state waiting time of types k and k+1 customers under policy
π̄k

W γ
[j] - W̃ γ

[j](·) steady-state waiting time for a customer with priority order j under
policy γ

- Si(·) S̃i(·) service time for type i customers

- Sγ
[j](·) S̃γ

[j](·) service time for customers with priority order j under policy γ, i.e.,
Sγ
[j](x)≡

∑
{i:γ(i)=j} piSi(x)/p

γ
[j]

- Sγ
≤k(·) S̃γ

≤k(·) service time for customers with priority order k or smaller under
policy γ, i.e., Sγ

≤k(x)≡
∑k

j=1 p
γ
[j]S

γ
[j](x)

/∑k

j=1 p
γ
[j]

- Sγ
>k(·) S̃γ

>k(·) service time for customers with priority order greater than k under
policy γ, i.e., Sγ

>k(x)≡
∑Kγ

j=k+1 p
γ
[j]S

γ
[j](x)

/∑Kγ

j=k+1 p
γ
[j]

S S(·) S̃(·) service time for a random customer, i.e., S(x)≡
∑K

j=1 pjSj(x)

- Bγ
p,j(·) - length of a busy period in an M/G/1 queue with arrival rate Λγ

≤p−1

and service time distribution Sγ
≤p−1(x) for p= 2,3, . . . ,Kγ under pol-

icy γ in which there are j ≥ 1 customers initially in the system

Uγ1,γ2
i - - Ψ(W γ1

i ,W γ2
i ) for i ∈ {k, k + 1}, γ1, γ2 ∈ {πk, πk+1, π̄k}, and γ1 ̸= γ2

where Ψ(·) is defined in Definition A.1

Uγ
i - - U

γ,π̄k
i for γ ∈ {πk, πk+1} and i∈ {k, k+1}

TB ̸=i
- B̸̃=i(·) length of a busy period where only type j ∈ {1,2, . . . ,K} \ {i} cus-

tomers arrive

- - B̃(·) length of a busy period starting from an empty and idle system for
an M/G/1 queue under any policy in Π

Table A.3 Notation for Policy Parameters

Proposition 2 δγ1,γ2i ≡E [C ′
i (U

γ1,γ2
i )], for i∈ {k, k+1}, γ1, γ2 ∈ {πk, πk+1, π̄k}, and γ1 ̸= γ2

δγi ≡ δ
γ,π̄k
i , for i∈ {k, k+1} and γ ∈ {πk, πk+1}

Proposition 3 Mγ
i ≡

E
[
(W π̄k)

2
]
−E

[
(W γ

i )
2
]

E [W π̄k ]−E [W γ
i ]

, for i∈ {k, k+1} and γ ∈ {πk, πk+1}

Corollary 1 Rγ ≡Mγ
k+1/M

γ
k for γ ∈ {πk, πk+1}
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Next, we introduce several definitions and lemmas that will be used in the proofs of our results.

Lemma A.1. For policies πk, πk+1, and π̄k that are defined in Section 4, we have:
(a) W πk

j =st W
πk+1

j =st W
π̄k
j for j ∈ {1,2, . . . ,K} \ {k, k+1}, where =st means equivalence in distribution;

(b) W πi
i ≤st W

π̄k ≤st W
πi
2k+1−i for i∈ {k, k+1}, where ≤st denotes usual stochastic ordering, see e.g., Section

1.A.1 of Shaked and Shanthikumar (2007); and

(c) E
[
W π̄k

]
=

λτ (2)

2ρ̄k+1ρ̄k−1

,E
[
W πi

i

]
=

λτ (2)

2(ρ̄k−1 − ρi)ρ̄k−1

,E
[
W πi

2k+1−i

]
=

λτ (2)

2ρ̄k+1(ρ̄k−1 − ρi)
, for i∈ {k, k+1}.

Proof of Lemma A.1: (a) The distribution function for the steady-state waiting times of customers
with priority order p under policy γ is given by Equation (17) in Takács (1964) as follows:

P{W γ

[p] ≤ x}=
∫ x

0

[
∞∑

j=0

e−Λγ
≤p−1

y (Λ
γ
≤p−1y)

j

j!
Bγ

p,j(x− y)

]
dW ∗γ

≤p(y), (EC.1)

where Bγ
p,j(x) for p= 2,3, . . . ,Kγ is the distribution function of the length of a busy period in an M/G/1

queue with arrival rate Λγ
≤p−1 and service time distribution Sγ

≤p−1(x) in which there are j ≥ 0 customers
initially in the system, Bγ

1,j(x) = 1 for all x≥ 0 and j ≥ 0, and W ∗γ
≤p(y) for p= 1,2, . . . ,Kγ is the distribution

function of the steady-state waiting time for a customer with priority order ≤ p under a modified policy,
defined as follows: customers of priority order ≤ p under γ are pooled and served according to FCFS regardless
of their actual priority order under policy γ and their service times are i.i.d. with distribution Sγ

≤p(x), while
all other customers are served according to γ.
For p = 1,2, . . . , k − 1, it is easy to see that Λπk

≤p−1 = Λ
πk+1

≤p−1 = Λπ̄k
≤p−1, S

πk
≤p−1(x) = S

πk+1

≤p−1(x) = Sπ̄k
≤p−1(x),

and hence Bπk
p,j(x) =B

πk+1

p,j (x) =Bπ̄k
p,j(x) for all x≥ 0 and j ≥ 0, and W ∗πk

≤p (y) =W
∗πk+1

≤p (y) =W ∗π̄k
≤p (y) for all

y≥ 0. Similarly, for p= k+2, . . . ,K, we have Λπk
≤p−1 =Λ

πk+1

≤p−1 =Λπ̄k
≤p−2, S

πk
≤p−1(x) = S

πk+1

≤p−1(x) = Sπ̄k
≤p−2(x), and

Bπk
p,j(x) =B

πk+1

p,j (x) =Bπ̄k
p−1,j(x) for all x≥ 0 and j ≥ 0, and W ∗πk

≤p (y) =W
∗πk+1

≤p (y) =W ∗π̄k
≤p−1(y) for all y ≥ 0.

