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Abstract: Simultaneously capturing spatial and temporal dynamics is always a challenge  

for the remote sensing community. Spatiotemporal fusion has gained wide interest in various 

applications for its superiority in integrating both fine spatial resolution and frequent temporal 

coverage. Though many advances have been made in spatiotemporal fusion model development 

and applications in the past decade, a unified comparison among existing fusion  

models is still limited. In this research, we classify the models into three categories:  

transformation-based, reconstruction-based, and learning-based models. The objective of 

this study is to (i) compare four fusion models (STARFM, ESTARFM, ISTAFM, and 

SPSTFM) under a one Landsat-MODIS (L-M) pair prediction mode and two L-M pair 

prediction mode using time-series datasets from the Coleambally irrigation area and Poyang 

Lake wetland; (ii) quantitatively assess prediction accuracy considering spatiotemporal 

comparability, landscape heterogeneity, and model parameter selection; and (iii) discuss the 

advantages and disadvantages of the three categories of spatiotemporal fusion models. 
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1. Introduction 

The quantity of remotely sensed data acquired from satellite instruments has greatly increased, 

contributing to multi-source and multi-resolution image sequences at regional or global scales. However, 

given the tradeoff between spatial resolution and temporal revisiting cycles [1,2], there is so far no single 

satellite sensor that can produce images with both fine spatial and temporal resolutions. A comparison 

of existing sensors and their spatial and temporal resolutions is given in Table 1. For example, SPOT 

series and Landsat TM/ETM+ multispectral data with spatial resolutions from 6 to 30 m have proven 

useful in monitoring forest and ecosystem dynamics [3–7], land cover classifications [8,9], and land 

cover/use change detection [10,11]. However, long revisit frequencies (16 days for Landsat series and 

26 days for SPOT), frequent cloud contamination [12], complex topographic effects, and equipment 

failure make it difficult to acquire sequenced remotely sensed data that target the same region, and have 

prevented us from applying it to rapid monitoring of disturbance and change detection [2]. In contrast, 

the NOAA Advanced Very High Resolution Radiometer (AVHRR), SPOT-Vegetation (SOPT-VGT),  

and Moderate Resolution Imaging Spectroradiometer (MODIS) provide global multispectral imagery of 

land surface at 1–2-day revisit frequencies [13]. However, their relatively low spatial resolutions,  

from 250 m to 1 km, are not sufficient for quantitative monitoring of landscape changes that occur at  

sub-pixel resolutions. A possible cost-effective approach is to generate synthetic data with both fine spatial 

resolution and temporal frequency by blending the multi-sensor spatial and temporal characteristics.  

It has aroused great interest within the remote sensing community [2,14–16]. 

Image fusion can be generally divided into spatial and spectral fusion, and spatial and temporal  

fusion [17]. Spatiospectral fusion, or pan-sharpening, blends a lower spatial resolution multispectral 

image with a higher spatial resolution panchromatic image. Many spatiospectral fusion models have 

been developed and have matured during the past three decades. However, spatiospectral fusion methods 

are not efficient in enhancing the spatial resolution and temporal frequency simultaneously. 

Spatiotemporal fusion is a relatively new concept addressing this problem. Several spatiotemporal  

fusion models have been recently proposed. Based on the characteristics of the model framework  

and procedures for implementing the models, we classify them into three categories:  

(i) transformation-based; (ii) reconstruction-based; and (iii) learning-based models. 

Transformation-based methods include wavelet and tasseled cap transformations [18,19].  

Acerbi-Junior et al. [20] increased the spatial resolution of MODIS by integrating Landsat imagery using 

a three-level coupled wavelet decomposition scheme. Tasseled cap transformation [19] is widely used 

in detecting land cover change and phenology disturbances [6]. It has been regarded as a standard technique 

for spectral variation based on the three axes of brightness, greenness, and wetness. Hilker et al. [21] 

used a tasseled cap transformation of both Landsat TM/ETM+ and MODIS reflectance data to capture 

change information with a fine spatial resolution in a transformed space. 

In reconstruction-based methods, synthetic fusion data are generated by a weighted sum of the spectrally 

similar neighboring information from fine spatial but coarse temporal resolution, and fine temporal  

but coarse spatial resolution data [2,15,21]. Gao et al. [2] proposed a spatial and temporal adaptive 

reflection fusion model (STARFM) to blend Landsat and MODIS imagery to generate daily synthetic 

Landsat-like data with 30 m spatial resolution. Several improved models have since been developed. 

Hilker et al. [21] presented a spatial and temporal adaptive algorithm for mapping reflectance change 
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(STAARCH) to identify highly detailed spatiotemporal patterns in land cover change. STAARCH also 

produces synthetic Landsat-like images for each available date of MODIS data based on an extended 

STARFM [21]. However, the prediction accuracy of the STARFM and STARRCH models is sensitively 

correlated with landscape heterogeneity [15]. Based on STARFM, Zhu et al. [15] developed an  

enhanced spatial and temporal adaptive reflectance fusion model (ESTARFM), considering conversion 

coefficients, so that homogeneous and heterogeneous pixels have different conversion coefficients in  

the prediction [22]. Shen et al. [23] proposed an extended spatiotemporal method for reflectance 

blending prediction within the STARFM framework. It took sensor observation differences for varied 

land cover types into consideration. However, it requires a prior unsupervised classification for the fine 

spatial resolution data. A customized blending model was developed by Michishita et al. based on the 

ESTARFM. Reflectance of the moderate-resolution image pixels on the target dates can be predicted 

more accurately by the proposed customized model than the original ESTARFM [15]. In another branch 

of reconstruction-based methods, Hansen et al. [24] integrated Landsat and MODIS imagery on a  

16-day repeat time to monitor forest cover change in the Congo Basin using a regression tree method. 

Roy et al. [25] proposed a semi-physical approach that integrates a bidirectional reflectance  

distribution function spectral model for Landsat gap-filling and relative normalization production.  

Zurita-Milla et al. [26] proposed an unmixing-based data fusion technique to reconstruct synthetic 

images with the spectral and temporal resolution provided by Medium Resolution Imaging Spectrometer 

(MERIS), but a Landsat-like spatial resolution. Zurita-Milla et al. [27] then applied a linear mixing 

model to a time series of MERIS images to produce synthetic fused images. Nonetheless, these proposed 

methods required a prior unsupervised classification for input high/medium spatial resolution remotely 

sensed images, or a high spatial resolution land use database as auxiliary materials for pixel unmixing. 

In learning-based methods, compressive sensing and sparse representation have garnered wide 

interest in various fields in the last decade, especially in image processing. Yang et al. [28] presented a 

new super-resolution method to generate high-resolution images based on sparse representation. Huang 

and Song [29] developed a sparse representation based on a spatiotemporal reflectance fusion model 

(SPSTFM) to produce a synthetic prediction using both prior and posterior pairs of Landsat and MODIS 

images and one MODIS image on the prediction date. Song and Huang [30] further presented a 

spatiotemporal fusion model using one-pair image learning. This model was implemented in two stages: 

first, the spatial resolution of MODIS data on prior and posterior dates is improved through sparse 

representation; second, the observed Landsat and enhanced MODIS data were fused via a high-pass 

modulation [30]. 

Spatiotemporal fusion was originally designed for blending shortwave reflectance bandwidths from 

Landsat and MODIS data to produce daily Landsat-like surface reflectance [2,31–33]. However, it 

appears to hold great utility and potential for interdisciplinary fields that require fine resolution data. 

Anderson et al. [33] used STARFM, infusing Landsat thermal infrared (TIR) with MODIS TIR, to get 

daily evapotranspiration mapping with the ALEXI, which demonstrated its reliable application in fine 

resolution evapotranspiration mapping. Watts et al. [34] used synthetic data derived from STARFM to 

improve the classification accuracy of conservation arable land and to produce high frequency data series 

compensating for degraded synthetic spectral values when classifying field-based tillage. Liu and 

Weng [35] applied STARFM to simulate a series of ASTER-like datasets to derive the urban variables 

of the normalized difference vegetation index (NDVI), normalized difference water index (NDWI), and 
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land surface temperature (LST), and to quantitatively assess the effects of urban characteristics on West 

Nile Virus dissemination. Huang et al. [36], Weng et al. [31] and Wu et al. [32] also improved STARFM 

to accurately derive the LST. A complete summary of researches and their applications are provided  

in Appendix Table A1. 

Table 1. Representative spatial and temporal resolution sensors. 

