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California’s almond growers face challenges with nitrogen management as new
legislatively mandated nitrogen management strategies for almond have been
implemented. These regulations require that growers apply nitrogen to meet, but
not exceed, the annual N demand for crop and tree growth and nut production.
To accurately predict seasonal nitrogen demand, therefore, growers need to estimate
block-level almond yield early in the growing season so that timely N management
decisions can be made. However, methods to predict almond yield are not currently
available. To fill this gap, we have developed statistical models using the Stochastic
Gradient Boosting, a machine learning approach, for early season yield projection and
mid-season yield update over individual orchard blocks. We collected yield records of
185 orchards, dating back to 2005, from the major almond growers in the Central
Valley of California. A large set of variables were extracted as predictors, including
weather and orchard characteristics from remote sensing imagery. Our results showed
that the predicted orchard-level yield agreed well with the independent yield records.
For both the early season (March) and mid-season (June) predictions, a coefficient of
determination (R2) of 0.71, and a ratio of performance to interquartile distance (RPIQ) of
2.6 were found on average. We also identified several key determinants of yield based
on the modeling results. Almond yield increased dramatically with the orchard age until
about 7 years old in general, and the higher long-term mean maximum temperature
during April–June enhanced the yield in the southern orchards, while a larger amount
of precipitation in March reduced the yield, especially in northern orchards. Remote
sensing metrics such as annual maximum vegetation indices were also dominant
variables for predicting the yield potential. While these results are promising, further
refinement is needed; the availability of larger data sets and incorporation of additional
variables and methodologies will be required for the model to be used as a fertilization
decision support tool for growers. Our study has demonstrated the potential of
automatic almond yield prediction to assist growers to manage N adaptively, comply
with mandated requirements, and ensure industry sustainability.

Keywords: almond orchard, nitrogen management, yield prediction, yield variation, central valley, remote sensing,
machine learning
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INTRODUCTION

World production of almond was 2.2 million tons in 2017,
and the leading producers include United States, Australia,
Spain, Iran and Italy (Food and Agriculture Organization of
the United Nations [FAO], 2018). In the United States, almond
production is concentrated in California, with a total value
of annual production of over 5.3 billion dollars in 2015.
California’s almond acreage has been rapidly growing, from
283,280 hectares in 2005 to 538,232 hectares in 2017 (National
Agricultural Statistics Service [NASS], 2016). Due to its scale,
nitrogen (N) management in almond has a large potential impact
on groundwater quality. As many as 10% of public water-supply
wells in California must be treated, since nitrate levels exceed
the maximum contamination level (Harter, 2009). As a result,
nitrogen management workplans1 are now required of almond
growers statewide to meet the goal of reducing nitrogen losses
to the environment. To optimize N management and ensure
regulatory compliance, growers must apply N in accordance with
predicted yield in each production unit, taking into account
N available from all sources (fertilizer, composts and manures,
irrigation water nitrogen). Yield prediction is therefore critical
for N management. In addition, it can help growers make plans
for the harvest, processing, and transport of the crop (Zarate-
Valdez et al., 2015). Quantitative yield modeling is also needed
to improve our understanding of how crop growth and yield
respond to short term environmental stress, climate variability
and long-term climate trends. Moreover, forecasting inter-year
yield variation plays a key role in food security monitoring and
market planning, and has the potential to help managing food
production shocks (Iizumi et al., 2018). Accurately estimating
crop yield, therefore, has broad implications for ecology,
economics, and human society, e.g., through its impact on the
optimal use of inputs (irrigation water, fertilizers) and other
resources (machinery, labor) on the farm (Carletto et al., 2015;
Hoffman et al., 2015).

Yield of an almond orchard is determined by a complex
interplay of processes and varies significantly from year to year
and from orchard to orchard. Statewide annual production, for
example has varied from 791 kg/ha in 1986 to 2864 kg/ha in
2011 (California Agricultural Statistics Service [CASS], 2018). In
California, commercial almond orchards are generally removed
after 20–25 years average, and the almond tree does not bear
significant fruit during the first 3–4 years after planting (Boriss
and Brunke, 2005). Almond trees are moderately alternate
bearing so that a higher yield in one year is often followed
by a lower yield the following year (Boriss and Brunke, 2005).
Almond is a deciduous tree and changes in seasonal weather
patterns can alter the physiology of every growth stage, resulting
in yield variation. For example, in the winter season from
November to February, almond trees are dormant, followed by
a period of warming in the spring which has a large influence on
the subsequent flowering and yield potential (Luedeling, 2012).
The almond production in California requires cross pollination
by bees, and yield is thus dependent on the presence of two

1https://www.waterboards.ca.gov/centralvalley/water_issues/irrigated_lands/

compatible almond cultivars. To achieve optimal yield potential,
the flowering dates of the cultivars within a given orchard must
overlap significantly and be coincident with a period of weather
that is favorable for bee flight and pollination activity. Following
pollination, the almond fruit grows rapidly from March until
June, undergoes conversion of nut sugars to proteins and oils, and
typically reaches fruit maturity in late July–August, depending
upon the local environment. Fruit harvest typically occurs from
late July through September2.

Two methods have been widely used for crop yield
prediction: process-based “crop models” and statistical “machine
learning models.” The “crop model” approach forecasts yield
by simulating crop growth, nutrient cycling as well as water
and energy balance on regular time steps (e.g., daily), driven by
environmental factors. Crop Model estimations are carried out
by using the physiological characteristics of plants. Widely used
crop models include CERES-Maize model (Hodges et al., 1987),
CROPGRO-soybean model (Jagtap and Jones, 2002), SALUS
model (Dzotsi et al., 2013), APSIM model (Keating et al., 2003),
and SWAT (Srinivasan et al., 2010). Although the simulations
are based on the known principles and processes that determine
crop productivity, these mechanistic models require extensive
input data such as cultivar, management, and soil conditions
(Cai, 2017). More importantly, the model calibration is often
rather challenging due to the complexity of the processes, limited
availability of field data across a wide range of environmental
gradients, and a large number of uncertain input parameters
(Lobell and Burke, 2010). Machine learning-based models,
in contrast, aim to build empirical predictive algorithms using
historical data from multiple sources. Predictions derived from
this approach are not directly based on known physiological
mechanisms that determine plant growth, and thus have the
advantage of forecasting the yield without relying on the specific
parameters for individual crops (Medar and Rajpurohit, 2014;
Droesch, 2018). Some studies have also compared and combined
the process-based models with statistical machine learning
approaches to analyze the climate impacts on crop productivity
(Lobell and Asseng, 2017; Roberts et al., 2017).