Thus, by (EC.1), W πk
p =st W

π̄k
p =st W

πk+1
p for p∈ {1,2, . . . ,K} \ {k, k+1}.

(b) We use sample path arguments to prove the stochastic inequalities. First, we fix i ∈ {k, k + 1}. In this
proof, type k and type k + 1 customers (who have priority order k and k + 1 under policy π = πk) will
be referred to as relevant customers, type i customers will be called higher priority customers, and type i′

customers will be called lower priority customers under policy πi, where i′ = 2k+1− i.
We index the relevant customers by their arrival order to the system, and let sj be the arriving time of the

jth relevant customer. Then, for the ℓth and jth relevant customers, where j > ℓ≥ 1, we have sj > sl. Let
tγj be the service starting time of the jth relevant customer under policy γ ∈ {πk, πk+1, π̄k}, then tγj ≥ sj . Let
also V γ

j denote the waiting time of the jth relevant customer under policy γ, then V γ
j = tγj −sj for j = 1,2, . . ..

Under π̄k, we have tπ̄k
1 < tπ̄k

2 < · · · with probability one. Let j1 be the index of the first lower priority
customer whose service starts when there are higher priority customers waiting, and j2 be the index of the
first higher priority customer in the queue when j1 starts service under π̄k. Then, the customers indexed
from j1 to j2 − 1 are all lower priority customers. Note that sj1 < · · ·< sj2−1 < sj2 < tπ̄k

j1
< · · ·< tπ̄k

j2−1 < tπ̄k
j2
.

Consider a policy π′ that follows π̄k except that it serves customer j2 before it serves lower priority
customers j1, . . . , j2 − 1. For customer j2, who is a higher priority customer, tπ

′

j2
= tπ̄k

j1
< tπ̄k

j2
and V π′

j2
=

tπ
′

j2
− sj2 < tπ̄k

j2
− sj2 = V π̄k

j2
. For ℓ= j1, . . . , j2 − 1, who are all lower priority customers, tπ

′

l > tπ̄k
l and V π′

l =

tπ
′

l − sl > tπ̄k
l − sl = V π̄k

l . For any ℓ /∈ {j1, . . . , j2}, we have V π′

l = V π̄k
l .

If we keep changing the service order like this when there are lower priority customers starting service
while higher priority customers are waiting in the queue, then we will eventually reach policy πi. This
coupling argument then will yield V πi,x0

i,n ≤st V
π̄k,x0
i,n and V πi,x0

i,n ≥st V
π̄k,x0

i′,n for n≥ 1. Since W γ
i is the steady-

state waiting time for type i customers under policy γ, then, as n→∞, V γ,x0
i,n

d→W γ
i and V γ,x0

i′,n
d→W γ

i′ for

γ ∈ {πk, πk+1, π̄k}, where
d→ denotes convergence in distribution, and hence, according to Theorem 1.A.3(c)

in Shaked and Shanthikumar (2007), we have W πi
i ≤st W

π̄k ≤st W
πi
i′ .

(c) The result follows directly from Equation (68) of Takács (1964). □
Definition A.1. (Di Crescenzo 1999). Let X and Y be two non-negative random variables with X ≤st Y

and E[X]<E[Y ]<∞. Then, Z ≡Ψ(X,Y ) is a random variable with probability density function

fZ(x) =
FX(x)−FY (x)

E[Y ]−E[X]
, x≥ 0,



Ouyang, Argon, and Ziya: Assigning Priorities (or not) with Nonlinear Waiting Costs A-4

where FX(·) and FY (·) are the cumulative distribution functions of X and Y , respectively. Di Crescenzo
(1999) shows that fZ(·) is a probability density function.

Lemma A.2. (Theorem 4.1 of Di Crescenzo 1999) Let X and Y be two non-negative random variables
satisfying X ≤st Y and E[X]<E[Y ]<∞, and let Z =Ψ(X,Y ). Let also g be a measurable and differentiable
function such that E[g(X)] and E[g(Y )] are finite, and let its derivative g′ be measurable and Riemann-
integrable on the interval [x, y] for all 0≤ x≤ y. Then, E

[
g′(Z)

]
is finite and

E[g(Y )]−E[g(X)] =E[g′(Z)]
(
E[Y ]−E[X]

)
. (EC.2)

Lemma A.2 presents a probabilistic analogue of the mean value theorem, where Z is a random variable
that can be considered as the “mean value” of X and Y . However, unlike for the (deterministic) mean
value theorem, Z does not change with the function g, and Z =Ψ(X,Y ) is not necessarily ordered (in some
stochastic sense) between X and Y . For example, when X and Y are exponential random variables with
distinct rates, Z =st X +Y (see Example 3.1 in Di Crescenzo 1999).

A.2. Proofs of results and supplemental material for Sections 3 and 4

Proof of equivalence of Equations (1) and (2): The long-run average cost in (1) can be written as

Cπ =

K∑
i=1

lim
t→∞

∑ni(t)
k=1 Ci(V

π,x0
i,k )

ni(t)
lim
t→∞

ni(t)

t
=

K∑
i=1

λpi lim
n→∞

∑n

k=1Ci(V
π,x0
i,k )

n
, (EC.3)

which follows from the fact that {ni(t), t≥ 0} is a Poisson process with rate λpi for i ∈ {1,2, . . . ,K}. In the

following, we will prove that for i∈ {1,2, . . . ,K} when E
[∣∣Ci(W

π
i )
∣∣] is finite,

lim
n→∞

∑n

k=1Ci(V
π,x0
i,k )

n
=E [Ci(W

π
i )] , (EC.4)

which shows that (EC.3) (and hence (1)) is equivalent to (2).
In the remainder of this proof, we drop the superscripts π and x0 for notational convenience, and let Tik,