Sensor Band Type 
Spatial 

Resolution 

Global Revisit 

Cycle 

Operational 

Period 
Access 

Worldview 
Panchromatic *** * 2007–present Commercial 

Multi-spectral *** * 2007–present Commercial 

Geoeye 
Panchromatic *** * 2008–present Commercial 

Multi-spectral *** * 2008–present Commercial 

Quickbird Multi-spectral *** * 2001–present Commercial 

IKONOS 
Panchromatic *** * 1999–present Commercial 

Multi-spectral *** * 1999–present Commercial 

SPOT 
Panchromatic *** * 1986–present Commercial 

Multi-spectral ** * 1986–present Commercial 

ALOS 
Panchromatic *** * 2006–2011 Commercial 

Multi-spectral ** * 2006–2011 Commercial 

ZY-3 
Panchromatic *** * 2012–present Commercial 

Multi-spectral ** * 2012–present Commercial 

Landsat 
Panchromatic ** * 1972–present Free 

Multi-spectral ** * 1972–present Free 

ASTER Multi-spectral ** * 1999–present Free 

Hyperion Hyper-spectral ** * 2000–present Free 

HJ-A/B 
Charge-coupled Device ** * 2008–present Free 

Hyper-spectral * * 2008–present Free 

MERIS Multi-spectral * * 2002–2012 Free 

MODIS Multi-spectral * *** 2000–present Free 

AVHRR Multi-spectral * *** 1982–present Free 

SPOT-VGT Multi-spectral * *** 1998–present Free 

GOES Multi-spectral * *** 1975–present Free 

Note: Spatial resolution: high *** (<5 m); medium ** (5–30 m); low * (>30 m); Temporal resolution: high 

*** (<3 days); medium ** (3–15 days); low * (>15 days). 

Many advances have been made in the past decade in both algorithm development and practical 

application of spatiotemporal fusion. However, there have been limited studies making unified 

comparisons of the existing spatiotemporal fusion models. The commonly used statistical scores, such 

as the correlation coefficient (CC), root-mean-square error (RMSE), average absolute difference (AAD),  

and Quality Index [37], are affected and constrained by selection of the individual study site. If a study 

site has not been observed concurrently in the input Landsat-MODIS (L-M) image pairs, unresolved 

spatiotemporal variances will cause biases in the predictions. Emelyanova et al. [38] performed a 

definitive assessment of the prediction performance of STARFM and ESTARFM against spatial and 

temporal variances. Jarihani et al. [39] evaluated the accuracy of STARFM and ESTARFM through 

testing two “Index-then-Blend” and “Blend-then-Index” approaches, and provided an assessment of the 
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order for data blending and index calculation. Landscape heterogeneity also influences the prediction 

performance. Although ESTARFM aims to predict surface reflectance accurately in heterogeneous 

regions, it has not yielded a standard criteria for landscape heterogeneity [40]. However, there is no 

unified comparison work that has been made. This research will compare existing spatiotemporal fusion 

models based on the performance of spatiotemporal comparability, landscape heterogeneity, and model 

parameter selection. 

We compared three reconstruction-based models and one learning-based algorithm using two  

time-series datasets, the Coleambally irrigation area (CIA) in Australia, and the Poyang Lake wetland  

in China. The transformation-based approach cannot lend itself directly to spatiotemporal data fusion 

without combining it with another blending framework. Therefore, we did not include this category in 

the comparison work. The primary objectives of this study are to (i) compare the performance of the 

four spatiotemporal fusion models under two prediction modes; (ii) quantitatively assess the prediction 

accuracy based on spatiotemporal comparability, landscape heterogeneity, and model parameter 

selection; and (iii) summarize the advantages and weaknesses of the existing models. 

The remainder of this review is organized as follows: Section 2 describes the materials and methods 

used in this study. The assessment is provided in Section 3. Section 4 discusses the results, and major 

findings are concluded in Section 5. 

2. Materials and Methods 

2.1. Study Site Description and Data Preparation 

Two study sites were selected in this research (Figure 1). The CIA was chosen as the first validation 

site. The CIA datasets were provided by the Commonwealth Scientific and Industrial Research Organization, 

Australia. The CIA is a rice irrigation field located in southern New South Wales, Australia (145°04′E, 

34°00′S). The site has been extensively used for time-series remote sensing research [38–42]. We used 

17 cloud-free L-M pairs over the CIA during the austral summer growing season in 2001–2002. They 

are the same time-series L-M datasets as used by Emelyanova et al. [38] and Jarihani et al. [39]. Due to 

the existing gaps with null values, we selected the main irrigation area of 625 km2 (1000 rows by 

1000 columns at 25 m resolution). The images were acquired by Landsat-7 ETM+ and atmospherically 

corrected using MODTRAN4 [43]. The CIA is located entirely in the east-west overlap of two adjacent 

paths in the Landsat World Reference-2 system (paths/rows 92/84 and 93/84), which allows for an 8-day 

repeat cycle [38,42]. The corresponding MODIS Terra MOD09GA Collection data were resampled to 

25 m resolution using a nearest neighbor algorithm to match the Landsat data resolution after a 

geometrical transformation. Due to the dimensionality of remotely sensed data [44] and the computation 

cost of processing all bands, we selected the Landsat red wavelength band (B3), near infrared wavelength 

band (B4), and mid-infrared I wavelength band (B5). They comprised sufficiently rich information. 

The corresponding bands for the MODIS imagery were bands 1, 2, and 6. 

Poyang Lake, the largest freshwater lake in China, was chosen as the second testing site. It has 

fluctuating water levels throughout the year. Between March and June, water flows into the lake from five 

surrounding rivers. It reaches its peak level between July and September, due to the high precipitation 

in the summer and backflow flood from the Yangtze River. Between October and November, the water 
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subsides, and vast areas covered with wetland vegetation emerge. From December to February, the water 

level decreases significantly and several small disconnected lakes are visible. To ensure monitoring rapid 

and significant phenological changes in both the spatial and temporal domains, we specifically chose the 

southeastern part (116°37′E, 28°33′N) of the water body, because the surface reflectance of the area has 

been reported to vary significantly throughout the year [45]. Ten cloud-free L-M pairs were available  

in 2004. The Poyang Lake site covers 3600 km2 (2000 rows by 2000 columns at 30 m resolution). All 

of the Landsat images were acquired by Landsat-5. The digital numbers from the Landsat level 1 product 

were calibrated and atmospherically corrected using fast line-of-sight atmospheric analysis of 

hypercubes (FLAASH) [46]. The acquired MODIS daily surface reflectance (MOD09GA) data were 

reprojected and resampled to the Landsat resolution and extent. As FLAASH uses a similar 6S (Second 

Simulation of the Satellite Signal in the Solar Spectrum) [47] atmospheric correction approach to the 

MODIS surface reflectance product, the two sensors’ reflectance were consistent and comparable [7]. 

 

Figure 1. Location of the two study sites. (a) A map of Australia with the CIA site labeled 

in a red square; (b) The RGB composite of the Landsat image with B5, B4, and B3 acquired 

on 8 October 2001 for the CIA; (c) A map of China with the Poyang Lake site labeled in a 

red square; (d) The RGB composite of the Landsat image with B5, B4, and B3 acquired on  

15 February 2004 for the Poyang Lake wetland. 
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Dates of the acquired L-M pairs for the Poyang Lake and CIA sites are given in Table 2. For Poyang 

Lake, less cloud-cover MODIS data on the closest dates were substituted when uncontaminated 

MODIS images were unavailable on the targeted dates. For the CIA site, the acquired L-M pair dates 

were well correlated. 

Table 2. Dates of the acquired L-M pairs for the Poyang Lake wetland (PLW) and CIA sites. 

For the Poyang Lake site, less cloud-cover MODIS data on the closest dates were substituted 

when uncontaminated MODIS images were unavailable on the targeted dates. For the CIA 

site, the acquired L-M pair dates were well correlated. 

Image CIA Image PLW 

# Date # Date 

1 2001/10/08 1 2004/02/15 

2 2001/10/17 2 2004/04/19 

3 2001/11/02 3 2004/05/05 

4 2001/11/09 4 2004/07/24 

5 2001/11/25 5 2004/08/09 

6 2001/12/04 6 2004/09/26 

7 2001/01/05 7 2004/10/12 

8 2002/01/12 8 2004/10/28 

9 2002/02/13 9 2004/11/29 

10 2002/02/22 10 2004/12/15 

11 2002/03/10   

12 2002/03/17   

13 2002/04/02   

14 2002/04/11   

15 2002/04/18   

16 2002/04/27   

17 2002/05/04   

2.2. Selected Spatiotemporal Fusion Models 

We compared three reconstruction-based models, STARFM [2], ESTARFM [15], and improved 

STARFM (ISTARFM) [48], and one learning-based model, SPSTFM . 

2.2.1. STARFM 

STARFM [2] needs at least one pair of fine- and coarse-resolution data on the prior or posterior date 

and one set of coarse-resolution data on the predicted date. It predicts the surface reflectance using a 

combined weight function, incorporating spectral information from both the fine- and coarse-resolution 

data. Its implementation is as follows. 

(i). One fine-resolution image is used to select candidate similar neighbor pixels using a threshold 

method. The threshold is determined by the standard deviation of the fine-resolution images 

and the estimated number of land-cover types. 
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(ii). Sample filtering is applied to remove poor quality observations from the candidates, which 

introduces constraint functions to ensure the quality of the selected similar pixels. 

