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We analyze the phase diagram of the spin- 1
2 Yukawa–Sachdev-Ye-Kitaev model, which describes complex

spin- 1
2 fermions randomly interacting with real bosons via a Yukawa coupling, at finite temperatures and varying

fermion density. A recent work [Wang and Chubukov, Phys. Rev. Res. 2, 033084 (2020).] showed that, upon
varying the filling or chemical potential, a first-order quantum phase transition exists between a non-Fermi-liquid
(NFL) phase and an insulating phase. Here we show that in such a model with time-reversal symmetry this
quantum phase transition is preempted by a pairing phase that develops as a low-temperature instability. As a
remnant of the would-be NFL-insulator transition, the superconducting critical temperature rapidly decreases
beyond a certain chemical potential. On the other hand, depending on the parameters, the first-order quantum
phase transition extends to finite temperatures and terminates at a thermal critical point, beyond which the NFL
and the insulator become the same phase, similar to that of the liquid-gas and metal-insulator transition in real
materials. We determine the pairing phase boundary and the location of the thermal critical point via combined
analytic and quantum Monte Carlo numeric efforts. Our results provide a model realization of the transition
of NFLs towards superconductivity and insulating states and therefore offer a controlled platform for future
investigations of the generic phase diagram that hosts a NFL, insulator, and superconductor and their phase
transitions.

DOI: 10.1103/PhysRevB.103.195108

I. INTRODUCTION

Understanding the non-Fermi-liquid (NFL) behavior of
interacting electron systems is one of the central issues in
modern condensed-matter physics. Widely believed to be rele-
vant to the microscopic origin of the strange metal behavior in
unconventional superconductors [1–8], its theoretical descrip-
tion remains a challenging issue due to the lack of a small
control parameter. Recently, the Sachdev-Ye-Kitaev (SYK)
model has garnered widespread attention as it has emerged
as a new paradigm for the study of NFLs [9–12], which is
different from most previous research of NFLs, where the
system is usually realized in itinerant fermions coupled to soft
bosonic modes near a quantum critical point [13–20]. The
NFL in SYK model is exactly solvable in the large-N limit.
Beyond the context of non-Fermi liquids, the SYK model has
also been found to have a hidden holographic connection to
quantum black holes and saturates the limiting rate of scram-
bling due to its short equilibration time [21,22].

Motivated by the aforementioned fermionic systems near
quantum critical points, recently, a variant of the SYK model,
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dubbed the Yukawa-SYK model, was proposed [23–27]. Such
a model describes strong random Yukawa coupling between
MN flavors of fermions and N2 flavors of bosons. Analytical
investigation at large N has revealed a saddle point solution in
which the Yukawa coupling “self-tunes” the massive bosons
to criticality and the fermions form a NFL, which saturates the
bound on quantum chaos [28,29]. This saddle point solution
has been verified at finite N and finite T via quantum Monte
Carlo (QMC) simulations with an additional antiunitary time-
reversal symmetry [27] by making use of a reparametrization
symmetry of the large-N solution.

In this work we focus on the fate of the NFL upon
varying temperature and density. Similar to the discovery
of the complex SYK model [30,31], it was recently shown
that a first-order quantum phase transition exists at finite
chemical potential separating a NFL state and a gapped in-
sulating state [23]. On the other hand, in several versions of
the Yukawa-SYK model and the complex SYK model, the
NFL phase becomes unstable to a pairing phase [24–26,32–
34]. In particular for the Yukawa-SYK models [23–27],
two distinct pairing behaviors have been reported, depend-
ing on whether fermions carry spin degrees of freedom.
For the spinless Yukawa-SYK model studied in Ref. [24],
it was found that pairing occurs only for a certain range
of the ratio between boson and fermion flavor numbers,
while for spin- 1