Sik and Dik be the arrival time, service time and departure time of the kth type i customer, respectively,
under policy π and initial state x0. Then, Vik =Dik −Tik −Sik is the queue-waiting time for this customer.
Note that {Vik, k= 1,2, . . .} for each i∈ {1,2, . . . ,K} is a delayed regenerative process with nth regeneration
happening at Ni,n for n= 0,1,2, . . ., where Ni,0 = 1, and Ni,n =min{k : k >Ni,n−1, Vik = 0}. Note also that
for each i, {Ci (Vik) , k= 1,2, . . .} is a regenerative process with the same regeneration epoches as {Vik}. Then,
by Theorem 13 of Chapter 2 and last paragraph of page 93 in Wolff (1989), (EC.4) holds for i∈ {1,2, . . . ,K}
if
∑Ni,1−1

k=1 |Ci(Vik)|<∞ with probability one, E [Ni,2 −Ni,1]<∞, and E
[∑Ni,2−1

k=Ni,1
|Ci(Vik)|

]
<∞. We next

complete the proof by showing that these three conditions hold.
When ρ< 1, the system will return to the empty state within finite time with probability one and also the

expected time for this return is finite (see, e.g., Theorem 7.11 in Kulkarni (2009)). This implies that Ni,1 <∞
with probability one, Ni,2−Ni,1 <∞ with probability one, Vi,k <∞ for any i and k with probability one and

E [Ni,2 −Ni,1]<∞. At last, by Theorem B.5 (i) in El-Taha and Stidham Jr (1999), E
[∑Ni,2−1

k=Ni,1
|Ci(Vik)|

]
=

E [|Ci(Wi)|]E [Ni,2 −Ni,1] is finite under the assumption that E [|Ci(Wi)|] is finite. □
Proof of Proposition 1: We consider a policy γ∗ ∈ ΠF such that γ∗(j) = 1 for j ∈ {1,2, . . . ,K} \ {i}

and γ∗(i) = 2. Then, we can conclude that W γ
i ≤st W

γ∗

i for any policy γ ∈ ΠF by a similar interchange
argument as in the proof of Lemma A.1 (b). Then, for 1 ≤ ℓ < ∞, by Theorem 1.A.3(a) of Shaked and

Shanthikumar (2007), we have E
[
(W γ

i )
ℓ
]
≤E

[
(W γ∗

i )
ℓ
]
for any policy γ ∈ΠF .

Note that Assumption 1 holds for type i for which Ci(t) is in the polynomial form given in Proposition 2

under a policy γ ∈ΠF if E
[
(W γ∗

i )
ℓ
]
is finite for all ℓ= 1,2, . . . , Ji. Note also that

E

[(
W γ∗

i

)ℓ
]
= (−1)ℓ

dℓW̃ γ∗

i (s)

dsℓ

∣∣∣
s=0

. (EC.5)

We next define new notation to provide an expression for W̃ γ∗
i (s). Let B̃(s) denote the LST of the length

of a busy period starting from an empty and idle system, and let B̃ ̸=i(s) denote the LST of TB ̸=i
, the

length of a busy period where only type j ∈ {1,2, . . . ,K} \ {i} customers arrive and are served according
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to FCFS. Let WF denote the steady-state waiting time under FCFS and W̃F (·) be its LST. Finally, let
S̃(x) =

∑K

j=1 pjS̃j(x). From Equation (3.8) and (3.10) of Miller (1960), we have

W̃ γ∗

i (s) = W̃F
(
λ(1− pi)(1− B̃ ̸=i(s))+ s

)
,

where W̃F (s) = (1− ρ)s
/[

s−λ
(
1− S̃(s)

)]
, and B̃ ̸=i(s) is the unique solution to B̃ ̸=i(s) = S̸̃=i

(
s+ λ(1−

pi)(1− B̃ ̸=i(s))
)
for s > 0 and lims→∞ B̃ ̸=i(s) = 0, and S̸̃=i(s) =

(
S̃(s)− piS̃i(s)

)
/(1− pi). Then, using Faa di

Bruno’s formula (see, e.g., Theorem 2 of Roman (1980)), (EC.5) is finite if dnW̃F (s)

dsn
|s=0 and

dnB̸̃=i(s)

dsn
|s=0 are

finite for all n≤ ℓ, i.e., if the nth moment of WF and TB̸=i
are finite.

When ρ < 1, we can obtain the nth moment of WF as (see, e.g., page 238 in Gross et al. (2008))

E
[(
WF

)n]
=

λ

1− ρ

n∑
ℓ=1

(
n

ℓ

)
E
[(
WF

)n−ℓ
] E [Sℓ+1]

ℓ+1
,

where E [Sℓ+1] is the (ℓ+1)st moment of service time of a randomly picked customer. Hence, E [(WF )
n
] is

finite if ρ< 1 and the first n+1 moments of service times of all customers are finite. Besides, from Theorem
1 of Ghahramani and Wolff (1989), the nth moment of the busy period is finite if and only if the nth moment

of the service times is finite. Thus, E

[(
W γ∗

i

)ℓ
]
is finite if ρ < 1 and the first (ℓ+ 1) moments of service

times are finite. □
Proof of Proposition 2: We only prove part (a) here because the proofs of parts (b) and (c) are very

similar. From Equation (2), we have

Cπk
−Cπ̄k

= λ

K∑
j=1

pj

(
E
[
Cj(W

πk
j )
]
−E

[
Cj(W

π̄k
j )
])

= λpk

(
E
[
Ck(W

πk
k )
]
−E

[
Ck(W

π̄k)
])

+λpk+1

(
E
[
Ck+1(W

πk
k+1)

]
−E

[
Ck+1(W

π̄k)
])

