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Widely existing mixed phase structure of the quantum dimer model on a square lattice
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The quantum dimer model is a low-energy effective model for many magnetic systems (materials) that are
candidates for quantum spin liquids. It has strict local constraints which is described by gauge field theory.
However, since constraints hinder the application of numerical algorithms, the phase diagrams of quantum dimer
models are still controversial, even on a square lattice. The core controversy is whether the mixed state exists
due to the restriction. In this paper, we give strong evidence to solve this dispute. With our sweeping cluster
quantum Monte Carlo method, we studied the phase diagram of a large parameter region by introducing the
definition of the pair correlation function and other supporting evidence to distinguish the mixed phase from the
columnar phase with high precision. In particular, we find that the ground state belongs to the mixed phase for a
vast parameter region.

DOI: 10.1103/PhysRevB.103.094421

I. INTRODUCTION

When a physical frustrated system has a particularly large
frustrated energy scale, its low-energy effective model of-
ten contains constraints. Such constraints are common in the
formulation of the low-energy description of quantum many-
body physics and their features can usually be captured by
lattice gauge theories. As a particularly important example,
quantum dimer models (QDMs) are constrained low-energy
effective descriptions of certain quantum spin systems [1–3].
QDMs were first introduced by Rokhsar and Kivelson (RK)
to study the physics of the short-range resonating valence
bond (RVB) state in a potential relation to high-Tc supercon-
ductors [4–7]. QDMs provide particularly simple examples to
realize topological phases, such as a two-dimensional gapped
phase with Z2 topological order [8,9], and a three-dimensional
Coulomb phase described by an emergent U (1) symmetry
[10–12]. In addition to the spin liquids, QDMs are also an im-
portant carrier of incommensurate phases [13–16]. Recently,
a QDM for the metallic state of hole-doped cuprates was also
proposed to describe the mysterious pseudogap state at low
hole density [17].

However, the strong geometrical constraint present in
QDMs hampers the application of numerical algorithms. It
is thus imperative to find accurate numerical algorithms that
can treat such systems efficiently, without which research and
progress in understanding constraint systems will be delayed
heavily. As a result, the phase diagrams of QDMs are still con-
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troversial, even on the square lattice. The QDM Hamiltonian
on the square lattice can be written as

H = −
∑
plaq

(| 〉〈 | + H.c.
) + V

∑
plaq

(| 〉〈 | + | 〉〈 |), (1)

where the summations are taken over all elementary plaque-
ttes of the lattice. The kinetic term describes the resonance
between the two dimerizations of a plaquette, while the po-
tential term counts the plaquettes on which reside two parallel
dimers. In addition, strong geometric constraints are imposed
on the Hilbert space which requires every site on the lattice to
be covered by one and only one dimer.

One particularly important point exists on the phase dia-
gram, namely, the Rokhsar-Kivelson (RK) point (V = 1), at
which the ground state of the Hamiltonian is exactly solvable
as a pure RVB state,

|GS〉 =
∑

C

AC |C〉, (2)

where C is a dimer covering and AC = AC′ for C and C′ in
the same winding sector [23]. However, the model, Eq. (1),
cannot be solved exactly at other parameters, and there are
still disputes about its phase diagram, as discussed below and
illustrated in Fig. 1(a).

When V > 1, the staggered phase [Fig. 1(b)(iv)] with no
face-to-face (in the same plaquette) dimers is favored, whereas
on the other side of the RK point, the phase diagram is less
clear. In the limit V → −∞, the Hamiltonian strongly fa-
vors configurations with as many parallel dimers as possible,
known as the columnar phase [Fig. 1(b)(i)]. However, when
increasing V , the quantum effect of resonance brought about
by the kinetic term becomes more prominent, which brings
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FIG. 1. (a) Possible phase diagrams of QDM on square lat-
tice. 1: Refs. [18,19]; 2: Ref. [20]; 3: Refs. [21,22]; 4: this work.
(b) Schematic diagram of the four possible phases.

more possibilities to the phase diagram. Candidate phases
are a plaquette phase which breaks translation symmetry
along both axes and respects the fourfold rotation symmetry
[Fig. 1(b)(ii)], and a mixed phase which breaks the translation
symmetry along two axes as well as the rotation symmetry
[Fig. 1(b)(iii)]. Mixed phase configurations look similar to the
plaquette phase, except that the strengths of the bonds along
the x and y directions of the same plaquette are different. Its
nature is still controversial. Whether it is a mixture of a pla-
quette phase and columnar phase or an independent quantum
state is disagreed upon.