2 Yukawa-SYK models [25–27], the NFL state
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FIG. 1. (a) Phase diagram of the Yukawa-SYK model at N =
4M, ω0 = 1, m0 = 2. From the large-N calculation, one sees the NFL
become a superconductor at low temperature in a wide range of the
chemical potential and the first-order hysteresis region denoted by
the red points and lines, obtained in the absence of pairing instability
within large N . In the presence of superconductivity the position
of this region is renormalized, hence the dashed line. The thermal
critical point that terminates the first-order transition locates at (μc =
0.194, Tc = 0.015). The blue triangles are the transition points from
a NFL to a superconductor obtained from QMC at finite N, M (see
Fig. 4), which are consistent with the results obtained from large-N
calculations (black squares). (b) Phase diagram of the Yukawa-SYK
model at N = M, ω0 = 1, m0 = 2 from the large-N calculation. The
first-order hysteresis region denoted by the red points and lines is
obtained in the absence of pairing instability within large N . The
dashed-line portion of this boundary is renormalized by supercon-
ductivity phase. The black dashed line denotes the boundary of the
superconducting phase within the hysteresis region and is depicted
only qualitatively. The QMC n-μ curves in Fig. 2 are along blue
dashed paths. The thermal critical point at (μc = 0.3825, Tc = 0.07)
is denoted by the black star.

is, in general, unstable toward pairing at sufficiently low
temperatures.

Here by means of large-N calculation and unbiased large-
scale QMC simulation, we present the global phase diagram
(see Fig. 1) of the spin- 1

2 version of the Yukawa-SYK model,
spanned by the axes of temperature T and chemical poten-
tial μ. Up to a critical value in the chemical potential μ,
a finite-temperature phase transition from NFL to supercon-

ductivity is observed. We determine the pairing transition
by solving the linear Eliashberg equation using the large-N
result of the Green’s functions, as well as finite-size scal-
ing of the pairing susceptibility in QMC simulations. We
obtain good agreement between the two methods, indicating
the pairing transition is mean-field-like. In particular, in the
weak-coupling limit, we analytically determine the threshold
value for μ for the superconductor-insulator transition at zero
temperature, which agrees well with numerical results. On
the other hand, by solving the Schwinger-Dyson equation, we
found the first-order quantum phase transition extends to low
temperature and terminates at a (thermal) critical point, which
is a generic feature in many metal-insulator transitions in cor-
related materials [35,36]. However, depending on the strength
of the first-order quantum transition (previously found to be
controlled by the ratio M/N [23]), we show that the thermal
critical point may be masked by the superconducting phase.
The phase diagram obtained offers a controlled platform for
future investigations of phase transitions between a NFL, in-
sulator, and superconductor at generic electron fillings.

II. THE SPIN- 1
2 YUKAWA-SYK MODEL

The Yukawa-SYK model we study is described by the
following Hamiltonian:

H =
M∑

i, j=1

N∑
α,β=1

∑
m,n=↑,↓

(
i√

MN
tiα, jβφαβc†

iαmσ z
m,nc jβn)

+
N∑

α,β=1

(
1

2
π2

αβ + m2
0

2
φ2

αβ

)
− μ

M∑
i=1

N∑
α=1

∑
m=↑,↓

c†
iαmciαm,

(1)

where ciαm (c†
iαm) is the annihilation (creation) opera-

tor for a fermion with flavor α and spin m, n (↑ or
↓). The random Yukawa coupling parameter between a
fermion and a boson is realized as 〈tiα, jβ〉 = 0, 〈tiα, jβtkγ ,lδ〉 =
(δαγ δikδβδδ jl + δαδδilδβγ δ jk )ω3

0. We set ω0 = 1 as the energy
unit throughout the paper. The dynamical behavior of the
boson is given in the second term, and παβ is the canonical
momentum of φαβ . Hermiticity of the model requires φαβ =
−φβα . (α, β ) are flavor indices which run from 1 to N , and
(i, j) are quantum dot indices which run from 1 to M. σ z

represents the z component of the fermion spin. Due to time-
reversal symmetry, this Hamiltonian is free from the fermion
sign problem and can be simulated by QMC at finite M and
N and at finite doping with μ �= 0. We prove the absence
of the sign problem and discuss the QMC implementation in
Appendix A.