(iii). The weights corresponding to each similar pixel are computed with a combined function using 

the spectral difference, temporal difference, and distance difference. 

(iv). The final surface reflectance on the targeted date is predicted with the incorporation of the 

fine- and coarse-resolution data through the proposed weight function. 

2.2.2. ESTARFM 

ESTARFM [15] needs at least two pairs of fine- and coarse-resolution data on prior and posterior 

dates and one coarse-resolution data on the predicted date. It predicts the surface reflectance of the 

targeted date using a linear combination of spectral information from both the fine- and coarse-resolution 

data based on the concept of spectral unmixing, incorporating a conversion coefficient and a weight 

coefficient. Its implementation is as follows. 

(i). Similar neighbor pixels are selected from the fine-resolution data on both the prior and posterior 

dates using the same threshold method as STARFM. The final set of similar pixels is determined 

by an intersection operation of the results derived from the individual selection in the initial step. 

(ii). The weights for all of the similar pixels are determined by the spectral similarity and geographic 

distance between the targeted pixel and similar pixels. 

(iii). The conversion coefficients are computed from the surface reflectance of the fine- and  

coarse-resolution data during the observation period using a linear regression. 

(iv). The two transition images on the targeted date are predicted using the combined function of 

the fine- and coarse-resolution data and the weight and conversion coefficients. 

(v). The final fine-resolution prediction is calculated by incorporating the two transition images  

in step (iv) through a weight function, which depends on the spectral difference of the  

coarse-resolution data on the base date and the predicted date. 

2.2.3. ISTARFM 

ISTARFM [48] provides two prediction modes, in which one or two pairs of base L-M images are 

used in the blending process. Its implementation is as follows. 

(i). Adaptively choose blending modes. ISTARFM first performs a choice for prediction modes 

according to the number of input L-M pairs within a time-window. 

(ii). Similar neighboring pixels are selected from the fine-resolution data through local rules  

with a logistic constraint function. For one-pair prediction mode, the final similar pixels are 

retrieved from its individual selection; for multi-pair prediction mode, the final set of similar 

pixels is retrieved by an intersection operation on the results derived from the individual selection. 

(iii). The weights for all similar pixels are determined by four factors: fine-coarse resolution data 

difference, spectral similarity for fine-resolution data, selective temporal difference and 

spatial difference. 

(iv). The final fine-resolution prediction is calculated by incorporating observed fine- and  

coarse-resolution data through a weight function in step (iii).  
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2.2.4. SPSTFM 

SPSTFM [29] also requires two pairs of fine- and coarse-resolution data. It predicts fine-resolution 

reflectance by establishing the correspondence of structures between the fine- and coarse-resolution 

images via sparse representation. Its implementation is as follows. 

(i). High-frequency patches are extracted for dictionary learning. The difference images of the 

fine- and coarse-resolution data on the prior and posterior dates are extracted for jointly training 

two dictionaries of high-frequency feature patches. 

(ii). Dictionary-pair learning is conducted with the two input difference images using an optimization 

equation under the theoretical basis of sparse representation and sparse coding. The optimal 

solution to obtain the best dictionary sets Dl and Dm is K-SVD [49]. 

(iii). The fine-resolution patches are reconstructed using the enforced same sparse coefficient and 

the dictionary set Dl, after obtaining the sparse coefficient of the coarse-resolution patch with 

respect to the dictionary set Dm. 

(iv). The fine-resolution reflectance is predicted. Considering the heterogeneity of local changes in 

actual remote sensing images, the general reconstruction is converted from the image scale to 

the patch scale using different local weights. The NDVI and normalized difference built-up 

index (NDBI) are also taken into consideration to measure the change information. 

2.3. Comparison Type Setting 

As each algorithm needs a different number of base L-M pairs, we divided the prediction patterns 

into a one L-M pair prediction mode and a two L-M pair prediction mode. Under the given comparison 

type, we performed blending tests using STARFM (STARFM-One) and ISTARFM (ISTARFM-One) 

with one L-M pair. All of the models were also used with two L-M pairs (STARFM-Two, ESTARFM, 

ISTARFM-Two, and SPSTFM). The two prediction modes were conducted on both study sites by 

producing a Landsat-like image on the targeted date. Specifically, we used one prior closest L-M pair 

for the one L-M pair prediction, and used one prior and one posterior images that were nearest temporal 

neighbors to the targeted date for the two L-M pairs prediction. The corresponding actual Landsat 

observation was also required for validation. 

For example, for one L-M pair prediction on the CIA dataset, L-M (10 October 2001) and M  

(17 October 2001) were used to predict the synthetic Landsat-like data on 12 October 2001, and  

L-M (17 October 2001) and M (2 November 2001) were used to predict the Landsat-like data on  

2 November 2001. For two L-M pair prediction on the CIA dataset, L-M (10 October 2001), L-M (2 

November 2001), and M (17 October 2001) were used to predict the synthetic Landsat-like data on 12 

October 2001, and L-M (17 October 2001), L-M (9 November 2001), and M (2 November 2001) were 

used to predict the Landsat-like data on 2 November 2001. 

2.4. Quantifying Spatiotemporal Comparability 

Due to the compatibility of satellite transit and sensor bandwidth for both onboard Landsat and 

MODIS, they have similar orbital parameters, such as near-nadir viewing and solar geometries [2,15]. 

In previous blending applications, there is always an assumption that the Landsat and MODIS data 
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acquired at a given site on the same date will be spatially and temporally comparable after radiometric 

calibration, geometric referencing, and atmospheric correction [2,7,15]. However, how much the 

spatiotemporal comparability between the input Landsat and MODIS images affects final prediction 

accuracy has not yet been addressed. Therefore, we calculated the correlation coefficient of each selected 

band between the Landsat and MODIS images to denote the spatiotemporal comparability of input  

L-M pairs. 

2.5. Quantifying Landscape Heterogeneity 

Study site heterogeneity greatly affects spatiotemporal blending results [2,15]. Characterizing the 

sensitivity between the landscape heterogeneity and prediction performance requires a robust quantitative 

metric. We used our newly proposed landscape heterogeneity index (LHI) [40], to quantify the landscape 

heterogeneity and time-series variances at the two study sites. The newly presented LHI considers the 

individual pattern of both horizontal and vertical textures of landscape, and employs two threshold 

strategies to detect whether the neighboring ground pixels differ from each other significantly in both 

horizontal and vertical directions [40]. 

2.6. Assessing Prediction Accuracy 

The models’ prediction performance was quantitatively evaluated with representative metrics and 

direct visual inspection. The CC was used to measure correlation between the predicted and actual 

reflectance. The AAD between the predicted and actual reflectance was calculated to verify the deviation 

between the simulations and observations. The RMSE and peak signal to noise ratio (PSNR), which are 

widely used in the quantitative assessment of image quality, were chosen to reflect the overall bias 

between the simulated and observed reflectance. The Kling-Gupta efficiency (KGE) [50] was used as a 

compound measure to evaluate the model performance. The KGE accounts for the correlation, 

variability, and bias, and incorporates these measures into a single multi-objective index. The formula is 

given below: 

KGE 1 (1)

1 1 1  (2)

/  (3)

/  (4)

where ED denotes the Euclidian distance from the ideal point, r is the CC between the predicted and 

observed reflectance, α and β denote a ratio of the relative deviation and mean variability of the predicted 

and observed reflectance, σp and σo denote the standard deviation of the predicted and observed 

reflectance, respectively, and μp and μo denote the mean value of the predicted and observed reflectance, 

respectively. Thus, the ideal KGE equals 1. 

The performance for each prediction mode was compared. Selected comparisons between the prediction 

modes were also made to validate how the number of L-M pairs affected the prediction results. 
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3. Results 

3.1. Spatiotemporal Comparability 

The spatiotemporal comparability of L-M pairs acquired on each available date for both the CIA  

and Poyang Lake site is shown in Figure 2.  

 

Figure 2. The CC values of the corresponding L-M pairs acquired on the same date for both 

the CIA and Poyang Lake sites. (a) The general variance of the CC at the CIA site, ranging 

from 0.50–0.68 for B3, 0.46–0.56 for B4, and 0.59–0.70 for B5; (b) The general variance of 

the CC at the Poyang Lake site. The CC varies from 0.50–0.77 for B3, 0.71–0.89 for B4, and 

0.73–0.85 for B5. 

MOD1 MOD2 MOD6

T3 T4 T5

0.63 0.69 0.76 0.90 1.55

0.62 0.7 0.84 0.87 1.63 1.65

T

MOD

Landsat TM/ETM+

MODIS

Bandwidth
1.75

 

Figure 3. The position contrast of the selected Landsat TM/ETM+ and MODIS bands in the 

electromagnetic spectrum. 

Figure 2a reveals that the spatiotemporal comparability of B3 (red) and B5 (MIR I) of the L-M pairs 

were better than that of B4 (NIR), and Figure 2b shows that B4 and B5 were more comparable than B3. 