Relatively simple statistical models have been developed to
predict year-to-year variability of yield for several California
crops, in response to climate change, at either the county- or
state-level (Lobell and Field, 2007; Lobell and Cahill, 2011).
The development of these models relies on annual CASS yield
statistics (California Agricultural Statistics Service [CASS], 2018).
For example, Lobell and Field (2007) investigated the climate
and statewide almond yield relationship during 1980–2003.
These studies provide insight into the potential impact of future
climate change on perennial cropping systems in California.
However, two limitations still remain: (1) the spatial size of
prediction unit is quite large, at either the county or state level,
while the prediction at finer spatial scale (orchard/field level),
which is critical for growers to properly manage their farm
resources (e.g., water and nitrogen), hasn’t been explored; (2) the
models developed were built purely based on climate variables,

2https://www.natureseats.com/blog/product-news/item/the-almond-tree-life-
cycle-almond-tree-farming

Frontiers in Plant Science | www.frontiersin.org 2 July 2019 | Volume 10 | Article 809

https://www.waterboards.ca.gov/centralvalley/water_issues/irrigated_lands/
https://www.natureseats.com/blog/product-news/item/the-almond-tree-life-cycle-almond-tree-farming
https://www.natureseats.com/blog/product-news/item/the-almond-tree-life-cycle-almond-tree-farming
https://www.frontiersin.org/journals/plant-science/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles


fpls-10-00809 July 17, 2019 Time: 17:32 # 3

Zhang et al. Almond Orchard Level Yield Prediction

while other yield determinants, such as planting years, canopy
characteristics, and tree vigor, were not considered.

Canopy size and crop vigor are key determinants of crop
yield. Satellite remote sensing makes it possible to characterize
the canopy structure and crop vigor at medium to high spatial
resolutions at different time scales, and thus has great potential
for crop yield analysis (Ferencz et al., 2004; Rembold et al., 2013;
Johnson, 2014; Sibley et al., 2014; Guan et al., 2017). Multiple
vegetation indices (VIs) from MODIS data, for example, were
used to predict the yield for maize and soybean at the county level
in the Midwestern United States (Bolton and Friedl, 2013). Time
series NDVI extracted from MODIS data were applied to estimate
yield for corn and soybean in the “corn belt” in the United States
(Li et al., 2007).

Various statistical approaches including linear regression
models (Lobell and Burke, 2010; Bolton and Friedl, 2013; Ramesh
and Vardhan, 2015), and machine learning models such as
artificial neural network (Kaul et al., 2005; Dahikar and Rode,
2014) and support vector regression (Jaikla et al., 2008; Brdar
et al., 2011), have been developed for crop yield prediction.
However, most of these approaches rely on one regression
model for the prediction, and are therefore subject to overfitting
when the training data is limited (Pal, 2007). In the machine
learning community, there is an increasing interest in combining
several base learning models into one predictive model in order
to improve the model generalization ability (Chi et al., 2009;
Zhou, 2009; Zhang and Crawford, 2015). By combining multiple
learners, the errors of a single model will likely be compensated by
others, and thus help improve the robustness and accuracy of the
prediction. Moreover, in some cases, the optimal hypothesis may
be outside the space of any single model. The search space may be
extended by combining different models, and thus a better fit to
the data space can be achieved (Pal, 2007; Sagi and Rokach, 2015).
Bagging and boosting are among commonly used techniques in
this context (Skurichina and Duin, 2002). Bagging uses bootstrap
sampling to obtain the data subsets for training and generating
the base learners in parallel. Recently, a representative bagging
model – Random forest (RF) has been investigated for crop
yield prediction (Everingham et al., 2016; Jeong et al., 2016), and
better performance was found when comparing to the traditional
multiple linear regression approach (Jeong et al., 2016). Boosting
generates the base models in a sequential way in order to exploit
the dependence between the base learners. Stochastic gradient
boosting (SGB) is a representative boosting method which also
uses the decision tree as the base learner. In contrast to RF which
builds many independent trees, SGB generates the subsequent
tree by learning from the mistakes of the previous one, and thus
usually performs better than RF (Lawrence et al., 2004). To date,
the SGB algorithm approach has only been applied in very few
applications in agronomy (Freeman et al., 2015; Forkuor et al.,
2017), and to the best of our knowledge, it has not been applied
for crop yield prediction.

Our goal was to build data-driven machine learning models
for orchard-level California almond yield prediction at both early
and mid-season. The availability of a large quantity of yield
records for individual orchards in the Central Valley of California
allowed us to develop accurate models by incorporating all

the relevant variables that are expected to affect the yield.
For this purpose, informative variables were first extracted
from different data sources, including the consultation with
experienced researchers and growers, orchard statistics from
grower provided data, climate variables and remote sensing
metrics derived from public and private data-sources. Machine
learning models were then built to predict the final end-of-year
yield in March (early season) and June (mid-season). To evaluate
the model performance, the prediction results for the years
2010–2017 were compared with the yield records provided by
the growers. Finally, the most predictive variables were selected
from the models and used to analyze the spatial and temporal
yield variation patterns.

MATERIALS AND METHODS

Study Area
We focused on the almond orchards located in the Central
Valley of California, where we have collected the historical
yield and other ancillary data from eight growers managing a
range of orchards of different ages (Figure 1A). The Central
Valley of California is a vast agricultural region drained by
the Sacramento and San Joaquin Rivers. It is California’s most
productive agricultural region and one of the most productive
agricultural regions in the world, providing more than half of
the fruits, vegetables and nuts grown in the United States (House
Committee on Natural Resources, 2015). Most of the valley lies
close to sea level with a very low relief. Climate is characterized
by hot and dry summer and mild and wet winter. The long
term mean temperature from June to August is 25◦C for the
north and middle subregions, averaged over 20 years from 1990
to 2009, and 27◦C for the south, while November–December–
January mean temperature is about 9.5◦C for all the regions
(Figure 1B). The majority of rainfall occurs in winter and spring
from November to April (Figure 1C). The northern and middle
subregions receive greater precipitation, with a mean annual
precipitation (MAP) of 426 mm, than the southern region, with
MAP of 200 mm (Figure 1C). In order to build models to predict
the almond yield for individual orchards, we collected data from
three sources, including (1) orchard statistics from grower data;
(2) climate and weather variables from station and gridded
weather data; and (3) canopy and vegetation indices from remote
sensing imagery. The detailed descriptions for each data source
and the extracted variables are, respectively, discussed in the
following Sections “Grower Data, Weather Data, and Remotely
Sensed Data,” and a complete summary is shown in Table 1.