As we mentioned, compared to the spinless Yukawa-SYK
model previously studied [24], the key difference is the in-
clusion of the spin degree of freedom, which enables a
sign-problem-free quantum Monte Carlo simulation of the
model. Physically, this modification introduces an instability
toward spin-singlet pairing, while in Ref. [24] the pairing of
spinless fermions occurs at only certain regimes of (M, N ).
The behavior of the model (1) at μ = 0 was studied in our
previous work in Ref. [23], and in this work we focus on the
phases for a generic μ.
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The main results of this work can be summarized by the
two representative phase diagrams. We found that, in general,
a superconducting dome Tsc(μ) exists in the T -μ plane shown
in Fig. 1 (the phases for positive and negative μ are identi-
cal by particle-hole symmetry). The vanishing of pairing for
larger μ is driven by the underlying NFL/insulator transition.
In the absence of pairing, we obtain a hysteresis region (the
wedge region marked by red lines in Fig. 1) in which both
the NFL and insulator states are metastable, divided by a
first-order phase transition inside the wedge, similar to that
of the liquid-gas transition and metal-insulator transition in
many correlated materials [35,36]. The exact location of the
first-order transition requires comparing the free energies of
different solutions, which is beyond the scope of the cur-
rent work. For N = 4M, ω0 = 1, m0 = 2, the superconducting
dome completely preempts the would-be NFL/insulator tran-
sition, while for N = M, ω0 = 1, m0 = 2, the first-order phase
transition is stronger and the corresponding thermal critical
point occurs outside of the superconducting phase. In Fig. 1(a)
we have also marked the superconducting critical temperature
obtained by finite-size scaling from QMC data with blue tri-
angles, which are consistent with the results obtained from
large-N calculations denoted by the black squares. The exact
position of the hysteresis region inside the superconducting
phase and vice versa requires solving the nonlinear supercon-
ducting gap equation and is qualitatively marked by dashed
lines.

III. PHASES IN THE NORMAL STATE

Within large N , we map out the T -μ phase diagram by
numerically solving the Schwinger-Dyson equations (2). In
terms of the propagators G−1

f (iω) = iω + μ + 
(iω) for the

fermions and G−1
b (i�) = �2 + m2

0 + �(i�) for the bosons,
the Schwinger-Dyson equations are


(iω) = −ω3
0

∫
d�

2π
Gb(i�)G f (iω − i�),

�(i�) = 4M

N
ω3

0

∫
dω

2π
G f (i�/2 + iω)G f (−i�/2 + iω).

(2)

Since we work in the large-(M, N) regime, only the ratio M/N
enters the equations [27].

We solve Eqs. (2) iteratively by starting with a simple
ansatz for 
0 and �0 on the right-hand sides, obtaining up-
dated values 
1 and �1 on the right-hand sides, and repeating
until the solutions {
n} and {�n} saturate, where n is the
iteration step number. Noting that Eqs. (2) are consistent with
the assumptions that �(i�) is even and that the real and imag-
inary parts of 
(iω) are even and odd, respectively, we need
to compute only the self-energies at nonnegative frequencies.
However, directly implementing this strategy leads to diver-
gent behavior, especially at 
n(±πT ) and �n(0). This issue
is related to the fact that 
n(±πT ) and �n(0) are determined
by the behaviors of G and D at all frequency scales, rather than
their “local” behavior at nearby low energies [23]. Indeed, in
analytical solutions of Eq. (1) at T = 0 [23], the conditions on

(0) and �(0) were used to determine the ultraviolet energy
scale beyond which NFL behavior crosses over to that of a free

system. To avoid the instability at lowest frequency points in
the iterative method, we artificially introduce the “stabilizers”
for each step of the iteration by uniformly shifting 
n and �n

such that


′
n(πT ) = s, �′

n(0) = p. (3)

This prescription prevents 
n(πT ) and �n(0) from running
away. Of course, in general, after the iteration converges, the
solution we get is not the solution of the original SD equation,
unless the updated value at the next step coincides with the
stabilizers, i.e., 
n+1(πT ) → s and �n+1(0) → p. Using this
criterion, we can find the correct values of the stabilizers s0

and p0. The necessary shifts are typically extremely small
compared to the values of the self-energies over the frequency
range where most of their support lies.