However, the position contrast of selected bands in Figure 3 shows that B3 has the highest level of 

overlapped bandwidth with respect to its corresponding L-M bands, B4 has the second highest, and B5 

has the lowest. Besides the geometric difference mentioned in Section 2.4, the critical factor that impacts 

spatiotemporal comparability is the spectral response associated with various landscapes. Since the CIA 
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is a rice irrigation field and B4 is most sensitive to green vegetation, the high variance of surface 

reflectance in B4 results in its lower comparability than the other two bands in the CIA site. Due to  

the vast water body that is predominant in the Poyang Lake site, the surface reflectance of water  

in the near-infrared and mid-infrared band is much lower than that in the visible bands. Moreover,  

the chlorophyll content in the aquaria environment results in more variability of reflectance  

in the visible bands. 

3.2. Landscape Heterogeneity Changes 

Figure 4 shows that the selected ETM+ scenes corresponded to significant changes in the landscape 

heterogeneity for both sites. For example, significant seasonal phenology changes at the CIA site occurred 

from 9 November 2001 to 13 February 2002, but the overall landscape distribution was stable. From 13 

February to 27 April 2002, we can clearly see that the land cover changed and became more heterogeneous, 

being consistent with the computed LHI changes. The changes in the water area at the Poyang Lake site 

dominated the landscape heterogeneity variance. 

 

Figure 4. Selected Landsat scenes and time-series plots of landscape heterogeneity  

changes using the LHI. (a) ETM+ scenes of the CIA site acquired on 9 November 2001 (#4), 

13 February 2002 (#9), and 27 April 2002 (#16); (b) TM scenes of the Poyang Lake site 

acquired on 15 February 2004 (#1), 26 September 2004 (#6), and 28 October 2004 (#8); 

(c,d) Time-series plots of the landscape heterogeneity using the LHI, indicating with red 

circles the specific images in (a,b), for the CIA site (c) and the Poyang Lake site (d). 

3.3. Prediction Performance 

Figures 5 and 6 show actual Landsat observations and predicted Landsat-like images using the  

four blending models under the two prediction modes on 12 January 2002 and 29 November 2004 for 
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the CIA and Poyang Lake sites, respectively. The NDVI difference images between the prior and 

predicted dates, and between the predicted and posterior dates, at the Landsat resolution were also shown 

in Figures 5 and 6. A visual comparison of each prediction and its corresponding observed Landsat data 

could be made. All of the predictions (Figures 5a–f and 6a–f) using the selected blending  

models captured the general changing information during the prediction period seen in the actual 

observations (Figures 5g and 6g). This demonstrates the possibility and utility of these spatiotemporal 

blending applications. 

 

Figure 5. Predicted Landsat-like images and the observed Landsat ETM+ image for the CIA 

site on 12 January 2002. (a–d) Blended images under the two L-M pairs prediction  

mode using ESTARFM, STARFM-Two, SPSTFM, and ISTARFM-Two, respectively;  

(e,f) Blended images under the one L-M pair prediction mode using STARFM-One and 

ISTARFM-One; (g) Observed ETM+ image; The NDVI difference images (h) between the 

prior (T1) and predicted (T2) date, and (i) between the predicted (T2) and posterior (T3) 

dates, respectively, in which darker regions represent smaller changes and lighter regions 

denote larger changes. (j)The NDVI difference contrast of (h) and (i). 

 

Figure 6. Cont. 
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Figure 6. Predicted Landsat-like images and the observed Landsat TM image for the Poyang 

Lake site on 29 November 2004. Similarly, (a–d) Blended images under the two L-M pairs 

prediction mode; (e,f) Blended images under the one L-M pair prediction mode.  

(g) Observed ETM+ image; The NDVI difference image (h) between the prior and predicted 

dates, and (i) between the predicted (T2) and posterior (T3) dates, respectively; (j) The NDVI 

difference contrast of (h) and (i). 

Figures 7 and 8 show the sample red band (B3) to validate the l-to-l line correlation between the 

observed and estimated reflectance. At the CIA site (Figure 7), ESTARFM clearly overestimates and 

STARFM-Two underestimates. The remaining blending models produce better 1-to-1 line correlations. 

At the Poyang Lake site (Figure 8), a group of ESTARFM predicted pixels are under-estimated and the 

estimated reflectance using SPSTFM produces a large bias. A visual inspection of this randomly selected 

date at each site indicates that ISTARFM-One and -Two performed more stably. 

 

Figure 7. Comparison of the observed and predicted reflectance on 12 January 2002 for the 

red band (B3) from each blending model (a–f) using 1-to-1 fitting line at the CIA site. The 

scale factor of reflectance is 10,000, which was also used for the quantitative assessment.  
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Figure 8. Comparison of the observed and predicted reflectance on 29 November 2004 for 

the red band (B3) from each blending model (a–f) using 1-to-1 fitting line at the Poyang 

Lake site. The scale factor of reflectance is 10,000, which was also used for the 

quantitative assessment.  

3.4. Accuracy Assessment 

Many previous blending studies have performed accuracy assessments using tables and scatter plots 

of actual observations versus predicted Landsat-like data, such as those in Figures 7 and 8. We made 

time-series predictions for the three selected bands at two sites under two prediction modes. This 

produces 426 possible sets of assessment: 276 for the two L-M pair prediction mode (180 for the CIA 

site and 96 for the Poyang Lake site) and 150 for the one L-M pair prediction mode (96 for the CIA site 

and 54 for the Poyang Lake site). We employed a “curve” visualization to compare the prediction 

accuracy of selected bands of different fusion models on time-series date sequences. The spatiotemporal 

fusion models under the two L-M pair prediction mode were depicted using solid lines with different 

colors, while the models under the one L-M pair prediction mode were denoted using dashed lines. Each 

assessment measure shown in separated rows, i.e., CC, AAD, RMSE, and PSNR, was displayed up to 

bottom, respectively. The larger CC and PSNR denote higher correlations between the observed and 

predicted reflectance. The smaller AAD and RMSE denote minor bias. Therefore, the four measures can 

be considered at the same time. 

Figure 9 depicts time-series changes of selected measures with respect to the four blending models 

for the CIA site. The CC curve chart (Figure 9a–c) shows the relative stability and superiority of 

ESTARFM and ISTARFM-Two over the other models. We can draw the same conclusion from the AAD 

curve chart (Figure 9d–f); however, larger biases can be seen for SPSTFM and ISTARFM-One, 

especially for the short-wave near-infrared band (B5). 
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Figure 9. “Curve” visualization of the individual accuracy measures of the time-series 

predictions for the CIA site, showing the accuracy measures: CC (a–c); AAD (d–f);  

RMSE (g–i); and PSNR (j–l). 

Correspondingly, Figure 10 depicts time-series changes of the selected measures with respect to the 

four blending models for the Poyang Lake site. The four types of curve charts (Figure 10) show that 

ISTARFM-Two outperforms the other models, and ESTARFM ranks at the second place. However, 

larger biases can be seen for STARFM-One during the period from date #3 to #5 from the curve chart 

(Figure 10). SPSTFM also produces large biases during the period from date #3 to #4. 

Figure 11a–c (the left column) depict the time-series variability of the KGE for B3, B4, and B5 at the 

CIA site, respectively, and Figure 11d–f (the right column) represent the KGE variability of the same 

bands at the Poyang Lake site, respectively. It has shown that one model may yield different accuracy 

for individual band. The ISTARFM-Two and ESTARFM perform more stably for blending. 
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Figure 10. “Curve” visualization of individual accuracy measures of the time-series 

predictions for the Poyang Lake site, showing the accuracy measures: CC (a–c); AAD (d–f); 

RMSE (g–i); and PSNR (j–l). 

 

Figure 11. Cont. 



Remote Sens. 2015, 7 1815 

 

 

Figure 11. KGE values calculated for each model for the three selected bands at (a–c) the 

CIA and (d–f) Poyang Lake sites. 

 4. Discussion 

4.1. Selected Blending Models Performance 

The objective of this research was to evaluate spatiotemporal blending models under two  

prediction modes using L-M data at the CIA and Poyang Lake sites. The selected blending models had 

minimum input requirements and no ancillary data were used, such as land-cover classification result or 

phenology timetables. 

More input L-M pairs did not always ensure higher prediction accuracy because the phenology 

predicted for the Poyang Lake site using only one prior L-M pair was closer to the actual observations 

than that using two L-M pairs, based on both visual and quantitative comparisons. We took the  

blending model using two L-M pairs as an example, assuming that Lpm and Lpn represent the transient 

Landsat-like data at the date tp, predicted from the input L-M pair at tm and tn, respectively. The synthetic 

prediction of the Landsat-like data at tp can be obtained by the compound weighting function: 

∙ ∙ ∙ 1 ∙  (5)

Consequently, the range of Lp should satisfy 

min , max ,  (6)

where  and  denote the weights of the transient predictions  and , respectively min ∙  and 

max ∙  denote the minimizing and maximizing operations. However, when one transient prediction 

shows a large bias due to a large spectral contrast between the base and predicted dates, the final 

prediction deviation will be large, according to Equation (5). Therefore, we could use the idea proposed 



Remote Sens. 2015, 7 1816 

 

in [48] that L-M pair pre-selection based on the CC of coarse-resolution data between the base and 

predicted dates should be performed when more than two L-M pairs exist. 

