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A B S T R A C T   

One challenge faced by the random-parameter count models for crash prediction is the unavailability of unique 
coefficients for out-of-sample observations. The means of the random-parameter distributions are typically used 
without explicit consideration of the variances. In this study, by virtue of the Taylor series expansion, we pro-
posed a straightforward yet analytic solution to include both the means and variances of random parameters for 
unbiased prediction. We then theoretically quantified the systematic bias arising from the omission of the var-
iances of random parameters. Our numerical experiment further demonstrated that simply using the means of 
random parameters to predict the number of crashes for out-of-sample observations is fundamentally incorrect, 
which necessarily results in the underprediction of crash counts. Given the widespread use and ongoing prev-
alence of the random-parameter approach in crash analysis, special caution should be taken to avoid this silent 
pitfall when applying it for predictive purposes.   

1. Introduction 

Since its introduction by Milton et al. (2008) and Anastasopoulos and 
Mannering (2009), the random-parameter approach has attracted 
considerable research interest and has become the benchmark for crash 
analysis (Mannering and Bhat, 2014). Numerous studies have demon-
strated its superiority in interpretability, with a substantial improve-
ment in goodness-of-fit and the ability to account for unobserved 
heterogeneity (Mannering et al., 2016). Recent studies reported that the 
approach empirically underperformed in out-of-sample crash prediction 
compared with its fixed-parameter counterpart (Tang et al., 2019; Hou 
et al., 2020). However, this underperformance can be readily attributed 
to using predictions that are based only on the means of the random 
parameters while ignoring their variances. Our study therefore attempts 
to demonstrate such a bias by providing a straightforward yet analytic 
solution to incorporate both the means and variances of random pa-
rameters for unbiased prediction. 

2. Methods 

Let Yi denote the number of crashes for observation i(i = 1,2, ..., n)
during a certain period. Zi and Xij represent the exposure and the jth 
explanatory variable, respectively. When developing the random- 
parameter approach to model crash frequencies, without loss of gener-
ality, we formulate the following functional form given the random, 
non-negative, and integral nature of crash counts: 

Yi ∼ Poisson(λi)

λi = β0Zβ1i
i exp

(
∑k

j=2
βjiXij + ui

)
(1)  

where λi is the parameter of Poisson distribution (i.e., the expected 
number of crashes), β0 is the intercept, βji(j = 1,2, ..., k) refers to the jth 
regression coefficients, and ui denotes the unstructured effect. 
Compared with the negative binomial model (also known as the Poisson- 
gamma model in which exp(ui) follows a Gamma distribution with mean 
1 and variance α; Lord and Miranda-Moreno, 2008), a more flexible 
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alternative is to assume ui as a normal distribution as suggested by Lord 
and Mannering (2010): 

ui ∼ Normal
(
0, σ2

u

)
(2) 

Unlike the conventional Poisson-lognormal model with fixed pa-
rameters, by specifyingβji as a predefined distribution with mean βj and 
variance σ2

j , each observation now has its individual coefficients. In 
theory, βji can be assumed to follow any distributions, but the normal 
distribution is mostly used, given its better statistical fit (Anastasopoulos 
and Mannering, 2009; El-Basyouny and Sayed, 2009; Ukkusuri et al., 
2011; Venkataraman et al., 2013; Chen and Tarko, 2014; Xu and Huang, 
2015; Amoh-Gyimah et al., 2016; Meng et al., 2017; Cai et al., 2018; Hou 
et al., 2018, 2021; Tang et al., 2019). 