How these candidate phases enter the phase diagram re-
mains a disputed issue. A projection Monte Carlo study has
found a plaquette phase adjacent to the RK point and a
plaquette-columnar phase transition at V ∼ 0.6 [18,19,24,25]
[Fig. 1(a)(1)]. However, through an exact diagonalization and
Green’s function Monte Carlo study, some have concluded
that it is a mixed phase instead of a plaquette phase that resides
in the vicinity of the RK point [20] [Fig. 1(a)(2)]. There were
also arguments that the columnar state extends all the way up
to the RK point [26] [Fig. 1(a)(3)], supported by Metropo-
lis Monte Carlo simulations on height model equivalents of
the square lattice QDM [21,22] and the frustrated transverse
field Ising model (TFIM) which is equal to a parameter point
(V = 0) of the QDM [27].

In this paper, we are committed to solving the phase
diagram dispute and giving a result that reconciles all contra-
dictions. Using our numerically exact method, the sweeping
cluster algorithm [28,29], we calculate the phase diagram of
the square lattice QDM and find the fourth one of Fig. 1(a).

II. MIXED PHASE AND PHASE DIAGRAM

There has been strong evidence supporting that the pla-
quette phase does not exist on a square lattice [20]. So the
first question is whether there exists a mixed phase or there
is only the columnar phase, and whether the mixed phase is a
multiphase mixture or an individual state independent of the
columnar or plaquette phase. Selecting V = 0.5, we carefully
studied the ground state. Different states can be distinguished

by different distributions of valence bond solid (VBS) order
parameter, defined as [26]

�col = 1

L2

∑
r

{
(−1)rx

[
n

(
r + x̂

2

)
− n

(
r − x̂

2

)]

+i(−1)ry

[
n

(
r + ŷ

2

)
− n

(
r − ŷ

2

)]}
, (3)

where x̂ and ŷ are unit vectors and L is the linear system size.
The dimer number operator n(r + e/2) is 1 if a dimer resides
on the link connecting r and its nearest neighbor at r + e, and
zero otherwise. The peaks of its histogram distinguishes three
different candidate phases. As shown by Fig. 1(a), the yellow
points represent the columnar state with fourfold degeneracy;
the blue ones represent the plaquette state with fourfold de-
generacy; the green ones between the blue and yellow points
indicate a mixed state which has eightfold degeneracy. It is
worth noting that the green points are not necessarily the exact
middle point of yellow and blue. It can move in the region
depending on the degree of mixing. A mixture of a columnar
phase and plaquette phase would be indicated by eight peaks
at both the yellow and black points.

The VBS order parameter distribution, Fig. 2(b), peaks
at the location of the yellow points in Fig. 2(a). This has
been taken as the main evidence for the columnar state in
Refs. [21,27]. However, when we scrutinize one of the peaks
and plot its distribution as a function of the order parameter
angle θ , we observe that the distribution has a flat maximum
which can be equally well interpreted as a combination of two
peaks centered on ±θ0 to the sides of the yellow point, as
we have fitted in Fig. 2(c). Thus it is possible to interpret the
flat maxima at the “columnar” points of the order parameter
distributions as two mixed phase peaks instead. This scenario
become clearer if we fix a certain radius, whose angular distri-
bution appears more as two distinct peaks [red line, Fig. 2(c)].

It is hard to distinguish different states by average configu-
rations directly since the features are lost when averaging all
the degenerate states. To remove the degeneracy we have to
act as a projection operator on the samples of Monte Carlo
data to remove the unwanted configurations. Specifically, we
project an operator | 〉n〈 |n on one specific plaquette (labeled
n) on the square lattice; it is nonzero only when the plaquette
contains two parallel horizontal dimers. As shown in Fig. 2(d),
the averaged projected configuration shows clear evidence
against the columnar phase.