For this purpose, we tested STARFM-One and ESTARFM on the CIA site, with base dates 

preselected using fewer MODIS images for the predicted date. For the STARFM-One, we used MODIS 

image on 9 November 2001 (#4) and base L-M pairs on 8 October 2001 (#1), 17 October 2001 (#2), and 

2 November 2001 (#3), respectively, to produce a synthetic Landsat-like image on 9 November 2001 

(#4). For the ESTARFM, we fixed the prior L-M pair on 2 November 2001 (#3), and used posterior  

L-M pairs on 25 November 2001 (#5), 4 December 2001 (#6), 5 January 2002 (#7), 12 January 2002 (#8), 

and 13 February 2002 (#9), respectively, to produce a synthetic Landsat-like image on 9 November 

2001 (#4). 

Table 3 shows that the CC between the base date and predicted date image with the order from small 

to large is #1, #2, and #3 for the STARFM-One model test. For the ESTARFM model test, the 

corresponding order is #7, #8, #6, and #5. With a comparison between Table 3 and the quantitative 

assessment results (Tables 4 and 5), it reveals that the model performance is consistent with the CC value 

of MODIS images between the base and predicted dates. Taking STARFM-One with B3 for instance, 

the CC value increases from 0.42 to 0.58, and reaches 0.79, while the KGE criteria between the predicted 

and observed reflectance correspondingly increases from 0.50 to 0.65, and reaches 0.86. The same 

conclusion can be verified from another measure (i.e., CC). For the ESTARFM model test, with the CC 

decreased from 0.76 to 0.39 with B3, 0.75 to 0.10 with B4, and 0.89 to 0.73 with B5, its model 

performance saw a slight decrease rather than producing large bias. 

Table 3. The correlation coefficient (CC) of MODIS images between the base and predicted 

dates in the CIA site. For example, “#1~#4” denotes the CC value between the prior MODIS 

image on 8 October 2001 (#1) and the MODIS image on 9 November 2001 (#4). 

Band 

Mode 
B3 B4 B5 

#1~#4 0.42 0.52 0.60 

#2~#4 0.58 0.56 0.74 

#3~#4 0.79 0.62 0.83 

#4~#5 0.76 0.75 0.89 

#4~#6 0.59 0.53 0.79 

#4~#7 0.39 0.14 0.73 

#4~#8 0.40 0.10 0.74 

Table 4. The quantitative assessment of STARFM-One prediction performance using different 

prior input L-M pairs in the CIA site. For example, “#1~#4” denotes the prediction mode in 

which the L-M pair on 8 October 2001 (#1) and MODIS image on 9 November 2001 (#4) 

are used to predict Landsat-like fusion on 9 November 2001 (#4). 

 

Mode 

Criteria KGE CC 

Band B3 B4 B5 B3 B4 B5 

#1~#4 0.50 0.71 0.42 0.50 0.76 0.47 

#2~#4 0.65 0.72 0.51 0.65 0.80 0.61 

#3~#4 0.86 0.81 0.50 0.86 0.88 0.73 
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Consequently, the CC value of coarse-resolution data between base and predicted dates should be an 

important reference for selecting input L-M pairs when more than two L-M pairs exist, especially for 

the STARFM model. 

Table 5. The quantitative assessment of ESTARFM prediction performance using different 

prior input L-M pairs at the CIA site. For example, “#3~#4~#5” denotes the prediction mode 

in which the L-M pairs on 2 November 2001 (#3) and 25 November 2001 (#5) and MODIS 

image on 9 November 2001 (#4) are used to predict Landsat-like fusion on 9 November 

2001 (#4). 

 

Mode 

Criteria KGE CC 

Band B3 B4 B5 B3 B4 B5 

#3~#4~#5  0.87 0.90 0.92 0.88 0.90 0.92 

#3~#4~#6  0.85 0.88 0.91 0.86 0.88 0.91 

#3~#4~#7  0.83 0.85 0.91 0.85 0.86 0.91 

#3~#4~#8  0.84 0.85 0.90 0.85 0.85 0.91 

4.2. Model Parameter Selection 

Spatiotemporal blending results are sensitive to prerequisites from both input data and parameter 

setting. Two major types of parameter differences were considered in our study: (i) the spatiotemporal 

comparability of the input L-M pairs, the landscape heterogeneity and the spatiotemporal variances of 

study sites; and (ii) preset parameters, such as the moving window size for reconstruction-based methods 

and the dictionary/patch size for learning-based methods. 

The spatiotemporal comparability of the L-M pair on the same date may not be the critical  

factor impacting prediction accuracy. Figure 2b (Poyang Lake) shows overall higher spatiotemporal 

comparability than Figure 2a (CIA). However, the KGE criteria in Figure 11 show that overall prediction 

accuracy at the Poyang Lake site (the right column) is not obviously higher than that at the CIA site (the 

left column), even though the KGE value with B3 at the Poyang Lake site (Figure 11b) is lower than 

that at the CIA site. On the other hand, for the same study site, spatiotemporal comparability should also 

be regarded as an optional reference. As mentioned in Section 3.1, B4 and B5 are more comparable than 

B3 at the Poyang Lake site from Figure 2b. It is interesting to note that the KGE result with respect to 

the Poyang Lake site shows that B3 produces larger bias than the other two bands. Based on this aspect, 

spatiotemporal comparability seems to have the utility to account for prediction accuracy difference 

regarding band spectrums. 

Landscape heterogeneity can also affect the predicted Landsat-like image produced. Figure 3c shows 

a significant increase in the LHI for the CIA site from 10 March 2002 (#11), which corresponded to a 

decrease in the prediction accuracy of all of the blending models in Figure 9a–c. However, by comparing 

the LHI and KGE measures, we could conclude that ESTARFM was superior to the other blending 

models, due to the use of the conversion coefficient. Quantitatively, ESTARFM produced acceptable 

predictions when the LHI was below 0.65. 

Spatial and temporal variances for landscape are strongly associated with performance of the 

spatiotemporal fusion model [38,39]. Similar to the procedure performed by Emelyanova et al. [38], we 

partitioned the overall variance of the L-M datasets for the CIA and Poyang Lake sites into individual 
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spatial and temporal variances using the approach proposed by Sun et al. [51], aiming to analyze all 

models’ performance based on the spatial and temporal variances. 

The curves in Figure 12 show that the spatial and temporal variances at both the Landsat and MODIS 

resolutions have consistent changing trends. Greater spatiotemporal variance at the Landsat resolution 

than at the MODIS resolution was witnessed. Obvious differences between the bands can be seen in 

Figure 12, mainly due to the different spectral response associated with different landscape. The spatial 

variance of B5 at the CIA site was largest throughout the study period, due to the sharp spectral contrast 

between the irrigated fields and the fallow fields, dry land pastures, and woodlands [38]. Between 

acquisition dates 2 and 6, the spatial variance of B5 was relatively high, whereas the spatial variance of 

B3 decreased. All three bands had low temporal variance at the CIA site, except for an obvious 

fluctuation between acquisition dates 3 and 7. The spatial variance of B4 at the Poyang Lake site was 

largest due to the spectral response of the water areas and the subsequent vegetation growth. The 

fluctuating water levels throughout the year resulted in a large spatial rather than temporal variance. 

Particularly between acquisition dates 2 and 5, the spatial variance of B4 and B5 stayed high, whereas 

the temporal variance stayed low. 

The partitioned spatial variance was larger than the temporal variance at both the CIA and  

Poyang sites, especially for the Poyang Lake site that the spatial variance was highly dominant due to 

its fluctuating water level throughout the year. The quantitative measures showed that ESTARFM 

produced smaller errors than STARFM-Two at most dates for both sites. It supported the conclusion 

reached by Emelyanova et al. [38] that ESTARM was superior when spatial variance was dominant. As 

ISTARFM was developed based on the STAFRM-like framework, it worked better when temporal 

variances was dominant. However, ISTARFM could perform better than STARFM in predicting 

situation where significant spatial variance occurred, for its combination with a time-window and  

pre-selection of input L-M pairs [48]. SPSTFM does not seem to be sensitive to land cover 

spatiotemporal variance, since its prediction framework was based on dictionary learning. From the KGE 

assessment results in Figure 11, ESTARFM and ISTARFM-Two produced relatively more stable 

blending accuracies than the other models. One model could also produce different blending accuracies 

for each band, due to the different spectral responses to the ground surface. 