Grower Data
A critical component for building a yield prediction model
at the individual orchard block level is the availability of a
database of historical yield records drawn from a wide diversity of
almond orchards. We collected those data up to 2017 from eight
major almond growers, representing 8143 hectares of almond
production areas. A total of 185 orchards are distributed across
the major production regions in the Central Valley, with 68
orchards in the northern region, 43 and 74 orchards in the central
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FIGURE 1 | Almond orchard study area in California’s Central Valley. (A) Historical yield records from growers were collected for a total of 185 almond orchards
(diamond), located in three subregions: north, middle, and south (black boxes). The long-term mean maximum temperature (LT Tmax) during April–June from 1900
to 2009 is shown in the background. Also shown are (B) Mean monthly temperature and (C) monthly precipitation averaged over northern and central (blue) and
southern subregions (magenta).

and southern region (Figure 1). The time span of recorded
yield data varied by orchard, and the earliest record dated back
to 2005. Overall, about 58% of these orchards had more than
8 years of yield data.

Growers also provided several other orchard-specific
attributes, such as the field boundary, the orchard size, the year
when an orchard was planted, planting density, cultivar varieties
and areas for each variety, and other ancillary information
related to management practices. The majority of orchards were
planted around 2006–2008. By 2017, the median age of all study
orchards was 11, and 80 % of orchards were mature, between 7
and 17 years old (Figure 2A).

We also extracted the cultivar percentages, and the associated
yields for each cultivar. We further aggregated the reported
cultivar-level yields to the total yield for each orchard, which
served as the independent variable. A combination of cultivars,
rather than single cultivar, are typically planted within each
orchard for cross-pollination purposes (Asai et al., 1996).
Cultivars may have different bloom timing and bloom overlap
which is a critical factor for securing pollination (Asai et al.,
1996). Non-pareil and Carmel are two commonly planted

cultivars utilized because they have good bloom overlap and
therefore are excellent pollinizers for each other (Asai et al., 1996).
A total of 20 different cultivars were included across all sample
orchards with Non-pareil, Monterey and Fritz the dominant
cultivars (Figure 2B). For model development, we constructed
an array of 20 elements to represent the cultivar percentage for
each one of the 20 cultivars across all orchards. Thus, an orchard
with 50% Non-pareil and 50% Monterrey, has a cultivar array of
0.5 for the Non-pareil and Monterrey elements but zeros for the
remaining elements associated with the other 18 cultivars.

Weather Data
We extracted climate and weather variables that were expected to
influence the yield for each orchard. The primary meteorological
variables from 1990 to 2017 were based on the monthly gridded
Parameter elevation regressions on independent slopes model
(PRISM) dataset which has 800 m spatial resolution (Daly
et al., 2008). This dataset was spatially downscaled to 270 m
using the California basin characterization model (CA-BCM)
(Flint and Flint, 2014), a regional water-balance model to
simulate hydrologic responses to climate. The monthly mean
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TABLE 1 | A detailed summary of the input variables for early-/mid-season SGB models.

Data source Raw data Model input variables Variable name Pearson correlation

Grower data

Yield records from 8 major
almond growers in the
Central Valley of California.

Planting year
Historical yield
Cultivar variety and
composition

Age
Previous two years’ yield
Cultivar percentage

Age
Pre 2Y Yld, Pre 1Y Yld
CulP 1, . . .., CulP 20

−0.16∗

0.53∗, 0.53∗

−0.27∼0.25

Weather data

CA-BCM data with 270 m
spatial resolution for years
1990–20161;

Monthly mean daily maximum
temperature (Tmax);
Monthly mean daily minimum
temperature (Tmin);
Monthly accumulative
precipitation (PPT)

Current year monthly Tmax and
Tmin from January to June2, and
PPT from January to March

Tmin, Tmax, PPT January
Tmin, Tmax, PPT February
Tmin, Tmax, PPT March
Tmin, Tmax April
Tmin, Tmax May
Tmin, Tmax June

−0.06∗, −0.06, −0.22∗

−0.17∗, 0.17∗, −0.27∗

0.05∗, 0.21∗, −0.30∗

0.25∗, 0.30∗

0.17∗, 0.12∗

0.17∗, 0.21∗

Previous year summer mean
temperature averaged over July
and August

Pre Tmean July–August 0.36∗

Long-term mean seasonal Tmax,
Tmin, PPT (averaged over
1990–2009 for each season3).

LT Tmin, Tmax, PPT January–March
LT Tmin, Tmax, PPT April–June
LT Tmin, Tmax, PPT July–September
LT Tmin, Tmax, PPT
October–December

0.26∗, 0.50∗, −0.58∗

0.43∗, 0.60∗, −0.61∗

0.38∗, 0.49∗, −0.57∗

−0.31∗, 0.51∗, −0.58∗

CIMIS station data for years
2009–2017

Hourly temperature Winter chilling portions calculated
by the Dynamic Model

ChillP −0.14∗

Remote sensing imagery

NAIP aerial imagery from
2016 with 0.6m resolution

NAIP RGB imagery acquired
in 2016

2016 canopy cover percentage CCP 0.20∗

Landsat satellite imagery
with 30 m resolution years
2009–2017

Landsat multispectral
imagery every 16 days

Previous year annual maximum
NDVI and EVI;
Current year June average EVI

Pre Max NDVI
Pre Max EVI
June Mean EVI

0.13∗

0.31∗

0.35∗

12017 Tmax, Tmin and PPT were collected from the original PRISM data archive. 2Variables used only for mid-season prediction models were shown in Italic. 3The four
seasons are separated as (1) January–March, (2) April–June, (3) July–September, (4) October–December. ∗Represents for p < 0.05.

FIGURE 2 | Distributions of (A) orchard age in 2017 and (B) cultivars for the study orchards (N = 185).

daily maximum temperature (Tmax), minimum temperature
(Tmin) and monthly total precipitation (PPT) were collected
from the CA-BCM data archive. Three categories were used,
including: (1) monthly Tmin, Tmax from January to June,
and monthly PPT from January to March in the target
year, (2) previous year summer temperature, calculated by
averaging the Tmax and Tmin from July and August, (3)
long-term mean seasonal meteorological variables averaged

over years 1990–2009 for each season (JFM, AMJ, JAS,
OND) (Table 1).