To seek stronger evidence, we measure dimer pair cor-
relation functions. We define the pair dimer operator on a
plaquette at position r as

D ,r = | 〉r〈 |r,
D ,r = | 〉r〈 |r, (4)

and the pair correlation function Ci j,r−r′ between Di,r and Dj,r′

as

Ci j,r−r′ = 〈DirDj,r′ 〉 − 〈Di,r〉〈Dj,r′ 〉
〈Di,r′ 〉 − 〈Di,r′ 〉2

, (5)

where i, j = , and r − r′ is the position difference.
We investigate the difference between the correlations of
the two largest distances, i.e., with r − r′ = L

2 x̂ + L
2 ŷ and
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FIG. 2. (a) An illustration of VBS order parameter distributions
of the various candidate phases. (b) VBS order parameter distribu-
tions of different V : About 80 000 data points are taken for each
histogram. T = 0.01, L = 32 is taken. (c) The angular distribution
of the VBS order parameter measured at V = 0.5 obtained through
integrating out the radial distribution (blue dashed lines) and cut
through a fixed radius (red solid lines), and the double peak fit (gray
dashed lines). (d) The average dimer occupation near the center of
an L = 64 lattice for V = 0.5. Red/blue color represents that the
dimer occupation is larger/smaller than 1/4 (the average number
when no long-range order exists), indicating the tendency to find
one/no dimer at that location. We choose the parameters as V = 0.5,
T = 0.01. The details about the peak fitting are given in Appendix A
of the Supplemental Material [30].

L
2 x̂ + ( L

2 + 1)ŷ,

�C , = C , ,(L/2)x̂+(L/2)ŷ − C , ,(L/2)x̂+(L/2+1)ŷ,

�C , = C , ,(L/2)x̂+(L/2)ŷ − C , ,(L/2)x̂+(L/2+1)ŷ.

}
(6)

At V = 0.5 and T = 0.01, we plot those for different system
sizes in Fig. 3.

In a columnar phase, �C , should extrapolate to a finite
value as L → ∞, while �C , scales to 0. For a plaquette
phase �C , = �C , , while a mixed phase is characterized
by finite but different values of �C , and �C , in the same
limit. As shown in Fig. 3(a), our results taken from system

FIG. 3. (a) The difference of longest distance pair dimer cor-
relations �C , (red) and �C , (blue). (b) The structure
factor of different dimer correlation functions under size L = 64,
temperature T = 0.01, and parameter V = 0. (i) Single dimer cor-
relation function C−,−. (ii) Single dimer correlation function C−,|.
(iii) Pair correlation function C , . (iv) Pair correlation function
C , . (c) The relationship of the distance of two mixed state peaks
θ0 and V under certain size L = 32 and temperature T = 0.01. Inset:
The relation for various V (V = −0.5, 0, 0.5, 0.9) between distance
of two mixed state peaks θ0 and comparison with �C , /�C , ,
L = 32, and T = 0.01.
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sizes up to L = 64 indicate a mixed phase. We can conclude
here for the V = 0.5, 0,−0.5 results that there are substantial
mixed phase correlations.

It is worth noting that such a distinction between the
columnar phase and mixed phase cannot be seen in the single
dimer correlation function C−,− and C−,|. To illustrate that, we
measured various structure factors, i.e., the Fourier transfor-
mation of the dimer correlations C−,− and C−,| as well as the
pair correlation functions C , and C , into the momentum
space. We choose V = 0, at which the projection algorithm
loses its effectiveness and the finite-size effect becomes non-
significant. The pair structure factor exhibits two additional
peaks at (0, π ) compared with the columnar phase, clearly
confirming that the ground state is the mixed phase, while the
single dimer structure factor shows no such difference.

Both a finite �C , /�C , and the splitting of peaks θ0

of the complex order parameter are features of a mixed state.
We find these two quantum positively related under various V
[inset of Fig. 3(c)], which has further confirmed our starting
point, i.e., the peak for the columnar state is made up by
two peaks for a columnar state. The mixed phase here is not
a multiphase mixture but a single state with both rotational
symmetry and translational symmetry broken. In addition,
both �C , /�C , and θ0 do not decay rapidly when V < 0
from this figure. This means that the mixed state may extend
to an area of small V . Since the distributions of the VBS order
parameter can only be obtained in finite sizes, further study
is needed.