A comparison of selected blending models should be performed under a unified framework, especially 

when setting autologous model parameters such as the moving window size of reconstruction-based 

methods. The larger the moving window size, the more spectral and texture information from neighboring 

pixels will be introduced into the estimated reflectance of the central pixel. The computation will also 

increase exponentially. We selected three L-M pairs (#7, #8, and #9 in Table 2) from the CIA site as a case 

study to validate these parameters. The effect of the moving window size on predictions was analyzed with 

respect to ESTARFM. The size was sampled from 5 × 5, 15 × 15, …, 55 × 55. The dictionary and patch 

size are also trade-off factors for learning-based methods. The patch size directly affects the spectral and 

texture information contained in each sampled patch. We tested the patch size using seven patch sizes  

(2 × 2, 3 × 3, …, 8 × 8), holding the dictionary size at 512. We then analyzed how the dictionary size 

affected the blending accuracy by testing five dictionary sizes (64, 128, 256, 512, and 1024), holding the 

patch size at 4 × 4. We evaluated the KGE and computation cost in both tests, and a Windows PC with 

3.40-GHz Intel Core 5 CPU and 8 GB RAM was employed as processor in this study. 
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Figure 12. At the CIA (a,b) and Poyang Lake sites (c,d), changes in the spatial (SpatV) and 

temporal (TempV) variance over time at the Landsat (a,c); and MODIS (b,d) resolutions. 

 
       

Figure 13. Model parameters affect the KGE. (a) Changes in the KGE of the three key bands 

as the moving window size increases; (b) Changes in the KGE of two bands as the dictionary 

(bottom axis) and patch (upper axis) sizes increase. 

Figure 13a shows that ESTARFM produced a better KGE as the window size increased with an 

interval step of 10. The KGE then decreased after reaching its maximum. Figure 13b shows that the 

performance of SPSTFM with B3 and B4 was kept stable as the patch size increased while the SPSTFM 

performance with B5 improved as patch size increased. The model performance first improved as the 

dictionary size increased, then fluctuated. The increase in the parameter sizes led to an increase in the 

computation time, especially for the moving window size and dictionary size (Table 6). However, the 

larger computation costs with larger window size and dictionary size did not ensure a continuous increase 

in the prediction accuracy. The trade-off between accuracy and computation and optimal parameter 

setting for blending models are two key areas for any spatiotemporal fusion procedure. 
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Table 6. Changes in the computation cost as the model parameters change. 

Window Size Time Cost Patch Size Time Cost Dictionary Size Time Cost 

5 8 m 59.58 s 2 4 m 26.96 s 64 2 m 14.53 s 

15 11 m 19.39 s 3 4 m 29.25 s 128 2 m 33.83 s 

25 15 m 50.02 s 4 4 m 30.42 s 256 3 m 10.12 s 

35 21 m 47.90 s 5 4 m 30.68 s 512 4 m 30.42 s 

45 29 m 52.33 s 6 4 m 32.21 s 1024 7 m 30.40 s 

55 39 m 8.80 s 7 4 m 50.66 s   

  8 4 m 50.90 s   

4.3. Problems with Existing Blending Models 

Transformation-based methods mainly focus on the integration of spatial and spectral information for 

image enhancement. However, they do not construct a distinct blending relationship between spatial and 

temporal information. Acerbi-Junior et al. [20] attempted to enhance the spatial resolution of MODIS 

with Landsat data using a wavelet transformation. They performed the spatiotemporal information 

enhancement of the L-M data on the base date and could not predict the synthetic Landsat-like data on 

a targeted date. However, when considering multi-information fusion including spectral details, the 

transformation-based method is recommended, either alone or combined with other blending frameworks. 

Reconstruction-based methods have gained notice since the proposal of STARFM. The spatial and 

temporal adaptive fusion framework provides us with an excellent fusion approach for blending data 

that have a high spatial resolution but low temporal resolution with data that have a high temporal 

resolution but low spatial resolution. It has proven useful in dynamic monitoring and phenology 

disturbance detection over short periods or not significantly changeable landscapes. The biggest obstacle 

for the development of reconstruction-based methods is how to deal with the assumption that “the land 

cover type and sensor calibration do not change between the prior and predicted date” [2,15,48]. 

The learning-based method is a recent development. Since the rise of the concept of compressed 

sensing, sparse representation technology has been widely used in image processing, such as image 

compression, image restoration, and super-resolution image construction. Although the learning-based 

method is a good approach for implementing the production and servitization of data fusion, it has 

limitations. The selection of learning samples and the design of over-complete dictionaries needs more 

research attention to develop methods for improving the capturing of structural and textural information 

while preserving details. Further, learning-based methods can handle both temporal reflectance changes, 

phenology changes (e.g., seasonal changes in vegetation), and type changes (e.g., the conversion of 

farmland to built-up areas), but which prediction types are best suited has not yet been tested. 

5. Conclusions 

We compared four spatiotemporal blending models, ESTARFM, STARFM, ISTARFM, and 

SPSTFM, in two prediction modes using L-M datasets at the CIA and Poyang Lake sites. Four 

commonly used measures, CC, AAD, RMSE, and PNSR, and a compound assessment measure, KGE, 

were used to evaluate the models’ performance. The results showed that the four selected models 
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produced reasonable predictions, with KGE values ranging from 0.4 to 0.95. More specifically, 

conclusions of this study were: 

(i). The reconstruction-based models have more stable performance than the learning-based 

model. Overall, ISTARFM-Two and ESTARFM performed more stably than other models. 

However, it should be noted that learning-based models such as SPSTFM offer promises to 

overcome fundamental problems in spatiotemporal fusion, e.g., capturing both phenological 

and land cover changes and integrating spatiotemporal with spatiospectral fusions [52]. Given 

the complexity of dictionary learning and sparse representation, more studies are required to 

further improve such models. 

(ii). The spatiotemporal comparability of the input L-M pairs may not be the critical factor 

impacting prediction accuracy. However, it can be considered an optional reference for 

evaluating spatiotemporal fusion performance, especially for the same study site. 

(iii). Landscape heterogeneity was shown to affect the model performance significantly. A more 

complex landscape creates higher prediction uncertainty for spatiotemporal fusion applications. 

(iv). Landscape spatiotemporal variances were shown to be strongly associated with model 

performance. ESTARFM performed better than STARFM-Two when spatial variance was 

dominant in a given site. ISTARFM and STARFM worked better when temporal variance was 

dominant. However, ISTARFM could perform better than STARFM in predicting situations 

where significant spatial variance occurred, for its combination with a time-window and  

pre-selection of input L-M pairs. SPSTFM does not seem to be sensitive to land cover 

spatiotemporal variance. 

(v). More input L-M pairs did not always ensure higher prediction accuracy. The correlation 

coefficient of coarse-resolution data between base and predicted dates should be an importance 

reference for selecting input L-M pairs when more than two L-M pairs exist, especially for 

the STARFM model. 

(vi). A higher computational cost (e.g., larger moving window size for the reconstruction-based 

model, larger dictionary size for the learning-based model) could not ensure better  

prediction accuracy. 
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Appendix 

Table A1. A summary of spatiotemporal fusion applications and relevant studies. 

# Literature Algorithm Study Region Land-Cover Types Data Acquisition Dates Focus of Research 
Assessment 

Method 

1 
Acerbi-Junior et al. 

(2006) [20] 
Wavelet-T Brazilian Savannas 

Cerrado patches, 

eucalyptus plantations, 

agricultural plots, gallery 

forests, grassland, and 

degraded areas 

_____ 

Used three types of wavelet transforms to 

perform the fusion between MODIS and 

Landsat TM images. Provided a conceptual 

framework for improving the spatial 

resolution with minimal distortion of the 

spectral content of the source image. 

Mean bias; 

Bias variance  

2 Gao et al. (2006) [2] STARFM 

The BOREAS 

southern study area 

(104°W, 54°N) 

Forest and sparse 

vegetation 

4 L-M pairs;  

2001/05/24, 2001/07/11, 

2001/08/12, 2001/09/29 

Tested STARFM’s ability to capture 

seasonal changes over forested regions. 

Mean bias; 

AD 

Western Iowa 

(95.7°W, 42.1°N) 
Cropland 

1 L-M pair;  

2001/07/28, 2001/08/29 

Validated that the existence of “pure pixels” 

significantly affected the prediction 

accuracy. 

AD 

Eastern Virginia 

scene (77°W, 38°N) 

Deciduous forest, 

evergreen forest, mixed 

forest, and some cropland 

3 L-M pairs; 2001/02/07, 

2001/03/30, 2001/07/17 

Tested STARFM’s performance on a 

complex mixture region. 

AD; bias; 

STD 

3 
Hansen et al.  

(2008) [24] 

Regression and 

classification tree 
Congo Basin Mainly forests 

98 Landsat 4,5,7;  

daily MODIS L2G (250 m 

500 m);  

8-day MODIS L3 TIR;  

Landsat: 1984–2003  

MODIS: 2000–2003 

Used regional/continental MODIS-derived 

forest cover products to calibrate Landsat 

data for high spatial resolution mapping of 

the forest cover in the Congo Basin, with a 

regression and classification tree analysis. 