Winter chill is also one of the defining characteristics
for tree crop production, and it can be quantified with
two different mathematical models, including the Chilling
Hours Model (Chandler, 1942), and the Dynamic Model
(Erez and Fishman, 1998). The Chilling Hour Model has
been found to be very sensitive to temperature increases,
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and its accuracy is likely to decrease, especially in warm
growing regions (Luedeling, 2012). On the other hand, the
Dynamic Model, a more complex but also more accurate
approach, can better characterize the real chilling conditions
(Luedeling, 2012). We here therefore calculated the preceding
winter chilling portions following the Dynamic Model. The
hourly temperature data were obtained from the California
Irrigation Management information system (CIMIS) network
(California Irrigation Management Information System
[CIMIS], 2018). CIMIS currently operates a network of 164
automated stations across California, collecting weather data
on a minute-by-minute basis and the data are archived
as hourly averages for each location. For each orchard,
the weather data from its closest CIMIS station were used
for deriving the winter chill variable for each year and
for each orchard. A total of thirteen CIMIS stations were
used in this study.

Remotely Sensed Data
We derived the canopy cover percentage (CCP) and vegetation
indices (VIs) from remote sensing imageries for each individual
orchard. The 2016 USDA National Agriculture Imagery Program
(NAIP) imagery with a spatial resolution of 0.6 m, typically
acquired during the crop growing season, was used in this
study. We first classified this aerial imagery of 4 spectral
bands (red, green, blue, and near infrared) into three classes
(canopy cover, bare soil, and shadow), using support vector
machine (SVM), a supervised classification approach for each
orchard. The CCP was then estimated as a ratio of canopy
area over the total orchard area based on the high-resolution
classification map.

We derived the mean VIs including the widely used
normalized difference vegetation index (NDVI) and enhanced
vegetation index (EVI) from time series of Landsat satellite
observations. The Landsat level-2 surface reflectance product
(Landsat-5: 2009–2011, Landsat-7: 2012, and Landsat-8: 2013–
2017) archived in Google Earth Engine was used in this study,
as it has been processed by the Landsat Ecosystem Disturbance
Adaptive Processing System (LEDAPS). We first conducted a
pixel-based quality check to screen and filter out the poor-
quality surface reflectance values using cloud mask and quality
assessment (QA) information in the Landsat metadata. This step
eliminated the observations contaminated by clouds from the
whole Landsat archive, and also the default fill values in the strip
gaps due to the Landsat-7 ETM+ scan line corrector (SLC) failure
since May 31, 2003 (Chen et al., 2017). NDVI and EVI values were
then calculated from the retained reflectance in the multispectral
bands for each pixel. Finally, we derived both annual maximum
and monthly average values for each VI.

Yield Prediction Models and Accuracy
We tested different machine learning approaches including
linear regression, support vector regression, neural network,
RF, and finally chose SGB (Freeman et al., 2015) for both early-
and mid-season yield prediction, due to its strong predictive
power (Friedman, 2001). SGB is a machine learning technique
for regression and classification problems (Lawrence et al., 2004;
Forkuor et al., 2017). In SGB, simple decision trees are often used

as the base learners, and each successive tree is fitted to minimize
the prediction residuals computed based on all preceding trees.
At each iteration, a subsample is drawn at random from the full
training dataset, to reduce the correlation between the trees in
sequence in the model. The randomly selected subsample is then
used, to fit the base learner. In this study, we randomly select
50% of the training data to build each individual tree which has a
maximum depth of ten. The ensemble of trees continues to grow
as the iteration proceeds, until a fixed total number of trees (set
at 100 for this study) are added to the ensemble of the trees in the
model. The final prediction is achieved by adding together the
predictions of each decision tree, and the contribution of each
tree to this sum is weighted by a fixed learning rate (set at 0.1
for this study).

We used the “scikit-learn” package from Python (Pedregosa
et al., 2011) to build various SGB regression models with different
levels of complexity, depending on the availability of the input
data. The dependent variable is the almond yield for a particular
year during 2010–2017 of an individual orchard. We explored a
suite of predictors including orchard statistics from growers (i.e.,
historical yields, orchard age, and cultivar percentage), weather
and climate variables, and canopy attributes from remote sensing
imagery, as shown in Table 1. Multi-year data were pooled to
train models because this increased the quantity and diversity
of the training data. Since the historical yields were found to be
a good indicator of almond yield, we first explored their utility
in the prediction and found that including more than 2 years
of yields in the preceding years did not increase the prediction
accuracy for the target year (Supplementary Table S1). We
therefore used only the previous 2 years of yields as one type
of predictors, e.g., 2017 yield was predicted by using individual
year 2015 and 2016 yields as input variables. For a particular
predicting year, a small number of orchards do not have the
previous two years’ yield records, and therefore were removed
from the model building and validation process. The remaining
samples were pooled, resulting in 990 sample points (orchard and
year). For each orchard sample, we paired the target year’s yield
with the corresponding input variables for that particular year.

Correlations were computed between (1) each input variable
with the yield (Table 1), and (2) any two input variables
(Supplementary Figure S1). The results show that some input
variables have strong positive correlations with the almond yield
such as the long-term seasonal maximum temperatures, while
some exhibit strong negative correlations with the yield such as
the long-term seasonal precipitation. Some input variables are
also highly correlated with each other, such as the long term
seasonal Tmin, Tmax and PPT and the remote sensing metrics
(Supplementary Figure S1).

To further test the robustness of the developed models, we
adopted a four-fold cross-validation strategy for model building
and testing (Zhang et al., 2017; Lyons et al., 2018), as shown in
Figure 3. Specifically, the 990 samples were randomly partitioned
into four subsets of equal size, resulting 247 samples in three
subsets and 249 in one subset. In each round, one of the four
subsets was retained as the independent test set, whereas the
remaining three subsets were used as training data. We evaluated
the model performance, by quantifying the following metrics
based on the testing data for each round, including (1) the root
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FIGURE 3 | Flowchart of the four-fold cross validation modeling framework.

mean squared error (RMSE), (2) the coefficient of determination
(R2), and also (3) the ratio of performance to interquartile
distance (RPIQ), which is defined as interquartile range of the
observed values divided by the RMSE (Maurel et al., 2010). The
RPIQ takes account of both the prediction error and variation of
observed values, and therefore it is more objective than the RMSE
and more easily to compare among models. The greater the
RPIQ, the stronger predictive capacity of the model (Maurel et al.,
2010). The final accuracy was summarized by averaging these
metrics from the four rounds and the corresponding standard
deviations were also recorded.