A challenge arises when applying the estimated random-parameter 
model to predict the number of crashes for out-of-sample observa-
tions, as in reality, it appears to be impossible to know the exact value of 
βj[i] for sample [i]([i] ∕= i). If βj is used as the default to estimate the 
number of crashes (i.e., λ[i]; Mannering et al., 2016; Tang et al., 2019; 
Hou et al., 2020), we then have: 

λ[i] ≈ λ[i] = β0Zβ1
[i] exp

(
∑k

j=2
βjX[i]j

)

(3) 

However, the expectation of λ[i] is not only dependent on βj but also 
on the variances σ2

j and σ2
u . Indeed, if we take a Taylor series expansion 

near the point (βj[i] = βj, u[i] = 0), λ[i] can be closely approximated using a 
quadratic polynomial as follows (Wong and Wong, 2019):  

where ∂λ[i]
∂βj[i]

and ∂λ[i]
∂u[i]

refer to the first-order partial derivative of λ[i] to βj[i]

and u[i], respectively. ∂2λ[i]
∂β2

j[i]
and ∂2λ[i]

∂u2
[i]

are the corresponding second-order 

partial derivatives. 
Taking the expectation on both sides of Eq. (4), we have:   

The difference between Eq. (5) and (3) can then be quantified as: 

E(λ[i]) − λ[i] =

(
σ2

1

2
[ln(E[i])]

2
+
∑k

j=2

σ2
j

2
X2
[i]j +

σ2
u

2

)

β0Eβ1
[i] exp

(
∑k

j=2
βjX[i]j

)

(6) 

That is, using λ[i] as the prediction will always result in a downward 
bias, given the convex property of the link function in Eq. (1). This silent 
pitfall has been ignored by safety analysts when applying random- 
parameter models for predictive purposes (Tang et al., 2019; Hou 
et al., 2020). 

To validate, we conducted the following numerical experiment, 
given its advantages in maneuverability and reproducibility. We set n =

5000, Zi ∼ Uniform(200, 20000), Xi ∼ Uniform(0, 20), β0 = 0.004, 
β1i ∼ Normal(0.70, 0.062), β2i ∼ Normal(0.03, 0.032), and ui ∼

Normal(0,0.602). Only one explanatory variable was considered here for 
simplicity. We then sequentially sampled the values of Zi, Xi, β1i, β2i, and 
ui from the aforementioned distributions, calculated λi, and generated Yi 
using the freeware RStudio (R Core Team, 2013). Such a simulated 
dataset matched well with the empirical data collected by Tang et al. 
(2019) for rural two-lane roads in Pennsylvania. Detailed descriptive 
statistics of our data under investigation are listed in Table 1. 

To evaluate the out-of-sample predictive performance of the random- 
parameter count model, we performed a 10-fold cross-validation (James 
et al., 2013; Hou et al., 2021), in which the original 5000 observations 
were randomly partitioned into 10 mutually exclusive subsets of equal 
size. Each time, one subset was left out as the validation while the 
remaining subsets were combined for model estimation. This process 
was repeated 10 times. We repeatedly predicted the crash frequencies 
for validation samples as λ[i] and E(λ[i]) using Eq. (3) and Eq. (5), 
respectively. In each round, in addition to the random-parameter model, 
we also developed its fixed-parameter counterpart for comparison. To 
characterize their overall predictive accuracy, since each metric only 
reflects partial aspects of error characteristics (Chai and Draxler, 2014), 
we computed three commonly used measures namely the mean bias 
error (MBE), the mean absolute error (MAE), and the root-mean-square 
error (RMSE). We then plotted the cumulative residuals (CURE; Elvik 
et al., 2013; Hauer, 2015; Srinivasan et al., 2016; Tang et al., 2019; Hou 
et al., 2020) to visualize any anomalies. Models with a CURE curve 
oscillating around zero within the 95% confidence interval (CI) are 
regarded as reliable in predictive performance (Hauer, 2015). Consistent 

with Tang et al. (2019) and Hou et al. (2020), we also used the latest 
econometric software LIMDEP 11 (Greene, 2016) to estimate our 
models. Reliable parameters for the random-parameter count models 
could be estimated via 600 Halton draws based on the simulated 
maximum likelihood method (Tang et al., 2019; Hou et al., 2020). The 
results are presented in Table 2 and Fig. 1. 

3. Results 

As Table 2 shows, although the predictive accuracy of E(λ[i]) was 
slightly lower than that of λ[i] in terms of the average magnitude of 

Table 1 
Descriptive statistics for the simulated data.   