At low T and for some ranges of μ, we obtain two different
choices of stabilizers {s0, p0} which cause the iteration to con-
verge. This signals the hysteresis behavior, and the resulting
two types of solutions physically correspond to NFL and insu-
lator behaviors that are the local minimum of the free energy.
This method does not reproduce the unstable (dn/dμ < 0) so-
lutions, whose boundaries are sketched qualitatively in Fig. 2.
The filling n is calculated from the imaginary-time fermionic

FIG. 2. Filling n versus μ for selected T in the vicinity of the
thermal critical point in Fig. 1 (b) for N = M, ω0 = 1, m0 = 2. At
higher T = 0.125, one sees the n(μ) curves from both large N and
QMC are smooth. T = 0.125, μ = 0.375 (marked by the star) is a
thermal critical point. At temperature T = 0.083 close to the thermal
critical point, there is a sharp turn in n(μ) signifying the divergence
of the compressibility dn/dμ. At lower T , there is a range of μ—the
hysteresis region—where the filling is double valued. The lower
branch represents the NFL behavior, and the upper branch represents
the insulating behavior; a first-order transition connects the two at
a chemical potential given by a Maxwell construction. The dashed
line delimits the region where solutions are unstable. Note that the
QMC results at T = 0.050 (the blue triangles) further differ from
the first-order transition behavior (the blue curves). At finite M, N
and at finite temperatures, the system is finite and does not have
phase transitions. Instead, the system undergoes crossovers, which
become phase transitions only in the thermal dynamical limit. We
have verified that, numerically, as one increases M, N , the numerical
data indeed tend to approach the large-N curve.
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Green’s function,

n = 1

2
+

∑
ωn

G f (iωn). (4)

Alternatively, one can obtain the filling from n =
limδ→0 G(τ = −δ). However, due to the finite number of
frequency points we keep, G(τ ) obtained from a Fourier
transform exhibits strong oscillations at small τ (the Gibbs
phenomenon).

From the fermion Green’s functions, we extract the n-μ
curve, shown in Fig. 2. In particular, for certain values of
(μ, T ) the two solutions coexist, indicating the existence of
metastable states. At low temperatures, there is, in general, a
range of n for which no solutions were found. Nevertheless,
we expect the n(μ) curve to be smooth in the full solution.
This missing portion of solutions (see the dashed lines in
Fig. 2) thus corresponds to those that cannot be obtained from
a stable convergent iterative series. We thus identify this miss-
ing portion as thermodynamically unstable saddle points of
the free energy. Such a behavior is typical of first-order phase
transitions. Like water-vapor transition, the actual n-μ curve
connecting the two branches is a straight line determined by
the Maxwell construction. Above a certain temperature Tc, the
two types of solutions become smoothly connected at a chem-
ical potential μc. Here the compressibility dn/dμ diverges,
and thus, (Tc, μc) is a thermal critical point of the system.

Qualitatively, the value of Tc up to which the first-order
phase transition survives is related to the strength of the quan-
tum first-order transition at T = 0. In Ref. [23], it was found
analytically that the first-order quantum phase transition is
weaker for a larger ratio M/N and becomes continuous at
M/N → ∞. Indeed, we find that Tc for the case N = M is
higher than that with N = 4M.

Here we note that the normal state phases of the spinless
Yukawa-SYK model [24] can be obtained by a similar anal-
ysis. Indeed, the only difference is an additional factor of 2
in the second equation in (2) coming from summing over
spin species. However, as we see below, the pairing phase of
the spin- 1

2 Yukawa-SYK model comes from the spin-singlet
channel, which is absent in the spinless version, as discussed
in Ref. [24].