We recognized that the historical yields and cultivar
information sometimes are hard to collect for all individual
orchards, which can limit the prediction over a large region.
In addition to full models, we therefore also developed two
additional reduced models: (1) excluding last 2 years’ historical
yields, and (2) excluding both historical yields and cultivar
percentage from the input data. We then evaluated the model
performance in a similar way as described above for the full
models. These models will allow for the yield prediction when
subsets of information are not available.

Determinants of Almond Yield
We evaluated how important the predictor variables were in
predicting orchard-level yield. In the “scikit-learn” package from
Python, the variable importance was implemented based on
the metric “mean decrease impurity” (or called “mean decrease
Gini”) (Breiman et al., 1984), with higher values indicating that
a variable is more important in producing accurate predictions
(Breiman et al., 1984). We also used partial dependence plots
(PDPs) (Molnar, 2018) to further understand how each of the
top important variables affected the yield. A PDP is a graphical
representation, which aims to show the influence of the variable
of interest on the predicted outcome (yield). Partial dependences
work by marginalizing the machine learning model over the
distribution of all other variables so that the remaining function
shows the relationship between the targeting variable and the
yield (Molnar, 2018). We investigated the main factors that drove
the spatial and temporal variations in almond yield. Ensemble
trees within a SGB model are much more difficult to interpret due
to the complexity of the multiple trees, although they have been
reported to outperform the single tree in terms of the prediction
accuracy (Wang et al., 2015). To further examine how the spatial
and temporal yield variations are driven, we also built a single

decision tree model, based on the important variables and mature
orchards, as the splitting nodes in the single tree model can help
us better understand the roles of the main factors in terms of
affecting the yield variation. Single tree structure can also provide
important insights about the spatial-temporal yield patterns.

RESULTS

Almond Yield Variability Based
on the Growers’ Data
The yield of almond orchards typically has a large inter-annual
variation, even after reaching maturity as shown by grower
reported yield records. For illustrative purposes, we chose two
mature orchards located in different regions, that had at least
8 years of yield records, one in the north region (Colusa County)
and the other in the south region (Kern County), to show typical
yield dynamics. The yield of the northern orchard, planted in
2001, increased steadily at young ages, e.g., from 2092 kg/ha in
2005 to 3881 kg/ha 2008 (Figure 4). It then started to fluctuate
from year to year, with the lowest yield of 1961 kg/ha in 2014
and the highest of 3426 kg/ha in 2013. For the southern orchard,
planted in 2005, similar patterns of increases in the yield were
found when the orchard is younger than 7 years old (from 2010 to
2012). Its yield reached 3090 kg/ha in 2012 (Figure 4), and then, it
declined to 2723 kg/ha in 2014, and increased again to 3184 kg/ha
in 2016. However, in general, the yield variation for this orchard
(Kern County) is smaller than the orchard in Colusa County.

At the regional scale, we summarized over all mature orchards
(7–17 years old). The mean almond yield also showed large
variation from year to year, ranging from 2718 ± 554 kg/ha in
2010 to 2988 ± 530 kg/ha in 2013 (Figure 5A). It is also evident
that the yield varies spatially at the regional scale. For example,
the lowest and highest yield were 2339 ± 335 kg/ha in 2012 and
2755 ± 599 kg/ha in 2013, averaged over all mature orchards
in the north and central regions (Figure 5B). In the southern
part of Central valley, yield of orchards of similar ages is much
higher than the north and central regions, ranging from a low of
2945± 463 kg/ha in 2015, to a high of 3674± 487 kg/ha in 2011,
respectively (Figure 5C).

Model Performance
We first compared the performance of five most widely used
machine learning approaches (Table 2), using all input variables
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FIGURE 4 | Historical yield patterns for two sample orchards, Orchard #1 is located in Colusa County, planted in 2001 (black), and Orchard #2 is located in Kern
County, planted in 2006 (blue). The corresponding early season predictions were also shown as (a) dashed lines by the full model and (b) dotted lines by the reduced
model excluding the historical yield and cultivar composition from predictors.

FIGURE 5 | Mean annual reported almond yield and early-season predictions averaged (A) over mature (7–17 years old) orchards and (D) over all orchards within
the study area. Similar results were presented here for (B,E) orchards in the northern and central region and (C,F) for southern orchards, respectively. The vertical
lines represented the standard deviation among orchards.
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TABLE 2 | Comparison of the performance of five machine learning approaches
for orchard-level almond yield prediction, when using the full set of input variables.

Prediction Machine learning RMSE

time approach R2 (kg/ha) RPIQ

Early season Linear regression 0.58 (0.04) 422 (4.1) 2.19 (0.19)

Support vector
regression

0.51 (0.04) 460 (16.5) 2.01 (0.16)

Artificial neural network 0.50 (0.05) 474 (26.1) 1.96 (0.16)

Random Forest 0.69 (0.04) 364 (14.8) 2.55 (0.28)

Stochastic gradient
boosting

0.71 (0.04) 352 (15.2) 2.64 (0.33)

Mid-season Linear regression 0.59 (0.05) 416 (6.1) 2.23 (0.22)

Support vector
regression

0.52 (0.04) 453 (15.5) 2.05 (0.17)

Artificial neural network 0.48 (0.04) 473 (7.6) 1.96 (0.15)

Random Forest 0.69 (0.04) 365 (13.9) 2.54 (0.27)

Stochastic gradient
boosting

0.71 (0.04) 355 (12.3) 2.62 (0.29)

A four-fold cross-validation strategy was used for model building and testing;
both mean values and standard deviations (in parenthesis) of R2, RMSE, and
RPIQ are presented here based on the comparison of the prediction and the
independent testing data.

(full models). For both the early- and mid-season predictions,
the results showed that the RF and the SGB outperformed the
other three models. For example, they achieved an R2 around
0.7, while the other three models obtained an R2 of less than
0.6. The SGB models were found to have better performance as
shown by their higher R2 and RPIQ values and smaller RMSE,
than the RF models (Table 2). Therefore, we focused on the
SGB approach for the following analysis. Also, the strengths and
weakness of SGB are further compared with other approaches in
the section “Discussion.”

For the two individual orchards mentioned in Section
“Almond yield variability based on the growers’ data,” for
example, the yield predicted by the SGB early season model
captured the variation from year to year, similar to the historic
yield record reported by the growers (Figure 4, Early Full model).
Specifically, the median departure from the reported orchard
yield across multiple years was 185 kg/ha for the northern
orchard in Colusa County and 145 kg/ha for the southern orchard

in Kern County. The smallest difference between the prediction
and the ground truth was around 7 kg/ha for the northern
orchard and 26 kg/ha for the southern orchard.