,

where the last equation follows from Lemma A.1 (a). Then, Cπk
≤Cπ̄k

if and only if

pk+1

(
E
[
Ck+1(W

πk
k+1)

]
−E

[
Ck+1(W

π̄k)
])

≤ pk

(
E
[
Ck(W

π̄k)
]
−E

[
Ck(W

πk
k )
])

. (EC.6)

According to the work conservation law (see, e.g., Kleinrock (1965)), we have

K∑
j=1

pjE
[
W πk

j

]
/µj =

K∑
j=1

pjE
[
W π̄k

j

]
/µj ,

and by Lemma A.1 (a), we have E
[
W πk

j

]
=E

[
W π̄k

j

]
for j ∈ {1,2, . . . ,K} \ {k, k+1}. Hence,

pk+1

(
E
[
W πk

k+1

]
−E

[
W π̄k

])
/µk+1 = pk

(
E
[
W π̄k

]
−E

[
W πk

k

])
/µk, (EC.7)

which is positive by Lemma A.1 (c). Dividing (EC.6) by (EC.7) completes the proof. □
Remark A.1. For i ∈ {k, k + 1}, γ1, γ2 ∈ {πk, πk+1, π̄k}, and γ1 ̸= γ2, let Uγ1,γ2

i ≡ Ψ(W γ1
i ,W γ2

i ), where
Ψ(·, ·) is defined in Definition A.1. Note that Uγ1,γ2

i is well defined for i∈ {k, k+1} and γ1, γ2 ∈ {πk, πk+1, π̄k}
because E

[
W πi

i

]
<E

[
W π̄k

]
<E

[
W

π2k+1−i

i

]
from Lemma A.1 (c), and due to the stochastic ordering provided

in Lemma A.1 (b). Then, from Lemma A.2, we have δγ1,γ2
i = E [C ′

i(U
γ1,γ2
i )] for i ∈ {k, k + 1} and γ1, γ2 ∈

{πk, πk+1, π̄k}.
In an immediate corollary to Proposition 2, we provide necessary and sufficient conditions for the optimality

of πk, πk+1, and π̄k within the set of these three policies, for which we only need to calculate the values of
δγi ≡ δγ,π̄k

i for i∈ {k, k+1} and γ ∈ {πk, πk+1}.

Corollary A.1. Let I(π̄k) ≡ 0 and I(πi) ≡
(
δπi
i µi − δπi

j µj

)
/ (ρ̄k−1 − ρi) for i, j ∈ {k, k + 1} and j ̸= i.

Then, the policy with the largest [smallest] value of I(γ) for γ ∈ {πk, πk+1, π̄k} has the lowest [highest] long-run
average cost among these three policies.
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Proof of Corollary A.1: For i ∈ {k, k+1}, I(π̄k)≥ I(πi)⇔ δπi
i µi ≤ δπi

j µj ⇔Cπ̄k
≤Cπi

, which follows
from Proposition 2 (a) and (b). Furthermore, for i, j ∈ {k, k+1} and i ̸= j, we get

δ
πk,πk+1

i = δ
πj

i

(
E
[
W

πj

i

]
−E

[
W π̄k

]
E
[
W

πj

i

]
−E

[
W πi

i

])+ δπi
i

(
E
[
W π̄k

]
−E

[
W πi

i

]
E
[
W

πj

i

]
−E

[
W πi

i

])=
δ
πj

i (ρ̄k−1 − ρi)+ δπi
i (ρ̄k−1 − ρj)

2ρ̄k−1 − ρk − ρk+1

,

which follows from Lemma A.1 (c). Then, by Proposition 2 (c)

I(πk)≥ I(πk+1)⇔ µk

[
δπk
k (ρ̄k−1 − ρk+1)+ δ

πk+1,π̄k

k (ρ̄k−1 − ρk)
]
≥ µk+1

[
δπk
k+1 (ρ̄k−1 − ρk+1)+ δ

πk+1,π̄k

k+1 (ρ̄k−1 − ρk)
]

⇔ δ
πk,πk+1

k µk ≥ δ
πk,πk+1

k+1 µk+1 ⇔Cπk
≤Cπk+1

. □

A.3. Proofs of results and supplemental material for Sections 5 and 6

Proof of Proposition 3: Using Equation (69) of Takács (1964), we obtain expressions for
E
[
(W π̄k)2

]
,E
[
(W πi

i )2
]
, and E

[
(W πi

j )2
]
for i, j ∈ {k, k + 1} and i ̸= j, which lead to the following when

combined with (4) and Lemma A.1 (c):

Mπi
i =

1

ρ̄k−1

2τ (3)

3τ (2)
+

λ
∑k+1

ℓ=1 pℓτ
(2)
ℓ

ρ̄k+1

+
λ
(∑k−1

ℓ=1 pℓτ
(2)
ℓ + piτ

(2)
i

)
ρ̄k−1 − ρi

+
λ
∑k−1

ℓ=1 pℓτ
(2)
ℓ

ρ̄k−1

+ τ
(2)
j µj

 , (EC.8)

Mπi
j =

1

ρ̄k−1

(2ρ̄k−1 − ρi

ρ̄k−1 − ρi

)2τ (3)

3τ (2)
+

λ
∑k+1

ℓ=1 pℓτ
(2)
ℓ

ρ̄k+1

+
λ
(∑k−1

ℓ=1 pℓτ
(2)
ℓ + piτ

(2)
i

)
ρ̄k−1 − ρi

+
λ
∑k−1

ℓ=1 pℓτ
(2)
ℓ

ρ̄k−1

+ τ
(2)
i µi

 .
(EC.9)

We next show that δπi
i < δ

πj

i when c
(2)
i > 0 for i∈ {k, k+1} and j = 2k+1− i by showing that Mπi

i <M
πj

i .
By switching the indices of i and j in (EC.9), and subtracting (EC.8), we have

M
πj

i −Mπi
i =

2τ (3)