IV. PAIRING TRANSITION

The interaction mediated by the boson exchange is attrac-
tive in the equal-index, spin-singlet Cooper channel [27], and
the system has an instability and a low-temperature pairing
phase. The Eliashberg equation is given by

�(ωn) = ω3
0T

∑
�m

Gb(i�m)G f [i(ωn+ �m)]G f [−i(ωn+ �m)]

× �(ωn + �m). (5)

At μ = 0, the pairing problem was analyzed in Ref. [27].
For μ �= 0, due to the breaking of particle-hole symmetry,
the mismatch between G(±iωn) leads to a reduced pair-
ing tendency, much like a Zeeman splitting in momentum
space reduces the spin-singlet pairing susceptibility. We can
glean some insight about the pairing transition by consid-
ering the weak-coupling limit ω0 � m0 and determine the

value of μsc beyond which pairing vanishes. At T = 0, the
Schwinger-Dyson equations admit an insulating solution ap-
proximated [23] by 
(iω) = −ωF /2, where ωF ≡ ω3

0/m2
0 and

�(i�) = 0 as long as μ > ωF /2. These self-energies become
exact in the limit. In this regime the pairing equation becomes

�(ω) = ω3
0

∫
d�

2π

1

(� − ω)2 + m2
0

1

�2 + (μ − ωF /2)2
�(�).

(6)

Most of the support for the integral comes from frequencies
on the order of ωF , so at very weak coupling the frequency
dependence of the boson propagator can be ignored. With the
ansatz �(ω) = const, performing the integral reveals a pairing
transition at

μsc = ωF
(≡ω3

0/m2
0

)
. (7)

To verify this analytic result, we solved the pairing equa-
tion numerically at very weak coupling, m0 = 10ω0, and we
obtained μsc ≈ 0.98ωF for the maximum chemical potential
beyond which pairing vanishes; we also found that �(ω) is
virtually constant, justifying our ansatz. Extrapolating to our
case with ω0/m0 = 0.5, we expect μsc = 0.25. This indeed
matches well the numerical results from large N [Figs. 1(a)
and 1(b)] and from QMC [Fig. 1(a)].

Using the numerical solutions for Eqs. (2), the Eliash-
berg equation can be viewed as a matrix equation

FIG. 3. (a) The QMC fermionic Green’s functions and (b) the
bosonic Green’s functions with different μ. M = 4, N = 16, β =
32, ω0 = 1, m0 = 2, plotted with semilog axes. For convenience
both Gf and Gb have been normalized to 1 at τ = β. The system
becomes gapped with the increase of the chemical potential. The
sharp downturn of the large-N result in (a) is an artifact of keeping
finite-frequency points.
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|�〉 = K̂ (T, μ)|�〉 (after imposing a large enough cutoff in
frequency), and the largest eigenvalue of the kernel K̂ can
be computed. The Eliashberg equation has a nontrivial so-
lution when the largest eigenvalue reaches 1, indicating the
onset of pairing, and we can map out the boundary of the
superconducting region in the T -μ phase diagram. The nu-
merical results for N = 4M, m0 = 2ω0 and N = M, m0 = 2ω0

are shown in Figs. 1(a) and 1(b), respectively. The thermal
critical point may lie inside or outside the superconduct-
ing region depending on the ratio of M/N , as discussed
above.

V. RESULTS FROM QMC

To analyze the phase diagram in Fig. 1 with QMC, we
focus on the Green’s functions and pairing susceptibility ob-
tained in simulations at finite M, N . We first perform the QMC
simulations at the parameters of N = 4M, ω0 = 1, m0 = 2
with different β ≡ 1/T and μ.

We show in Fig. 3 the QMC Green’s func-
tions for large β with different μ, with G f (τ, 0) =

1
(MN )2

∑M
i, j=1

∑N
α,β=1〈ci,α,σ (τ )c†

j,β,σ (0)〉 and Gb(τ, 0) =
1

N (N−1)

∑N
α,β=1,α �=β〈φαβ (τ )φαβ (0)〉. One can clearly see

that they exhibit distinct behaviors for small and large μ,
consistent with the phase diagram in Fig. 1(a). At μ = 0.125,
both G f and Gb decay slowly in imaginary time, similar to
the results in Ref. [27] exhibiting power-law scaling. Note
that, for μ �= 0, since the system is no longer particle-hole
symmetric, G f is not symmetric with respect to τ = β/2,
and we normalize the data with respect to G f (τ = β )
and Gb(τ = β ). At larger doping, with μ = 0.35, both
G f and Gb decay exponentially, consistent with insulating
behavior. Since in the QMC simulation with finite N, M the
system does not develop superconductivity, it is sensible
to compare it with Green’s functions at large N for the
normal state. As can be seen in Fig. 3, the agreement is
excellent.