The four-fold cross validation with independent testing data
showed that the full SGB models for both early and mid-season
predictions performed well and achieved similar accuracies
(Table 3). In each round of the four-fold cross validation, one
of the four subsets was retained as the test set, whereas the
remaining three subsets were used as training data. Therefore,
we evaluated the model performance on the test set at each
round. The final accuracies were reported by averaging the results
from each round, and therefore there is a standard deviation.
When using all 49 input variables, the early season full model
explained 71% of the variance in the reserved testing data and
the corresponding RPIQ exceeded 2.6 on average, over the four
rounds of model building and testing. The model results were
robust, as shown by the small standard deviations of R2, RPIQ,
and RMSE across four rounds of cross validation. The mid-
season SGB full model had similar performance, with an R2 of
0.71 (± 0.04) and an RPIQ of 2.62 (± 0.29). As an example
result from one round run of the four-fold cross validation,
Figures 6A,D further showed the good agreement between
prediction and growers-reported yield in the reserved testing
dataset (N = 247) for both the early and mid-season using the full
models. The average time series early season predictions using the
full model are shown for mature orchards only (Figures 5A,B,C)
and also for all-age orchards (Figures 5D,E,F), across different
regions. In general, the predicted yields aligned well with the
reported yields.

We also tested two sets of reduced models by using subsets of
the input variables: (1) without using last 2 years’ historical yields
as input (NoYld); (2) without using historical yields and without
cultivar percentage (NoYld-NoCul). We found that removing the
historical yields and cultivar percentage from the input variables
did not significantly reduce the accuracy for both early and mid-
season predictions (Table 3). For the early season prediction, the
model without historical yields had an R2 of 0.70 (± 0.05), and
an RPIQ of 2.62 (± 0.32); after further removing the cultivar
information as one of the predictors (Early NoYld-NoCul), the
R2 slightly decreased to 0.68 (± 0.04), and the RPIQ decreased to
2.51 (± 0.26). For the previously mentioned two sample orchards
(Figure 4), the predicted yield by the Early NoYld-NoCul model

TABLE 3 | Performance of the Stochastic Gradient Boosting (SGB) approach in predicting the almond yield at individual orchards, using different set of input variables,
as shown by the statistics from a four-fold cross-validation.

# Input RMSE

Prediction time Input variables Model name variables R2 (kg/ha) RPIQ

1 Early season All variables Early Full 49 0.71 (0.04) 352 (15.2) 2.64 (0.33)

2 Early season Without historical yields Early NoYld 47 0.70 (0.05) 355 (17.6) 2.62 (0.32)

3 Early season Without historical yields and cultivar percentage Early NoYld-NoCul 27 0.68 (0.04) 370 (6.2) 2.51 (0.26)

4 Early season Only important variables Early Imp 8 0.67 (0.04) 375 (18.2) 2.48 (0.26)

5 Mid-season All variables Mid-Full 56 0.71 (0.04) 355 (12.3) 2.62 (0.29)

6 Mid-season Without historical yields Mid-NoYld 54 0.70 (0.05) 360 (17.2) 2.59 (0.34)

7 Mid-season Without historical yields and cultivar percentage Mid-NoYld-NoCul 34 0.69 (0.05) 364 (15.9) 2.56 (0.33)

8 Mid-season Only important variables Mid-Imp 10 0.68 (0.04) 371 (6.3) 2.50 (0.25)
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FIGURE 6 | Scatter plots of predicted vs. reported yields, from three sets of models for early season (top panels) and mid-season predictions (bottom panel): (A,D)
full models, (B,E) reduced model excluding historical yields as predictors, and (C,F) reduced models excluding both historical yield and cultivar composition
information. (A): Early Full; (B) Early NoYld; (C) Early NoYld-NoCul; (D): Mid-Full; (E) Mid-NoYld; (F) Mid-NoYld-NoCul. The predicted values shown here were from
the reserved testing dataset in one round of the cross-validation (N = 247).

were only slightly worse than the predictions using the full model.
Similar to the full models, the scatter plots (Figures 6B,C,E,F)
for the reduced models also showed that the predicted yield
agreed well with the yields reported by growers. This result
demonstrated that the reduced models can be directly applied to
predict yield for orchards reasonably well, when the cultivar and
historical yield information is lacking.

Variable Importance
We found that the previous 2 years’ yields (Pre 2Y Yld, Pre 1Y
Yld) were most important, in the full models, for predicting the
yield, followed by the annual maximum EVI and NDVI the year
before (Pre Max EVI and NDVI) for the early season prediction
(Figure 7A), and the mean EVI in June during current year (June
Mean EVI) for the mid-season adjustment (Figure 7C), probably
due to its representation of emerging canopy vigor. In the
reduced models without historical yield and cultivar information,
these remote sensing metrics and orchard age become the most
important variables (Figures 7B,D). CCP was another important
metric for canopy characterization.

The key climate variables that ranked relatively high
included the maximum temperature in January (Tmax January),
precipitation in March (PPT March), long term mean maximum
temperature during April–June (LT Tmax April–June), and
previous year summer temperature (PreY Tmean July–
August). Although the climate variables from April–June were

incorporated into the mid-season models, most of them did
not show significant importance for the yield prediction, except
for minimum temperature in June (Tmin June), which ranked
higher than the others.

Based on the above analysis, to further investigate the
effectiveness of those important variables, we also built
another two further reduced models for early- and mid-
season predictions, respectively. Specifically, only eight variables
including Age, PreY Max NDVI, PreY Max EVI, CCP, Tmax
Jan, PPT Mar, LT Tmax April–June, and PreY Tmean July–
August, were used for the early season prediction model; and only
two more variables, June Mean EVI and Tmin Jun, were added
for the mid-season prediction. Our results showed that these
models with only 8 or 10 variables, including remote sensing
metrics, age, and climate variables, were able to predict the
yields reasonably well (Table 3, Exp. 4 and Exp. 8). The testing
accuracy was slightly reduced, but with a comparable R2 of 0.67
and an RPIQ of 2.48 for the early season prediction, and an
R2 of 0.68 and an RPIQ 2.50 for the mid-season adjustment,
which were similar to the results from the intermediate models
in Early NoYld-NoCul (Table 3, Exp. 3) and Mid-NoYld-NoCul
(Table 3, Exp. 7).