3τ (2)(ρ̄k−1 − ρj)
+

λρj

(∑k−1
ℓ=1 pℓτ

(2)
ℓ + piτ

(2)
i

)
ρ̄k−1ρ̄k+1

(
1

ρ̄k−1 − ρi

+
1

ρ̄k−1 − ρj

)

+
λpjτ

(2)
j

(ρ̄k−1 − ρj)ρ̄k+1

+
λ
(∑k−1

ℓ=1 pℓτ
(2)
ℓ + pjτ

(2)
j

)
ρ̄k−1 − ρj

(
1

ρ̄k−1

+
1

ρ̄k−1 − ρj

)
, (EC.10)

which is positive because 0<ρj < ρ̄k−1, 0<ρi < ρ̄k−1, ρ̄k+1 > 0, and all moments of service times are positive.
Finally, when both cost functions for type k and k+1 are quadratic, if δπi

i µi ≥ δπi
j µj , for some i∈ {k, k+1}

and j = 2k + 1 − i (and thus δ
πj

i µi > δπi
i µi ≥ δπi

j µj > δ
πj

j µj), then I(πi) > I(π̄k) > I(πj), and hence πi is
the best and πj is the worst according to Corollary A.1. On the other hand, if δπk

k µk ≤ δπk
k+1µk+1 and

δ
πk+1

k+1 µk+1 ≤ δ
πk+1

k µk, then I(πk)≤ I(π̄k) and I(πk+1)≤ I(π̄k), and hence π̄k is the best by Corollary A.1. □
Proof of Corollary 1: Under Assumption 2, we have δπi

i µi ≥ δπi
j µj if and only if µic

(2)
i Mπi

i ≥ µjc
(2)
j Mπi

j

for i ∈ {k, k + 1} and j = 2k + 1 − i. Then, the expressions for Rπk+1 and Rπk and the characterization
of the best/worst policy follow directly from Proposition 3. From (EC.10), we have M

πk+1

k+1 < Mπk
k+1 and

M
πk+1

k >Mπk
k , and thus, Rπk+1 =

M
πk+1

k+1

M
πk+1

k

<
Mπk

k+1

Mπk
k

=Rπk .

When µk = µk+1 and τ
(2)
k = τ

(2)
k+1, for i∈ {k, k+1} and j = 2k+1− i, (EC.8) and (EC.9) yield

Mπi
j −Mπi

i =
1

ρ̄k−1 − ρi

2τ (3)

3τ (2)
+

λ
∑k+1

j=1 pjτ
(2)
j

ρ̄k+1

+
λ
(∑k−1

j=1 pjτ
(2)
j + piτ

(2)
i

)
ρ̄k−1 − ρi

> 0.

Hence, Rπk+1 < 1<Rπk . □

Proof of Proposition 4: We first show that for i∈ {1,2}, ∂

∂λ

(
Mπi

i

Mπi
3−i

)
< 0 if

τ
(2)
3−iµ3−i

τ
(2)
i µi

≥ 1− 2ρi

2(1− ρi)
. (EC.11)
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We define Gi(λ) for i∈ {1,2} as Gi(λ) =
2τ (3)

3τ (2)
+

λτ (2)

1− ρ
+

λpiτ
(2)
i

1− ρi

. Then, (EC.8) and (EC.9) reduce to

Mπi
i =Gi(λ)+ τ

(2)
3−iµ3−i and Mπi

3−i =

(
2− ρi

1− ρi

)
Gi(λ)+ τ

(2)
i µi, for i∈ {1,2}.

Then, we have

∂

∂λ

(
Mπi

i

Mπi
3−i

)
=

G′
i(λ)

(
τ
(2)
i µi −

(
2−ρi
1−ρi

)
τ
(2)
3−iµ3−i

)
−
(
Gi(λ)+ τ

(2)
3−iµ3−i

)
pi

µi(1−ρi)2
Gi(λ)((

2−ρi
1−ρi

)
Gi(λ)+ τ

(2)
i µi

)2 < 0

if and only if

τ
(2)
i µi −

(
2− ρi

1− ρi

)
τ
(2)
3−iµ3−i <

pi
µi(1−ρi)2

(
2τ(3)

3τ(2) +
λτ(2)

1−ρ
+

λpiτ
(2)
i

1−ρi

)(
2τ(3)

3τ(2) +
λτ(2)

1−ρ
+

λpiτ
(2)
i

1−ρi
+ τ

(2)
3−iµ3−i

)
τ(2)

(1−ρ)2
+

piτ
(2)
i

(1−ρi)2

,

(EC.12)

because for i ∈ {1,2}, G′
i(λ) =

τ (2)

(1− ρ)2
+

piτ
(2)
i

(1− ρi)2
> 0. Note that the right-hand side of (EC.12) is greater

than

pi
µi(1−ρi)2

(
λτ(2)

1−ρ
+

λpiτ
(2)
i

1−ρi

)(
λτ(2)

1−ρ
+

λpiτ
(2)
i

1−ρi
+ τ

(2)
3−iµ3−i

)
τ(2)

(1−ρ)2
+
(

1−ρi
1−ρ

)
piτ

(2)
i

(1−ρi)2

= τ
(2)
i µi

(
ρi

1− ρi

)2(
1+

1− ρ

1− ρi

)
+τ

(2)
3−iµ3−i

(
ρi

1− ρi

)

> τ
(2)
i µi

(
ρi

1− ρi

)2

+ τ
(2)
3−iµ3−i

(
ρi

1− ρi

)
.