For the M = N case in Fig. 1(b), the thermal critical point
is located around (μc = 0.3825, Tc = 0.07), which is within

reach of our QMC simulations. We compute the n(μ) curves
(whose derivative is the charge compressibility) near and
far away from Tc. We can see in Fig. 2 that, in excellent
agreement with the large-N solution, the compressibility is
constant when the temperature is much higher than the critical
point (M = N = 8, T = 0.125), while there is a jump in n(μ)
when the temperature is close to the critical point (M = N =
8, 10, 12, T = 0.083), consistent with the phase diagram in
Fig. 1(b) from large N .

For N = 4M our QMC results further reveal that the NFL
develops a superconductivity at low temperature in a wide
range of the chemical potential, reaching beyond the would-be
first-order phase transition. To extract the superconducting
transition temperature, we measure the pairing correlation
in our QMC simulation and analyze its scaling behavior
as the system size. The pair susceptibility is expressed as
Ps = ∫ β

0 dτ 〈�(τ )�†(0)〉, where � is the pairing field defined
as �† = 1√

MN

∑M
i=1

∑N
α=1 c†

i,α,↑c†
i,α,↓. At finite N , the pair-

ing susceptibility Ps does not diverge and can be written as
P(N )

s ∼ Na f [N1/ν (T − Tsc)], in which N (and M for a fixed
ratio) plays the role of the system size [8,37–39]. For our
large-N system without the notion of space, the role of cor-
relation length is replaced by a correlation “cluster size” n ∼
(T − Tsc)−ν and hence the functional dependence of f (x).
In the large-N limit, all fluctuation effects are suppressed by
1/N , and such a phase transition is mean-field-like [24]. This
means that for a fixed T − Tc the exponent ν = 2 following
the analog of Josephson’s identity [40] and that f (x) ∼ 1/x.
Further requiring that in the large-N (thermodynamic) limit
the susceptibility diverges independent of N , we obtain a =
1/2. Using these exponents, we indeed obtain decent finite-
size scaling with βsc by data collapse [see Figs. 4(a)–4(h),
with different fermion densities (different μ)]. We can see that
when μ increases, the superconducting transition temperature
is moderately reduced until a sudden drop at larger μ. For
μ > 0.25 the pairing susceptibility no longer diverges with
large N , and the system does not form a pairing state [see
Figs. 4(i) and 4(j)]. The corresponding QMC Tsc points are
shown in Fig. 1(a). The values of Tsc(μ) from QMC are

FIG. 4. Pair susceptibility Ps measured at different chemical potentials μ. The obtained Tc (βc) are denoted by the blue triangles in Fig. 1(a).
From the temperature dependence of Ps with different system sizes (M, N ) we perform the data collapse using mean-field exponents γ0 = 1,
ν0 = 2, and the transition temperatures Tc (βc) are obtained accordingly. The parameters are N = 4M, ω0 = 1, m0 = 2. μ = 0 in (a) and (b),
μ = 0.05 in (c) and (d), μ = 0.125 in (e) and (f), μ = 0.2 in (g) and (h), μ = 0.25 in (i), and μ = 0.35 in (j). The superconducting transition
temperature decreases as μ increases. For μ = 0.25 in (i) and μ = 0.35 in (j) the pairing susceptibilities are not divergent at larger N , and the
system enters a gapped insulator phase.

195108-5



WANG, DAVIS, PAN, WANG, AND MENG PHYSICAL REVIEW B 103, 195108 (2021)

larger than their large-N counterparts, but they are close. In
particular, the values of μsc from QMC and large N are in
good agreement, consistent with analytical result Eq. (7).