Determinants of Almond Yield
The partial dependence analysis was conducted based on the
Mid-NoYld-NoCul prediction model. The cultivar composition
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FIGURE 7 | Variable importance for four sets of prediction models (A) Early Full; (B) Early NoYld-NoCul; (C) Mid-Full; (D) Mid-NoYld-NoCul. See Table 1 for the
detailed variable names.

was not included for this analysis since previous analysis
indicated it was not important in yield prediction, and
previous yield was also removed as it is highly correlated
with age. The resulting PDP plot further confirmed the
impact of age on the orchard yield. The plot showed the
yield firstly increases dramatically before the tree matures
which is around 7 years old, then it drops significantly
after 17 years old (Figure 8A). We further removed the

age effect by considering only the mature orchards (7–
17 years old), to investigate the impacts of other important
variables determined in Section “Variable Importance.”
We found that yield is positively correlated with the
previous year maximum NDVI, EVI, and current year’s
June EVI (Figures 8B,C,H).

Among the important climate variables, it is clear that the
long term mean maximum April–June temperature (LT Tmax
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FIGURE 8 | Partial dependence of target year’s yield on (A) age, (B) previous year maximum NDVI; (C) previous year maximum EVI; (D) long term maximum
temperature in April–June; (E) target year March precipitation; (F) target year’s January maximum temperature; (G) previous year summer temperature; (H) target
year June mean EVI. ∗The results were based on “Mid-NoYld-NoCul” model.

April–June) enhanced the yield (Figure 8D), especially when it
is lower than 28◦C. The relatively high yield above the threshold
of around 28◦C will be further discussed in the Section “Yield
Variation Analysis.” Greater precipitation in March (PPT Mar),
coincident with the typical almond blooming period, was found
to reduce the yield (Figure 8E). For example, for the sample
orchard located in Colusa County, the lower yield years (2012,
2014, and 2016) were associated with higher March precipitation,
while low precipitation years, e.g., 2013, 2015, and 2017, had
relatively higher yield (Figure 9). The maximum temperature
in January (Tmax Jan) was negatively correlated to the yield
(Figure 8F). In addition, we found that the higher summer
temperature during the previous year reduced yield (Figure 8G).

Yield Variation Analysis
To extend the above analysis, and further examine how the
spatial and temporal yield variations are driven, we built a
single decision tree model, by focusing on the mature orchards
(7–17 years old) and using only the most important five
climate and remote sensing variables as input variables, including
Tmax Jan, PPT Mar, LT Tmax April–June, PreY Max EVI
and CCP. The splits and nodes from the resulting single tree
structure provided several important insights about the yield
patterns, as shown in Figure 10. The first split suggested a
threshold of the LT Tmax April–June around 28.3◦C, with
an average yield of 3265 kg/ha and 2511 kg/ha for areas
above or below that threshold, respectively. Interestingly, the
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FIGURE 9 | Time series of almond yield reported vs. March precipitation for a sample orchard located in Colusa county, planted in 2001.

FIGURE 10 | Single decision tree built upon mature orchards using five important variables as predictors. Nodes with higher yields were represented with darker
colors.

spatial distribution of the LT Tmax April–June temperature
showed a clear separation of northern and southern orchards
(Figure 11), e.g., the LT Tmax April–June temperature is
higher than 28.3◦C in southern orchards, indicating that
long term temperature was the main driver for the spatial
variation in the yield.

We also found that the northern orchards with lower LT Tmax
April–June temperature, orchards with canopy cover less than
51% had much lower yield (node #3), 2082 kg/ha on average vs.
2352 kg/ha for denser canopy. Over the areas with intermediate
LT Tmax April–June temperature (node #5), orchards and/or
years with March precipitation lower than 57.3 mm/mon had a
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FIGURE 11 | (A) Spatial distribution of the long term mean Tmax from April to June (LT Tmax April–June); (B) locations of almond orchards in this study overlaid on
top of a binary map of LT Tmax April–June with a threshold of 28.294◦C; orchards with LT Tmax April–June < = 28.294◦C (red cross); orchards with LT Tmax
April–June > 28.294◦C (blue cross); The binary long term mean April–June temperature map is shown in the background.

FIGURE 12 | Time series of almond yield and March precipitation for the orchards in node #5 (Figure 10).

yield of 2909 kg/ha (node #6), about 327 kg/ha higher than those
that received larger amount of precipitation in March (node #7).
Since these orchards (node #5) are spatially concentrated, the
PPT Mar is a strong predictor for the temporal yield variation.
Figure 12 shows the time series Yield vs. PPT Mar for the
orchards in node #5. For years with lower precipitation (2010,
2013, 2015, and 2017), higher yields were reported. While for
the other years with higher precipitation (2011, 2012, 2014,
and 2016), lower yields were observed. This contrast pattern
indicates that PPT Mar is the main driver for the temporal
yield variation, and it has a negative effect for the yield. Also,
the tree shows that southern orchards with PreY Max EVI
lower than 0.55, on average, had a lower yield (3045 kg/ha,
#node 9) than orchards with higher PreY Max EVI (3472 kg/ha,

node #10). Also, unlike the climate variables which most affect
the temporal yield variation, the remote sensing metrics may
reflect more the spatial variability in planting density and
management practices.

DISCUSSION

California’s almond acreage has expanded rapidly in the past
10 years, raising concerns of potentially elevated fertilizer usage
and the resulting nitrogen loss to the environment. As the
primary determinant of fertilizer N demand is crop yield,
improved yield prediction at the orchard block level has become
imperative to close the nitrogen management gap.
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We here developed machine learning models to predict the
almond yield for individual orchards, both at the early season
(March) and mid-season (June), using orchard characteristics,
climate and weather variables, and the canopy fraction and
vegetation indices from remote sensing imagery as primary
input data. To our knowledge, this is the first study for the
field level yield predictions for the tree crops which typically
involve more complex yield determinants than row crops such
as soybeans and corn.

Capabilities of Machine Learning Models
The SGB models were shown to perform well, e.g., the RPIQ
ranging from 2.64 for the full model to 2.48 for the reduced
model, when predicting the yield early in the season before
leaf-out, compared with the independent data. The models
were able to explain more than 70% of spatial and temporal
variance in the almond yield as observed by growers for
individual almond orchards from northern to southern Central
Valley. To further evaluate the model performance by treating
the “year” as the random variable, we also built the model
with data before 2017 (N = 824) and tested the model
performances on 2017 data (N = 166). The early season full
model had a slightly poorer performance with an R2 of 0.62
and an RPIQ of 2.42. The earlier years have fewer training
data, the models were less robust and therefore were not
included here. As the data set grows the predictive value will
undoubtedly increase.