_____ 
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Table A1. Cont. 

# Literature Algorithm Study Region Land-Cover Types Data Acquisition Dates Focus of Research 
Assessment 

Method 

4 
Hilker et al.  

(2009) [21] 
STAARCH 

West-central 

Alberta, Canada 

(116°30′W, 53°9′N) 

Mainly forest with herbal 

and shrub vegetation and 

patches of water and rocks 

3 L-M pairs;  

110 8-day MODIS;  

(3.15–10.15)  

2002–2005 

Presented a STAARCH model, based on an 

extended STARFM, to detect changes in 

reflectance and denote disturbance events in 

a forest landscape with a high level of detail. 

The known 

disturbance 

validation 

dataset 

5 
Hilker et al.  

(2009) [53] 
STARFM 

Central British 

Columbia, Canada 

Mainly coniferous forest 

with subsidiary herbal and 

shrub vegetation and 

patches of water and rocks 

5 L-M pairs;  

19 8-d MODIS;  

2001/05–2001/10 

Applied STARFM to produce dense time 

series synthetic Landsat-like data for a 

mainly coniferous region. 

AD; R2;  

t-test 

6 
Zurita-Milla et al. 

(2009) [27] 
Linear mixing model 

Central part of the 

Netherlands 

(5°54′36″E, 

52°11′24″N) 

A mixture of heather, 

woodlands, natural 

vegetation and shifting 

sands 

1 L scene:  

2003/07/10  

7 MERIS scenes:  

2003/02/18, 04/16,05/31, 

07/14, 08/06, 10/15, 12/08 

Proposed a linear mixing model for a time 

series of MERIS images and used a high-

resolution land-use database to produce 

synthetic images having the spectral and 

temporal resolution provided by MERIS, but 

a Landsat-like spatial resolution. 

ERGAS 

7 
Chen et al.  

(2010) [54] 
ESTARFM 

Qian-Yanzhou, 

Zheijang, China 

(115°04′13″E, 

26°44′48″N) 

Mainly forest with patches 

of shrub and soil 

7 L scenes;  

33 8-day MODIS;  

2004/04–2004/11 

Improved the accuracy of regional/global 

gross primary production (GPP) estimation 

with a combination of a satellite-based 

algorithm, flux footprint modelling, and 

data-model fusion. 

RMSE; t-test 

8 
Liu and Wang  

(2010) [55] 
DASTARF model Beijing, China Winter wheat 

3 L-M pairs;  

2009/04/15, 2009/05/17, 

2009/06/02 

Proposed a DASTARF model to improve the 

predictions derived from STARFM, 

incorporating measured observations and 

modeling uncertainties using an iteration 

scheme. Applied this method in a wheat 

yield estimation. 

Error 

variance 
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9 Zhu et al. (2010) [15] ESTARFM 

BOREAS southern 

study area  

(104°W, 54°N) 

Forest and sparse 

vegetation 

4 L-M pairs;  

2001/05/24, 2001/07/11, 

2001/08/12, 2001/09/29 

Tested the newly proposed ESTARFM’s 

ability to capture frequently changing 

information and conducted a comparison 

between STARFM and ESTARFM. 

AD; AAD 

Central Virginia, 

USA 

Forest, bare soil, water, 

and urban regions 

3 L-M pairs;  

2002/01/25, 2002/02/26, 

2002/05/17 

Validated the advantages of ESTARFM’s 

predictions using a heterogeneous region, 

with comparisons with STARFM. 

AD; AAD 

10 
Meng et al.  

(2011) [56] 
STAVFM 

Western Beijing 

(115°58′08″E, 

40°27′57″N) 

Farmland, forest, shrub, 

built-up areas, and water 

10 L-M pairs;  

Daily MODIS;  

2002/02/12 

Improved STARFM with the introduction of 

time-radius and time-distance weighting for 

averaging transition images in  

multi-pairs blending. 

R2; AD; AAD 

11 
Anderson et al. 

(2011) [33] 
STARFM 

Orlando region of 

southern Florida, 

USA 

Urban with high 

population, irrigated 

fields, and wetlands 

2 L-M Pairs;  

9 daily-TIR MODIS;  

2002/11/12 

Applied STARFM in fusing Landsat TIR 

with MODIS TIR to get daily evaporation 

mapping with the ALEXI, which 

demonstrated that STARFM holds great 

utility for high-resolution evapotranspiration 

mapping, and its original design. 

Error level 

12 
Gaulton et al.  

(2011) [57] 
STAARCH 

Rocky Mountains 

and foothills, 

Alberta, Canada 

Mainly forest with a road 

network 

8-day MODIS;  

Landsat TM;  

Landsat:  

2001/07, 2001/10, 

2004/06, 2004/08, 

2008/07, 2008/09, 

MODIS:  

A bi-weekly input from 

2001 to 2008; 

Applied STARRCH to generate a 

disturbance sequence representing  

stand-replacing events over a large area of 

grizzly bear habitat. 

The known 

disturbance 

validation 

dataset 
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13 Liu et al. (2011) [58] STARFM 

Miyun County, 

northeast of Beijing, 

China 

Woodland, arable land, 

construction land,  

and water 

1 L-M pair;  

9 daily MODIS;  

2007/05 

Integrated STARFM into ETWatch to fuse 

different scales of remote sensing 

evapotranspiration data. 

Bias; STD 

14 Singh (2011) [59] STARFM 

Mawana 

subdivision of the 

Meerut district of 

Uttar Pradesh state, 

India 

Arable land with  

scattered trees and bushes 

and non-crops, including 

the Ganges river 

2 L-M pairs;  

10 years 8-day MODIS;  

2000–2009 

Applied STARFM in the generation and 

evaluation of GPP. Conducted a regression 

analysis of GPP derived from closest 

observed and synthetic ETM+ during a long 

time series from 2000 to 2009. 

R2; t-test 

15 
Watts et al.  

(2011) [34] 
STARFM 

North Central 

Montana, USA 

Field crops, including 

spring and winter wheat 

and some barley 

5 L-M pairs;  

26 daily MODIS;  

2009/05–2009/08 

Used synthetic data derived from STARFM 

to improve the classification accuracy of 

conservation arable land. Produced a high 

frequency data series compensating for 

degraded synthetic spectral values when 

classifying field-based tillage. 

R2; t-test 

16 
Coops et al.  

(2011) [60] 
STARFM 

Foothills of western 

Alberta, Canada, 

along the slopes of 

the Rocky 

Mountains 

Coniferous and mixed 

vegetation types 

2 L-M pairs;  

32 8-day MODIS;  

2009/02–2009/09 

Compared vegetation phenology measures 

observed from ground-based cameras with 

those of fused Landsat-like synthetic 

datasets derived from STARFM, using three 

key indicators of phenological activities: the 

start of green-up, the start of senescence, and 

the length of the growing season. 

R2 
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17 
Liu and Weng  

(2011) [35] 
STARFM 

Los Angeles, 

California, USA 

Mainly urban areas, with 

flat and hilly terrain and 

water 

3 ASTER-M pairs;  

2007/07–2007/12 

Applied STARFM to fuse ASTER and 

MODIS to obtain a series of ASTER-like 

datasets for the derivation of the urban 

variables NDVI, NDWI, and LST. 

Quantitatively examined the effects of urban 

environmental characteristics on West Nile 

Virus dissemination. 

AD 

18 
Walker et al.  

(2012) [61] 
STARFM 

Central Arizona, 

USA (34°48.0′N, 

112°5.5′W) 

Dryland forest,  

woodland, non-forest, and 

semi-arid grassland 

6 L-M pairs;  

20 daily, 8-day,  

16-day MODIS;  

2006/04–2006/10 

Used STARFM to produce synthetic 

imagery over a dry land vegetation study site 

for tracking phenological changes. 

R2; AAD; 

Max/min 

differences 

19 Singh (2012) [62] STARFM 

Mawana 

subdivision of the 

Meerut district of 

Uttar Pradesh state, 

India 

Arable land with scattered 

trees and bushes and  

non-crops, including the 

Ganges river 

16 L-M pairs;  

46 8-day MODIS;  

2002/03–2009/09 

Applied STARFM to generate a series of 

NDVI datasets from 2002 to 2009. 

Quantitatively compared the blending results 

and observations from the predicted residual 

and temporal residual perspectives. 

R2; bias; 

RMSE 

20 
Bhandari et al. 

(2012) [63] 
STARFM 

Queensland, 

Australia 
Mainly forest 

38 L-M pairs;  

16-day MODIS;  

2003/07–2008/04 

Generated a Landsat image time series for 

every 16 days for a 5-year period to monitor 

changes in vegetation phenology in 

Queensland, which demonstrated that 

STARFM can be used to form a time series 

of Landsat TM images to study vegetation 

phenology over a number of years. 