VI. DISCUSSION

With combined analytical and numerical efforts, we re-
vealed the T -μ phase diagram of the spin- 1

2 Yukawa-SYK
model. We identified that an underlying first-order quantum
phase transition between a non-Fermi liquid and an insula-
tor leads to a domelike structure of the pairing phase and,
depending on the parameter N/M, survives at finite T until
a second-order thermal tricritical point between a non-Fermi
liquid and an insulator. The first-order quantum phase transi-
tion and the associated thermal critical point are shared by
the original complex SYK model at finite density [30,31].
In addition, the superconducting dome in the vicinity of a
NFL phase we observed for the spin- 1

2 Yukawa-SYK model
analytically and numerically in this work is reminiscent of the
phase diagrams of many unconventional superconductors. Our
results provide the model realization of the SYK-type NFL
and its transition towards superconductivity and insulating
states and therefore offer a controlled platform for future in-
vestigations of the generic phase diagram that hosts the NFL,
insulator, and superconductor phases and their transitions at
generic fermion densities.

It will be interesting to further investigate the scaling
behavior of the thermal tricritical point and determine its
universality class, which we leave for future work.
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APPENDIX A: MODEL AND QUANTUM
MONTE CARLO SIMULATION

The Hamiltonian in Eq. (1) in the main text is illustrated
by Fig. 5. There are i, j = 1, . . . , M quantum dots, and each
dot acquires α, β = 1, . . . , N flavors of fermions. Fermions
are Yukawa coupled via the random hopping ti j and anti-
symmetric bosonic field φαβ . The system goes through a
phase transition from a non-Fermi liquid to a pairing state
when the temperature is below the superconducting critical
temperature Tsc.

FIG. 5. Spin- 1
2 Yukawa-SYK model. There are i, j = 1, . . . , M

quantum dots; each dot acquires α, β = 1, . . . , N flavors. Fermions
are Yukawa coupled via the random hopping ti j and antisymmetric
bosonic field φαβ . The system goes through a phase transition from
non-Fermi liquid to a pairing state when the temperature is below the
superconducting critical temperature Tsc.

We use the Determinantal Quantum Monte Carlo (DQMC)
method to simulate this Hamiltonian, and the starting point is
the partition function of the system,

Z = Tr{e−βĤ }
= Tr{(e−�τ Ĥ )Lτ }
=

∑
{�}

TrF〈�1|e−�τH |�Lτ 〉〈�Lτ |e−�τH |�Lτ −1〉

× · · · × 〈�2|e−�τH |�1〉, (A1)

where we divide the imaginary-time axis β into
Lτ slices; then we have β = Lτ × �τ . Here �l =
(φ11,l , φ12,l , . . . , φN (N−1),l , φNN,l ) is the complete basis of
imaginary-time propagation in the path integral. Using
Trotter-Suzuki decomposition to the Hamiltonian in Eq. (A1),

e−�τ Ĥ ≈ e−�τ Ĥ f be−�τ Ĥb, (A2)

where Hf b is the boson-fermion term and Hb is the boson term
in the Hamiltonian.

Then the partition function can be written as

Z =
∑
{�}

ωB[φ]ωF [φ]. (A3)

As for the bosonic part of the partition function,

ωb[φ] = CLτ

(
Lτ∏

l=1

N∏
α,β=1

e−�τ
m2

0
2 φ2

αβ,l

)

×
(∏

〈l,l ′〉

N∏
α,β=1

e− (φαβ,l −φ
αβ,l′ )

2

2�τ

)
, (A4)

where 〈l, l ′〉 stands for the nearest-neighbor interaction in
the imaginary-time direction and C is a constant. As for the
fermionic part of the partition function,

ωF [φ] = det[I + BLτ BLτ −1 · · · Bl · · · B2B1], (A5)

where

Bl = e−�τV (�l ) (A6)