Thus, a sufficient condition for (EC.12) to hold is

τ
(2)
i µi −

(
2− ρi

1− ρi

)
τ
(2)
3−iµ3−i ≤ τ

(2)
i µi

(
ρi

1− ρi

)2

+ τ
(2)
3−iµ3−i

(
ρi

1− ρi

)
,

which reduces to (EC.11).
Now note that Rπ1 =Mπ1

2 /Mπ1
1 increases in λ if and only if Mπ1

1 /Mπ1
2 decreases in λ. Then, by letting

i= 1 in (EC.11) we obtain part (a). Similarly, by letting i= 2 in (EC.11), we obtain part (b).
Finally, to prove part (c), note that as λ→ µ, we have Gi(λ)→∞, and hence,

lim
λ→µ

Mπi
i

Mπi
3−i

= lim
λ→µ

Gi(λ)+ τ
(2)
3−iµ3−i(

2−ρi
1−ρi

)
Gi(λ)+ τ

(2)
i µi

= lim
λ→µ

Gi(λ)(
2−ρi
1−ρi

)
Gi(λ)

= lim
λ→µ

1− ρi

2− ρi

= lim
λ→µ

p3−i/µ3−i

pi/µi +2p3−i/µ3−i

.

Then, letting i= 1 and i= 2 provides the limits for Rπ1 and Rπ2 as λ→ µ. □
Proof of Proposition 5: Since the first three moments of service times do not depend on type, we

drop the subscript from µi, τ
(2)
i , and τ

(3)
i . Then, we have

Rπ1 =

(
2−ρ1
1−ρ1

)
M + τ(2)µ

(1−ρ1)2

M + τ(2)µ

(1−ρ1)

, Rπ2 =
M + τ(2)µ

(1−ρ2)(
2−ρ2
1−ρ2

)
M + τ(2)µ

(1−ρ2)2

,

where M ≡ 2τ (3)

3τ (2)
+

λτ (2)

1− ρ
, which is a positive constant independent of pi for i∈ {1,2}. Then, we have

∂Rπ1

∂p1
=

M2

µ
+ ρ1τ

(2)

(1−ρ1)
M

(1−ρ1)2

λ

[
M + τ(2)µ

(1−ρ1)

]2 > 0 and
∂Rπ2

∂p2
=

−M2

µ
− ρ2τ

(2)

(1−ρ2)
M

(1−ρ2)2

λ

[(
2−ρ2
1−ρ2

)
M + τ(2)µ

(1−ρ2)2

]2 < 0. □
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Proof of Proposition 6: When service times are exponential, τ
(3)
i = 6/µ3

i and τ
(2)
i = 2/µ2

i ; and when
service times are deterministic, τ

(3)
i = 1/µ3

i and τ
(2)
i = 1/µ2

i for i∈ {1,2}, and hence we have,

Rπ1
exp =

(
2−ρ1
1−ρ1

)
N (1)

exp +
1
µ1

N
(1)
exp + 1

µ2

, Rπ2
exp =

N (2)
exp +

1
µ1(

2−ρ2
1−ρ2

)
N

(2)
exp + 1

µ2

; Rπ1
det =

(
2−ρ1
1−ρ1

)
N

(1)
det +

1
µ1

N
(1)
det +

1
µ2

, Rπ2
det =

N
(2)
det +

1
µ1(

2−ρ2
1−ρ2

)
N

(2)
det +

1
µ2

.

Here, for i∈ {1,2},

N (i)
exp ≡

p1/µ
3
1 + p2/µ

3
2

p1/µ2
1 + p2/µ2

2

+
λ (p1/µ

2
1 + p2/µ

2
2)

1− ρ
+

λpi/µ
2
i

1− ρi

, N
(i)
det ≡

2 (p1/µ
3
1 + p2/µ

3
2)

3 (p1/µ2
1 + p2/µ2

2)
+

λ (p1/µ
2
1 + p2/µ

2
2)

1− ρ
+

λpi/µ
2
i

1− ρi

,

where N (i)
exp >N

(i)
det. Taking the difference of Rπ1

exp and Rπ1
det, we have

Rπ1
exp −Rπ1

det =

(
1
µ2

(
2−ρ1
1−ρ1

)
− 1

µ1

)(
N (1)

exp −N
(1)
det

)
(
N

(1)
det +

1
µ2

)(
N

(1)
exp + 1

µ2

) .

Hence, Rπ1
exp ≥Rπ1

det if and only if µ2/µ1 ≤ (2− ρ1)/(1− ρ1), which proves part (a). Part (b) can be proved
similarly by obtaining Rπ2

exp −Rπ2
det. □

We first provide Lemma A.3 to facilitate the proof of Proposition 7.

Lemma A.3. Suppose that λ, µi, τ
(2)
i , and τ

(3)
i are finite and µi = µ> λ for all i= 1,2, . . . ,K. Then,

(a) π∗
k = πi if and only if fi(τ

(2)
i , τ

(2)
j )> 0 for i∈ {k, k+1} and j = 2k+1− i, where for x1, x2 > 0,

fi(x1, x2)≡
(
ρ̄k−1ρ̄k+1 − (ρk + ρk+1)(ρ̄k−1 − ρi)

)
x2 −

(
ρi(ρk + ρk+1)+

ρ̄2k−1ρ̄k+1

ρ̄k−1 − ρi

)
x1

− ρ̄k−1ρ̄k+1

 2τ (3)

3µ
(∑K

ℓ=1,ℓ/∈{k,k+1} pℓτ
(2)
ℓ + pix1 + pjx2

)
− ρ̄k−1ρ

k−1∑
ℓ=1

pℓτ
(2)
ℓ

(
1+

ρ̄k+1

ρ̄k−1 − ρi

)
. (EC.13)

(b) For i∈ {k, k+1}, fi(x1, x2)< 0 for any x1, x2 > 0 if

ρ≥ 1∑k+1
ℓ=1 pℓ +

√
(pk + pk+1)p2k+1−i

, (EC.14)

which is feasible for ρ< 1 when pk + pk+1 >
∑K

ℓ=k+2 pℓ and p2k+1−i >
(∑K

ℓ=k+2 pℓ

)2
/(pk + pk+1).