Mean Median SD Min Max 

Yi   5.129  3.000  7.442  0.000  161.000 
λi   5.047  2.897  6.874  0.031  154.089 
Zi   10234.448  10364.573  5759.323  201.152  19997.846 
Xi   9.967  10.080  5.749  0.001  19.999  

λ[i] ≅ β0Zβ1
[i] exp

(
∑k

j=2
βjX[i]j

)

+
∑k

j=1

∂λ[i]
∂βj[i]

(

βj[i] − βj

)

+
∂λ[i]
∂u[i]

(u[i] − 0)+
∑k

j=1

1
2

∂2λ[i]
∂β2

j[i]

(

βj[i] − βj

)2

+
1
2

∂2λ[i]
∂u2

[i]
(u[i] − 0)2 (4)   

E(λ[i]) = β0Zβ1
[i] exp

(
∑k

j=2
βjX[i]j

)

+
∑k

j=1

1
2

∂2λ[i]
∂β2

j[i]
σ2

j +
1
2

∂2λ[i]
∂u2

[i]
σ2

u =

{

1 +
σ2

1

2
[ln(Z[i])]

2
+
∑k

j=2

σ2
j

2
X2
[i]j +

σ2
u

2

}

β0Zβ1
[i] exp

(
∑k

j=2
βjX[i]j

)

(5)   
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absolute values according to the MAE results, E(λ[i]) was less sensitive 
and more robust to outliers, given a lower RMSE value. It is also inter-
esting to find that when E(λ[i]) was used as the predictive value, the 
predictive performance of the random-parameter model was compara-
ble with that of its fixed-parameter counterpart, as both models pro-
duced similar MAE and RMSE values. However, the MBE value of E(λ[i])
was the closest to zero, suggesting that E(λ[i]) is least likely to be affected 
by systematic over- or under-prediction bias. This finding becomes even 
more plausible when comparing the MBE values of λ[i] and E(λ[i]). 

More importantly, as illustrated in Fig. 1, when plotting the CURE 
curves over the entire range of a variable of interest, only λ[i] consistently 

exhibited a monotonically increasing trend, resulting in a substantial 
deviation from zero in the end. By comparison, although the CURE curve 
for E(λ[i]) was not always close to zero, it oscillated broadly within the 
95% CI. A similar fashion was also observed for the fixed-parameter 
model. 

4. Discussion 

A major challenge faced by the random-parameter count models in 
transferability and extrapolation is the unavailability of unique co-
efficients for out-of-sample observations. By virtue of the Taylor series 
expansion, we provided an analytic solution that includes both the 

Table 2 
Predictive accuracy metrics for out-of-sample observations based on 10-fold cross-validation.   

Fixed-parameter model  Random-parameter model 

Round MBE† MAE† RMSE† MBE‡ MAE‡ RMSE‡ MBE§ MAE§ RMSE§

1  0.694  4.079  7.092  
1.760  

3.933  7.303  0.287  4.185  7.061 

2  0.677  3.866  7.035  
1.774  

3.751  7.225  0.337  3.953  7.017 

3  − 0.019  3.800  6.167  
1.332  

3.518  6.352  0.061  3.779  6.173 

4  0.388  3.846  6.634  
1.786  

3.624  6.917  0.440  3.831  6.641 

5  1.023  3.968  9.432  
2.084  

3.917  9.660  0.736  4.029  9.395 

6  0.387  4.201  7.397  
1.798  

3.917  7.676  0.386  4.205  7.390 

7  0.188  3.852  6.509  
1.413  

3.566  6.711  − 0.086  3.949  6.499 

8  0.461  3.843  6.480  
1.352  

3.732  6.623  − 0.243  4.036  6.484 

9  − 0.479  4.198  7.475  
1.231  

3.727  7.607  − 0.452  4.186  7.478 

10  − 0.160  3.287  5.346  
1.256  

3.044  5.548  − 0.057  3.244  5.338 

Average  0.316  3.894  6.957  
1.579  

3.673  7.162  0.141  3.940  6.948 

MBE, MAE, and RMSE refer to the mean bias error, mean absolute error, and root-mean-square error, which are calculated as 
1

500
∑

i
(Y[i] − Ŷ [i]), 

1
500

∑

i

⃒
⃒
⃒
⃒Y[i] − Ŷ [i]

⃒
⃒
⃒
⃒, and 

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1

500
∑

i
(Y[i] − Ŷ [i])

2
√

, respectively. Here, Y[i] and Ŷ [i] represent the observed and predicted number of crashes for validation sample [i], respectively. 