195108-6



PHASE DIAGRAM OF THE SPIN- 1
2 YUKAWA–SACHDEV-YE-KITAEV … PHYSICAL REVIEW B 103, 195108 (2021)

and

V (�l ) = i√
MN

σ z
2×2 ⊗ (ti j )M×M ⊗ (φαβ,l )N×N

−μ ⊗ I2MN×2MN . (A7)

Here I is the identity matrix.
With these notations prepared, finally, the partition func-

tion in Eq. (A3) can be written as

Z =
∑
{�}

Lτ∏
l=1

CLτ

(
Lτ∏

l=1

N∏
α,β=1

e−�τ M
N

m2
0

2 φ2
αβ,l

)

×
(∏

〈l,l ′〉

N∏
α,β=1

e− (φαβ,l −φ
αβ,l′ )

2

2�τ

)

× Det[I + BLτ BLτ −1 · · · Bl · · · B2B1]. (A8)

This partition function is free from the minus-sign problem
for any μ. For the part of the boson-fermion term of the
Hamiltonian, it is invariant under the time-reversal symmetry
operation T = iσyK. Here K is the complex-conjugate opera-
tor. The boson-fermion term of the Hamiltonian can be written
as

Ĥf b =
N∑

i j=1

N∑
α,β=1

i√
MN

tαβφi jc
†
iα↑c jα↑ − μc†

iα↑ciα↑

− i√
MN

tαβφi jc
†
iα↓c jα↓ − μc†

iα↓ciα↓. (A9)

Under the transformation of T = iσyK, we have

T Hf bT −1 =
N∑

i j=1

N∑
α,β=1

− i√
MN

tαβφi jc
†
iα↓c jα↓ − μc†

iα↓ciα↓

+ i√
MN

tαβφi jc
†
iα↑c jα↑ − μc†

iα↑ciα↑

= Hf b. (A10)

At the same time for the fermion determinant

det[1 + B(β, 0)]

= det[1 + B↑(β, 0)] det[1 + B↓(β, 0)]

= det[1 + B↑(β, 0)] det[T (1 + B↓(β, 0))T −1]∗

= det[1 + B↑(β, 0)] det[1 + B↑(β, 0)]∗ (A11)

= | det[1 + B↑(β, 0)]|2, (A12)

where B(β, 0) = BLτ BLτ −1 · · · Bl · · · B2B1. The determinant
is a positive and real number. Also for the boson part of the
weight ωb[φ] is positive and real. Therefore, we have proved
that this Hamiltonian is sign problem free.

From a simpler viewpoint, just by looking at the matrix el-
ements of matrices corresponding to different spins, B↑(β, 0)
and B↓(β, 0), we can see this model does not have sign prob-
lem. Every element of 1 + B↓(β, 0) is individually complex

FIG. 6. Pair susceptibility for different β and data collapse, ω0 =
1, m0 = 1, μ = 0. The superconducting transition temperature is
around Tsc ∼ 0.1 (βc ∼ 10), which is higher than the superconduct-
ing transition temperature around Tsc ∼ 0.067 (βsc ∼ 15) at ω0 =
1, m0 = 2, and μ = 0.

conjugate with the corresponding element of 1 + B↑(β, 0),
which means

det[1 + B↑(β, 0)] = det[1 + B↓(β, 0)]∗. (A13)

APPENDIX B: THE CRITICAL TEMPERATURE OF
SUPERCONDUCTING WITH DIFFERENT m0

The influence of the ratio ω0/m0 on the superconducting
transition temperature has been studied quantitatively by the
large-N limit calculation. The inverse transition temperature
βc from NFL to superconductivity as a function of the ratio
ω0/m0 for N = 4M and N = M is discussed in the main text
and in Ref. [27]. By QMC simulation, we also found that
when m0 = 1, ω0 = 1, and μ = 0, the superconducting tran-
sition temperature is around Tsc ∼ 0.1 (βsc ∼ 10), which is
higher than the superconducting transition temperature around
Tsc ∼ 0.067 (βsc ∼ 15) at ω0 = 1, m0 = 2, and μ = 0. The
results are shown in Fig. 6 and are consistent with theoretical
analysis in Ref. [27].
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