In the current literature, relatively simple statistical models
were developed to predict the almond yield only at larger
spatial unit, e.g., from the county to the state levels. For the
whole state of California, climate variables alone were able
to explain 80% of interannual variability in the almond yield
from 1980 to 2003 (Lobell and Field, 2007); much larger
uncertainties were found at the county-level, with an R2 of∼0.25
(Lobell and Cahill, 2011).

The SGB was chosen as our final prediction model based on its
stronger prediction performance for this study, when comparing
to four other approaches. RF, also had higher prediction accuracy
than the other three models. This is probably because combining
multiple base learners into one predictive model can help
decrease the variance (bagging) and/or bias (boosting) (Sagi and
Rokach, 2015). In this study, the SGB method performed better
than RF, probably because at each iteration, the boosting strategy
focuses directly on the current prediction error and generate a
new tree to minimize that error.

Uncertainties and Future Work
The machine learning based models such as SGB, are capable
of finding the complex linkages of yield and environmental
variables. However, we recognize that it is possible that the
SGB model may also fail, if the individual base learners are not
sufficient (Sagi and Rokach, 2015). The historical yield data for
individual blocks contributed from a few large almond growers in
California, available to us for the first time, made it possible to test
the utility of machine learning approach in predicting the yield.
However, the accuracy of the data-driven modeling was limited
by the relatively small number of samples. We expect that the

uncertainties and the robustness of the models will be further
improved as we collect more data from the growers in the next
couple of years and incorporate other environmental variables
such as the bloom information into modeling.

We used the monthly average temperature and precipitation
as the predictors, and didn’t consider the potential impacts of
short-term (e.g., daily) weather extremes, such as heat waves, on
yield. As the weather data at the finer spatial and temporal scales
become available, the extreme weather patterns can be quantified
and further incorporated into the yield modeling framework
for improved accuracy. Moreover, although canopy cover and
vegetation index derived from imagery, representing the tree
structure and vigor, were included in the models, the bloom
condition was not incorporated in our modeling framework
due to the scarcity of the data. We have recently developed an
automatic approach to directly quantify the bloom condition, and
once calibrated, will include it to further reduce the uncertainties
in the yield models. Future study may also consider tree-scale
measurements which are directly related to final yield, such
as flower density or fruit numbers, to further improve the
model performance.

In addition, due to the inherent sequential nature, SGB
typically needs longer training time than RF, and it is not
straightforward to be implemented for parallel computation (Sagi
and Rokach, 2015). With the advance of data science, deep
learning models, such as convolutional neural network (CNN)
has become popular (You et al., 2017), and can be directly
applied on the remote sensing imagery, instead of the pre-defined
vegetation indices such as NDVI and EVI, to discover the most
relevant features which are best for the model building and thus
further improve the prediction accuracy.

Impacts of Canopy, Weather, and
Climate on Almond Yield
In this study, we also investigated the influences of the climate
variables on yield from both the spatial and temporal domains,
and the results have several implications for explaining the yield
variation. We found that the previous 2 years’ historical yields
are very important variables in controlling the temporal and
spatial variation in almond yield. The orchard age becomes
more important when the historical yields are not included in
the models, especially for younger orchards. Fractional canopy
cover and the annual maximum NDVI and EVI, derived from
the previous year imagery, are critical for both the early- and
mid-season predictions. These remote sensing metrics capture
the overall crown cover and green biomass, and thus represents
the composite information about planting density, tree and
healthy leaves, and management practices. Therefore, the higher
vegetation index values, indicating the healthier the tree vigor,
the higher yield, as we found from the partial dependence
analysis. EVI during June in current year captures the emerging
tree vigor, and thus affects the final yield and helps the mid-
season prediction.

During the current year, higher maximum temperatures in
January were associated with lower yields. On the other hand,
large amounts of precipitation in March was associated with
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a reduction in yields, probably due to its adverse impact on
the bee activity and thus pollination which is an important
determinant for nut production. The negative impact of March
precipitation was more significant for the northern orchards
than the southern region, where precipitation is much lower
(Figure 1C). In addition, we found that the summer temperature
during the previous year negatively affect the almond yield,
probably because that the heat stress can reduce net carbon
fixation and thus led to lower yield for the next year. Further
analysis indicated that southern orchards had higher yield, mostly
as a consequence of the warmer weather during April to June.
For example, the long-term maximum temperature during April–
June was found to be a main driver for the spatial yield variation
between the south and north.

This study analyzed the main drivers for the spatial-
temporal yield variation based on the developed prediction
model recognizing that yield variation may be related to other
factors which were not measured and considered in the model,
such as the irrigation water use, soil properties, and other
management aspects. Further studies are needed to collect and
incorporate such information into analysis and explore their
effects on the yield.

Implications of the Yield Prediction Tools
Crop yield prediction is critical for both the scientific community
and human society. While publicly available prediction models
are available at the state or county level, yield prediction at a
finer spatial scale is not available but is imperative for on-farm
N management. A main contribution of this work is that we
have built machine learning models that are able to predict, with
reasonable accuracy, almond yield for individual orchards at two
time points of the year. Yield prediction is critical to grower
decision making and efficient N management. While the models
presented here are promising, it is evident that further refinement
is required if the model is to become a primary tool for efficient
N fertilization in Almond. Incorporation of larger data sets,
additional proximal and remote variables and the development
of new analytical methodologies is underway.

We have demonstrated that the reduced SGB models,
excluding the historical yields and cultivar percentage as
predictors, still produced reasonable yield prediction. Time series
remote sensing observations (Chen et al., 2019) have been used to
map orchard age, area and location which can be integrated with

the model presented here to provide valuable yield prediction
even when grower data was not available. The reduced models
developed here can therefore be applied at the scale of county or
region based solely on orchard mapping and age determination
(Chen et al., 2019) and weather and remote sensing data that
does not require individual grower input. This is of value to
local government and resource management agencies. At the
block level, the yield prediction in the early season developed
here can be integrated with publicly available nitrogen budget
calculator, which has been widely adopted by growers and
implemented through the California Almond Sustainability
Program website3. The availability of a data-driven prediction
model with known uncertainties has the potential to provide
a scientifically based and independent estimate of yield and
hence may improve nitrogen recommendations. The capability
to predict yields for almond orchards across the entire state of
California also provides quantitative information and guidance to
allocate resources, determine almond price targets, and improve
market planning.
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