(c) For i ∈ {k, k + 1}, if (EC.14) holds in the opposite direction, then for any fixed x1 > 0, there exists
hi(x1) ∈ (x1,∞) such that fi(x1, hi(x1)) = 0, and fi(x1, x2)> 0 if and only if x2 >hi(x1). Furthermore,
if pi ≤ p2k+1−i, then hi(x1) strictly increases in x1.

Proof of Lemma A.3: (a) By Corollary 1, π∗
k = πi if and only if Mπi

i > Mπi
j for i ∈ {k, k + 1} and

j = 2k+1− i. Taking the difference of (EC.8) and (EC.9), and using the fact that µi = µ for all i= 1,2, . . . ,K,
we have

Mπi
i −Mπi

j =
µ(τ

(2)
j − τ

(2)
i )

ρ̄k−1

− 1

ρ̄k−1 − ρi

2τ (3)

3τ (2)
+

λ
∑k+1

ℓ=1 pℓτ
(2)
ℓ

ρ̄k+1

+
λ
(∑k−1

ℓ=1 pℓτ
(2)
ℓ + piτ

(2)
i

)
ρ̄k−1 − ρi

> 0

if and only if fi(τ
(2)
i , τ

(2)
j )> 0 for i∈ {k, k+1} and j = 2k+1− i.

(b) By (EC.13), fi(x1, x2)< 0 for any x1, x2 > 0 if ρ̄k−1ρ̄k+1 − (ρk + ρk+1)(ρ̄k−1 − ρi)≤ 0, which reduces to
(EC.14). For i∈ {k, k+1}, (EC.14) could hold for ρ < 1 only if its right-hand side is less than one, i.e.,

k+1∑
ℓ=1

pℓ +
√
(pk + pk+1)p2k+1−i > 1⇔ p2k+1−i

pk + pk+1

>

(∑K

ℓ=k+2 pℓ

pk + pk+1

)2

,

which holds only if we have pk + pk+1 >
∑K

j=k+2 pj .
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(c) If (EC.14) holds in the opposite direction for i ∈ {k, k + 1}, it is directly observed from (EC.13) that
for fixed x1, fi(x1, x2) increases in x2. Also, for any fixed x1 > 0, from (EC.13) we obtain fi(x1, x2)→∞ as
x2 →∞ and

fi(x1, x1)<

(
ρ̄k−1ρ̄k+1 −

ρ̄2k−1ρ̄k+1

ρ̄k−1 − ρi

)
x1 =−

(
ρ̄k−1ρ̄k+1ρi

ρ̄k−1 − ρi

)
x1 < 0.

Hence, for any fixed x1 > 0, there exists unique hi(x1) ∈ (x1,∞) such that fi(x1, hi(x1)) = 0, and for any
x2 >hi(x1), fi(x1, x2)> 0 and for any x2 ≤ hi(x1), fi(x1, x2)≤ 0.

Next, we show that hi(x1) increases in x1 if pi ≤ pj for i, j ∈ {k, k+1} and i ̸= j. First, define

αi ≡
(
ρ̄k−1ρ̄k+1 − (ρk + ρk+1)(ρ̄k−1 − ρi)

)
, β ≡ 2ρ̄k−1ρ̄k+1τ

(3)

3µ
, Θi ≡

K∑
ℓ=1,ℓ/∈{k,k+1}

pℓτ
(2)
ℓ + pix1,

Di ≡
(
ρi(ρk + ρk+1)+

ρ̄2k−1ρ̄k+1

ρ̄k−1 − ρi

)
x1 + ρ̄k−1ρ

k−1∑
ℓ=1

pℓτ
(2)
ℓ

(
1+

ρ̄k+1

ρ̄k−1 − ρi

)
.

Then, (EC.13) reduces to fi(x1, x2) = αix2 − β(Θi + pjx2)
−1 −Di. Note that when (EC.14) holds in the

opposite direction, we have αi > 0. Also, note that setting fi(x1, x2) = 0 is equivalent to letting αipjx
2
2 +

(αiΘi −Dipj)x2 − (DiΘi +β) = 0. Then, hi(x1) is the unique positive root of this quadratic function, i.e.,

hi(x1) =
−αiΘi +Dipj +

√
∆i

2αipj

,

where ∆i ≡ (Dipj −αiΘi)
2 +4αipj(DiΘi + β) = (Dipj +αiΘi)

2 +4αipjβ > 0. Note that αi and β are inde-
pendent of x1, dΘi/dx1 = pi > 0, and

dDi

dx1

= ρi(ρk + ρk+1)+
ρ̄2k−1ρ̄k+1

ρ̄k−1 − ρi

>
ρ̄2k−1ρ̄k+1

ρ̄k−1 − ρi

> ρ̄k−1ρ̄k+1 >αi,
d∆i

dx1

= 2(Dipj +αiΘi)

(
dDi

dx1

pj +αipi

)
> 0.

Then,

dhi(x1)

dx1

=
1

2αipj

(
pj

(
dDi

dx1

)
−αi

(
dΘi

dx1

)
+

1

2
√
∆i

(
d∆i

dx1

))
>

1

2αipj

(
pj

(
dDi

dx1

)
−αipi

)
> 0,

where the last inequality follows because dDi/dx1 >αi and 0< pi ≤ pj . □

Proof of Proposition 7: (a) If ρ≥
(∑k+1

ℓ=1 pℓ +
√

(pk + pk+1)pk

)−1

, then (EC.14) holds for both i= k

and i= k+1 under the assumption pk ≤ pk+1. Then, fk(τ
(2)
k , τ

(2)
k+1)< 0 and fk+1(τ

(2)
k+1, τ

(2)
k )< 0 from Lemma

A.3 (b), and π∗
k /∈ {πk, πk+1} from Lemma A.3 (a). Thus, π∗

k = π̄k.