R2; AD; STD 

  



Remote Sens. 2015, 7 1827 

 

Table A1. Cont. 

# Literature Algorithm Study Region Land-Cover Types Data Acquisition Dates Focus of Research 
Assessment 

Method 

21 
Huang and Song 

(2012) [29] 
SPSTFM 

Central part of the 

BOREAS southern 

study area 

Forest and sparse 

vegetation 

2 L-M pairs;  

2001/05/24, 2001/08/12 
Proposed a spatiotemporal fusion algorithm 

based on sparse representation using both 

prior and posterior L-M pairs. 

AAD; 

RMSE; VOE; 

ERGAS; 

SSIM Shenzhen, China Urban area 
2 L-M pairs;  

2000/11/01, 2004/11/08 

22 
Huang et al.  

(2013) [36] 
STARFM Beijing, China 

Mainly residential regions, 

with some woodland  

and cropland 

4 L-M pairs; 2002/02/15, 

2002/03/19, 2002/10/13, 

2002/11/14 

Proposed a bilateral filtering model based on 

STARFM to generate high spatiotemporal 

resolution LST data for urban heat  

island monitoring. 

RMSE; CC; 

AAD; STD 

23 
Song and Huang 

(2013) [30] 
SPFMOL * 

Guangzhou, China 
Crops, water, and 

impervious 

1 L-M pair; 2000/09  

1 L-M pair; 2000/11/01 Proposed a spatiotemporal fusion algorithm 

through one image pair learning. 

AAD; 

RMSE; SSIM 
Shenzhen, China Urban area 

1 L-M pair;  

2000/11/01 

24 Fu et al. (2013) [64] ESTARFM 

Saskatoon, Canada 

(104°W, 54°N) 

Forest region, with mainly 

coniferous forest 

3 L-M pairs;  

8-day MODIS;  

2001/05/24, 2001/07/11, 

2001/08/12 

Proposed a modified version of ESTARFM 

(mESTARFM) and compared the 

performance of mESTARFM to that of 

ESTARFM on three study sites at different 

time intervals. 

R2; RMSE; 

AAD;  

p-value 

Jiangxi, China 

(115.0577°E, 

26.7416°N) 

Coniferous forest 

containing Pinus 

massoniana, P. elliottii, 

Cunninghamia lanceolata, 

and Schima superba 

3 L-M pairs;  

8-day MODIS;  

2001/10/19, 2002/04/13, 

2002/11/07 

Quebec, Canada 

(74.3420°W, 

49.6925°N) 

Coniferous boreal forest 

containing Picea mariana 

and Pinus banksiana 

3 L-M pairs;  

8-day MODIS;  

2001/05/13, 2005/05/08, 

2009/09/08 
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25 
Shen et al.  

(2013) [23] 
STARFM 

Wuhan, China 

Water, built-up areas, 

arable land, shrubs,  

and roads 

2 L-M pairs;  

2001/05/03, 2001/09/24 

Proposed a spatiotemporal fusion model 

based on STARFM, considering sensor 

observation differences between different 

cover types when calculating the weight 

function. Validated this model using  

three sites. 

R2; AAD 
Beijing, China 

Mountains, forests, arable 

lands and built-up areas 

2 L-M pairs;  

2001/11/11, 2001/12/13 

Qinghai-Tibet 

Plateau, China 

Mountains with ice  

and snow 

2 L-M pairs;  

2001/06/13, 2001/11/04 

26 
Emelyanova et al. 

(2013) [38] 

STARFM; 

ESTARFM;  

LIM; GEIFM 

Coleambally, New 

South Wales, 

Australia 

(145.0675°E, 

34.0034°S) 

Irrigated fields, woodland, 

and dryland agriculture 

17 L-M pairs;  

2001/10–2002/05 

Under a framework of partitioning spatial 

and temporal variance, compared STARFM, 

ESTARFM, and two simple algorithms on 

two specific sites. Concluded that 

ESTARFM did not always produce lower 

errors than STARFM, STARFM and 

ESTARFM did not always produce lower 

errors than simple models, and that land 

cover spatial and temporal variances were 

strongly associated with  

algorithm performance. 

RMSE; bias; 

R2 
Gwydir, New South 

Wales, Australia 

(149.2815°E, 

29.0855°S) 

Irrigated fields, woodland, 

dryland agriculture, and 

flood areas 

14 L-M pairs;  

2004/04–2005/04 

27 
Walker et al.  

(2014) [65] 
STARFM 

Central Arizona 

(34°48.0′N, 

112°5.5′W) 

A variety of  

vegetation classes 

5 Landsat TM;  

69 8-day MODIS;  

2005–2009 

Applied STARFM to produce a time series 

of Landsat-like images at 30 m resolution for 

validating dryland vegetation phenology. 

Examined the differences in the temporal 

distributions of the peak greenness extracted 

from the enhanced vegetation index and 

NDVI using the synthetic images. 

five Pearson’s 

correlation 

coefficients 
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28 
Zhang et al.  

(2014) [66] 
ESTARFM/STARFM 

Mid-eastern New 

Orleans, USA 

Water bodies, vegetation, 

wetland, and urban land. 

4 L-M pairs; 2004/11/07, 

2005/04/16, 2005/09/07, 

2005/10/09 

Applied STARFM and ESTARFM to map 

the urban flood resulting from the 2005 

Hurricane Katrina in New Orleans. 

Compared the prediction and mapping 

accuracy of the two models. 

RMSE; AD 

29 
Weng et al.  

(2014) [31] 
ESTARFM 

Los Angeles, 

California, USA 

Water, developed urban, 

forest, shrub land, 

herbaceous, 

planted/cultivated,  

and wetland 

7 L-M pairs; 2005/06/24, 

2005/07/10, 2005/08/27, 

2005/09/28, 2005/10/14, 

2005/10/30, 2005/11/15 

Proposed a modified STARFM considering 

annual temperature and urban thermal 

landscape heterogeneity to generate daily 

LST data at Landsat resolution by fusing 

Landsat and MODIS data. 

CC; AD; 

AAD 

30 
Jarihani et al.  

(2014) [39] 
STARFM; ESTARFM 

Thomson River, 

Australia (143.20°E, 

24.5°S) 

Extensive floodplains, and 

a complex anabranching 

river system 

20 L-M pairs,  

2008/04–2011/10 
Compared two “Index-then-Blend” and 

“Blend-then-index” approaches to address 

the issue “what is the order for doing 

blending and indices calculation?”, and also 

compared nine remotely sensed indices by 

using STARFM and ESTARFM. 

Mean bias; 

RMSE; R2 

Coleambally, 

Australia 

(145.0675°E, 

34.0034°S) 

Irrigated fields, woodland, 

and dryland agriculture 

17 L-M pairs;  

2001/10–2002/05 

Gwydir, Australia 

(149.2815°E, 

29.0855°S) 

Irrigated fields, woodland, 

dryland agriculture, and 

flood areas 

14 L-M pairs;  

2004/04–2005/04 

31 
Michishita et al. 

(2014) [16] 
C-ESTARFM 

Poyang Lake Nature 

Reserve, Jiangxi, 

China (116°15′E, 

29° 00′N) 

Wetland vegetation, 

mudflat, and water bodies 

9 time-series Landsat-5 

TM;  

18 time-series MODIS;  

2004/07–2005/11  

Reflectance of the moderate-resolution 

image pixels on the target dates can be 

predicted more accurately by the proposed 

customized model than the  

original ESTARFM. 

Average 

absolute 

difference 
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32 Wu et al. (2015) [32] STITFM 

Desert Rock, 

Nevada, USA 

(116.02°W, 36.63°N) 

Open shrubs 

2 Landsat ETM+: 

2002/08/04  

2 MOD11A1:  

2002/08/04, 2002/08/20  

45 GOES10-imager: 

2002/08/20 

Proposed a spatiotemporal integrated 

temperature fusion model (STITFM) for the 

retrieval of LST data with fine spatial 

resolution and temporal frequency from 

multi-scale polar-orbiting and geostationary 

satellite observations. 

RMSE; bias; 

R2 

Evora, Portgal 

(8.00°W, 38.54°N) 

Natural vegetation 

compounds of dispersed 

oak and cork trees with 

open grassland 

1 Landsat TM: 

2010/05/20  

2 MOD11A1:  

2010/05/18, 2010/05/20  

89 MSG SEVIRI: 

2010/08/18 

Note: SPFMOL* denotes the spatiotemporal fusion model through one image pair learning in [30]; R2 denotes R-Square; AD denotes absolute difference; AAD denotes 

average absolute difference; CC denotes correlation coefficient; STD denotes standard deviation; RMSE denotes root-mean-square-error; VOE denotes the variance of errors; 

ERGAS denotes erreur relative global adimensionnelle de synthèse; SSIM denotes structural similarity. 
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