Having confirmed the existence of a mixed phase, our
second question concerns the boundary of the mixed state.
We aim to make clear the entire phase diagram. Based on a
field theory analysis combined with the exact diagonalization
method, recent studies have shown that there should be no
phase transition points from the classical limit (V = −∞) to
the RK point [21,22]. A similar trend can also be seen in
Fig. 3(c): The distance between two peaks of the mixed state
also tends to a nonzero finite value though this is a result of
finite size. In addition, we have also measured the difference
of the pair correlation function at V = −0.5 and got a similar
result that there is still mixed phase, as shown in Fig. 3(a).

However, the scenario is still unclear when V is far less
than −0.5. When V is less than −1, for convenience, we take
the energy shift C = −v in the sweeping cluster method, such
that the algorithm returns to the “pair update” which flip only
face-to-face dimers. “Pair update” works well when applied
far from the RK point on a square lattice (see Appendix B
of the Supplemental Material [30]). This scheme effectively
switches between the columnar state and the plaquette state.
We set the initial state of QMC as the columnar state and
performed a “pair update” to see whether the simulation equi-
librates in the mixed phase. Then we have done a finite V
scaling as Fig. 4(a). The �C , , which indicates the char-
acteristics of the mixed state, is always nonzero and shows
a power-law dependence on 1/(1 − V ). It seems that as long
as there is a quantum fluctuation term, the system is always
in a mixed state, even if it is very small. From these proofs,
we could have a clear cognition about the phase diagram of
the QDM on a square lattice. Close to the classical limit, the
columnar phase is the ground state. When we add a kinetic
term into the Hamiltonian, it becomes a mixed state for a

FIG. 4. The relationship of �C , /�C , and V . Inset: The
relationship of ln �C , /�C , and ln 1/(1 − V ) is a power law.
All the data in (a) are extrapolated from the finite size. The original
data are shown in Appendix C of the Supplemental Material [30].

vast parameter region. After V > 1 (RK point), the conclusion
remains that the system enters a staggered state.

III. DISCUSSION AND OUTLOOK

Although it seems that the structure of the mixed phase ex-
tends to the classical limit (V = −∞), this trend is not exactly
true. In the classic limit, the ground state is a pure colum-
nar state with gapped excitations. The different degeneracy
between the two phases, i.e., the columnar phase is fourfold
degenerate and the mixed phase is eightfold degenerate, for-
bids a smooth crossover between the two phases and dictates
the existence of a second-order phase transition point between
them with the gap closed. At the same time, there must be a
vast mixed phase according to the numerical results. It seems
that the phase transition point is far from the RK point. The
mixed structure seems to have made a small kinetic energy
correction while ensuring the optimal potential energy of the
columnarlike main ingredient, allowing the most plaquettes to
resonate to achieve overall optimization of the kinetic energy
and potential energy.

An additional clue to the wide existence of the mixed
phase comes from the (2 + 1)-dimensional U (1) quantum
link model [31–35] closely related to the square lattice quan-
tum dimer model, in which there exist in particular two
distinct confining phases (analogous to columnar and plaque-
tte phases in the quantum dimer model) with different discrete
symmetry breaking patterns, separated by a weak first-order
phase transition that mimics several features of deconfined
quantum critical points [36–39]. This implies that there should
also be a similar ordered phase other than the columnar in
the QDM.

The existence of a mixed state in a square lattice dimer
model has been controversial for a long time. In recent arti-
cles, researchers have denied the possibility of a mixed phase,
and proposed that only columnar states exist in its phase
diagrams. This paper provides strong numerical evidence to
prove its existence through a detailed analysis of the his-
togram of the order parameter and the anisotropy of the pair
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correlation function. Furthermore, we find that it exists in a
wide range even far from the RK point.

Further, we will study the physics of the constrained sys-
tem at a finite temperature [40,41] and the characteristics of
the restricted system under dissipation [42–44].
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