For ρ≥
(∑k+1

ℓ=1 pℓ +
√
(pk + pk+1)pk

)−1

to hold when ρ < 1, we need pk + pk+1 >
∑K

ℓ=k+2 pℓ and pk/(pk +

pk+1)>
(∑K

ℓ=k+2 pℓ/(pk + pk+1)
)2

by Lemma A.3 (b), where the latter inequality is equivalent to

pk + pk+1

pk

<

(
pk + pk+1∑K

ℓ=k+2 pℓ

)2

⇔ pk+1

pk

<

(
pk + pk+1∑K

ℓ=k+2 pℓ

)2

− 1.

The above inequality holds for pk ≤ pk+1 only if pk + pk+1 ≥
√
2
∑K

ℓ=k+2 pℓ.

(b) If
(∑k+1

ℓ=1 pℓ +
√

(pk + pk+1)pk+1

)−1

≤ ρ <
(∑k+1

ℓ=1 pℓ +
√
(pk + pk+1)pk

)−1

, (EC.14) holds for i = k

(implying π∗
k ̸= πk by parts (a) and (b) of Lemma A.3) and holds in the opposite direction for i= k+1. Now,

let ξk ≡ hk+1(τ
(2)
k+1), where hk+1(·) is defined in Lemma A.3 (c) and ξk > τ

(2)
k+1. Then, fk+1(τ

(2)
k+1, τ

(2)
k )> 0 and

hence π∗
k = πk+1 if τ

(2)
k > ξk; otherwise, fk+1(τ

(2)
k+1, τ

(2)
k )≤ 0 and hence π∗

k = π̄k by Lemma A.3 (a).

(c) If ρ<
(∑k+1

ℓ=1 pℓ +
√
(pk + pk+1)pk+1

)−1

, then (EC.14) holds in the opposite direction for both i= k and

i= k+1. Then by Lemma A.3 (c), for i, j ∈ {k, k+1} and i ̸= j, there exists ξj = hi(τ
(2)
i )> τ

(2)
i such that

π∗
k = πi if and only if τ

(2)
j > ξj . Then,

π∗
k =


πk, if τ

(2)
k+1 > ξk+1;

πk+1, if τ
(2)
k > ξk;

π̄k, otherwise.
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Furthermore, when pk ≤ pk+1, hk(τ
(2)
k ) strictly increases in τ

(2)
k from Lemma A.3 (c). Hence, we can let

ξ̃k ≡ h−1
k (τ

(2)
k+1), where h−1

k (·) is the inverse function of hk(·), and h−1
k (·) is also a strictly increasing function.

Then, τ
(2)
k+1 > ξk+1 = hk(τ

(2)
k ) is equivalent to h−1

k (τ
(2)
k+1) = ξ̃k > τ

(2)
k . Hence,

π∗
k =


πk, if τ

(2)
k < ξ̃k;

π̄k, if ξ̃k ≤ τ
(2)
k ≤ ξk;

πk+1, if τ
(2)
k > ξk.

Finally, since hk(τ
(2)
k+1)> τ

(2)
k+1, we have τ

(2)
k+1 >h−1

k (τ
(2)
k+1) = ξ̃k. □

Proof of Corollary 2: We here only prove part (a); proofs of parts (b) and (c) are similar. If
C ′

k+1(t)µk+1 ≥ max{δπk
k , δ

πk+1

k }µk for all t ≥ 0, then for any non-negative random variable X, we have
E
[
C ′

k+1(X)
]
µk+1 ≥max{δπk

k , δ
πk+1

k }µk when the expectation exists. Furthermore, by Remark A.1, we have
δγi =E[C ′

i(U
γ
i )]. Hence,

δ
πk+1

k+1 µk+1 =E
[
C ′

k+1(U
πk+1

k+1 )
]
µk+1 ≥max{δπk

k , δ
πk+1

k }µk ≥ δ
πk+1

k µk,

which implies Cπk+1
≤Cπ̄k

by Proposition 2 (b). Similarly, Proposition 2 (a) yields Cπ̄k
≤Cπk

. □



Ouyang, Argon, and Ziya: Assigning Priorities (or not) with Nonlinear Waiting Costs A-11

A.4. Supplemental material for Section 7

Figure A.1 Optimal policy in ΠF with K = 3, ρ= 0.7, Ci(t) = cit
2 for i∈ {1,2,3}, c2 = 1, p= (p1, p2, p3)

indicated in each plot, and exponentially distributed service times with mean one.

Figure A.2 Optimal policy in ΠF with K = 3, ρ= 0.9, Ci(t) = cit
2 for i∈ {1,2,3}, c2 = 1, p= (p1, p2, p3)

indicated in each plot, and exponentially distributed service times with mean one.
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Figure A.3 95% C.I. of the relative cost difference between G-cµ rule and π∗ for the case with K = 3, where
negative values indicate that G-cµ rule has a smaller cost than π∗, and the right-most graph shows the

proportions of each type (p1, p2, p3) for different scenarios in the simulation study

Table A.4 Threshold values Rπ1 and Rπ2 to characterize the best policy in ΠF for K = 2 that accompany
numerical results of Section 7.2.

µ1 = 5 µ1 = 1 µ1 = 0.2

ρ p1 Rπ2 Rπ1 Rπ2 Rπ1 Rπ2 Rπ1

0.1 0.375 1.260 0.532 1.612 0.805 2.558

0.3 0.5 0.380 1.265 0.580 1.725 0.791 2.618

0.9 0.390 1.240 0.620 1.88 0.794 2.670

0.1 0.240 1.590 0.307 1.831 0.508 2.552

0.7 0.5 0.290 1.650 0.450 2.223 0.606 3.470

0.9 0.390 1.970 0.546 3.255 0.628 4.202

0.1 0.105 1.850 0.169 2.000 0.347 2.560

0.9 0.5 0.200 1.975 0.375 2.664 0.506 5.000

0.9 0.390 2.880 0.500 5.918 0.540 9.312