† Ŷ [i] = (1+ 0.5σ2
u)β0Zβ1

[i] exp(β2X[i]), where β0, β1, β2 and σu are the parameters estimated by fixed-parameter model.  

‡ Ŷ [i] = λ[i] = β0Zβ1
[i] exp(β2X[i]), where β0, β1, and β2 are the parameters estimated by random-parameter model.  

§ Ŷ [i] = E(λ[i]) = (1+ 0.5σ2
1[ln(Z[i])]

2
+ 0.5σ2

2X2
[i] + 0.5σ2

u)β0Zβ1
[i] exp(β2X[i]), where β0, β1, β2, σ1, σ2, and σu are the parameters estimated by random-parameter model.  

Fig. 1. CURE plots based on 10-fold cross-validation (for fixed-parameter models, Res.FP was computed as Y[i] − (1+ 0.5σ2
u)β0Zβ1

[i] exp(β2X[i]), whereas Res.RP.1 and 

Res.RP.2 were calculated as Y[i] − β0Zβ1
[i] exp(β2X[i]) and Y[i] − (1 + 0.5σ2

1[ln(Z[i])]
2
+ 0.5σ2

2X2
[i] + 0.5σ2

u)β0Zβ1
[i] exp(β2X[i]) in random-parameter models, respectively). 
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means and variances of the random parameters for unbiased crash 
prediction. Compared with the simulation method1 (Alogaili and Man-
nering, 2020; Islam et al., 2020; Hou et al., 2021), our approach is not 
only theoretically sound but also readily applicable without much extra 
computational cost. 

Based on a well-designed numerical experiment, we further 
demonstrated that simply using the means of random parameters to 
estimate the number of crashes for out-of-sample observations is 
essentially incorrect, which necessarily results in an underprediction of 
crash counts in the long run. This finding should be robust, particularly 
after adjusting for confounders arising from small sample sizes (Lord and 
Miranda-Moreno, 2008), misspecification of functional forms (Wang 
et al., 2020), underreporting of crashes (Imprialou and Quddus, 2019; 
Zeng et al., 2020), excess zeros (Lord et al., 2007; Liu et al., 2018), 
measurement errors in exposure (Xie et al., 2018; Kamed and Sayed, 
2020), omitted variables (Mitra and Washington, 2012), spatial corre-
lation (Xu et al., 2017; Dong et al., 2020; Ziakopoulos and Yannis, 2020; 
Cui and Xie, 2021), and temporal instability (Mannering, 2018; 
Alnawmasi and Mannering, 2019; Behnood and Mannering, 2019; Islam 
et al., 2020), all of which are frequently encountered in empirical 
studies. Accordingly, the underperformance of random-parameter count 
models reported in previous studies (Tang et al., 2019; Hou et al., 2020) 
arises very likely from the convenient use of λ[i] as the prediction. That is, 
the conclusion that random-parameter count models were less reliable 
and inaccurate for out-of-sample crash prediction reached by Tang et al. 
(2019) and Hou et al. (2020) seems implausible and misleading, which 
should not be attributed to the modeling technique itself, but rather to 
the artificial and incorrect use of model estimates by analysts. Given the 
widespread use and ongoing prevalence of the random-parameter 
approach in crash analysis, special attention should be paid to this 
fundamental issue when applying it to predict crash frequencies for out- 
of-sample observations. 

For future research, since the data structures in empirical settings are 
much more complicated and intractable than anticipated (Mannering 
et al., 2020), a thorough comparison of the predictive performance of 
random-parameter count models with that of other techniques, such as 
the emerging deep learning methods (Bao et al., 2019; Cai et al., 2019), 
is highly recommended. 
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