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ABSTRACT Corona Virus Disease 2019 (COVID-19) pandemic has become a global challenge faced by
people all over the world. Social distancing has been proved to be an effective practice to reduce the spread
of COVID-19. Against this backdrop, we propose that the surveillance robots can not only monitor but
also promote social distancing. Robots can be flexibly deployed and they can take precautionary actions to
remind people of practicing social distancing. In this paper, we introduce a fully autonomous surveillance
robot based on a quadruped platform that can promote social distancing in complex urban environments.
Specifically, to achieve autonomy, we mount multiple cameras and a three dimensional light detection
and ranging sensor (3D LiDAR) on the legged robot. The robot then uses an onboard real-time social
distancing detection system to track nearby pedestrian groups. Next, the robot uses a crowd-aware navigation
algorithm to move freely in highly dynamic scenarios. The robot finally uses a crowd-aware routing
algorithm to effectively promote social distancing by using human-friendly verbal cues to send suggestions
to over-crowded pedestrians. We demonstrate and validate that our robot can be operated autonomously by
conducting several experiments in various urban scenarios.

INDEX TERMS Surveillance, robotics and automation, human robot interaction.

I. INTRODUCTION
C OVID-19 pandemic has quickly become the most dramatic
and disruptive event experienced by people all over the world
in the year of 2020. People may need to live with the virus for
a long time. Practically, one of the most effective measures to
minimize the spread of the coronavirus is to promote social
distancing. To achieve this goal, several related schemes have
been developed that uses existing on-site closed-circuit tele-
vision (CCTV) systems to detect social distancing. However,
the on-site monitoring systems are not ubiquitous in some
areas and sometimes may not be able to cover all public cor-
ners. Furthermore, although this sort of monitoring systems
are capable of detecting social distancing violations, it fails
to take any proactive actions to promote social distancing.

The associate editor coordinating the review of this manuscript and

approving it for publication was Tao Liu .

Compared to the on-site monitoring systems, the surveil-
lance robots can be flexibly deployed and patrol in the
desired public areas.Moreover, the robot can take precautions
to promote social distancing rather than simply monitor-
ing them. These potential benefits have been validated by
tele-operated robots [1] and hybrid CCTV-robot systems [2].
The hybrid CCTV-robot system introduces external devices
such as CCTV to help robots monitoring social distancing.
However, there are still several challenges that prevent direct
developing a fully autonomous surveillance robot in com-
plex urban environments without any external device. First,
to monitor social distances between pedestrians without any
external device, an on-board robot-centric real-time percep-
tion system is necessary, introducing additional computa-
tional complexities to the computationally limited on-board
systems. Second, in many urban scenarios, the robot needs
to safely navigate through unstructured and highly dynamic
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environments. Third, more intelligent human-robot interac-
tion schemes need to be designed to improve the efficiency
of promoting social distancing.

In this paper, we introduce a fully autonomous surveil-
lance robot to promote social distancing in complex urban
environments. To achieve this autonomy, we first build the
surveillance system with multiple cameras and a 3D LiDAR
on a quadruped robot, which empowers the robot with
omni-perceptibility and expands its traversability in complex
urban terrains with uneven terrains and stairs that are chal-
lenging for normal wheeled mobile robot. Then, we develop
an on-board real-time social distancing detection system with
the ability to track the robot’s nearby pedestrian groups.
Next, the CrowdMove [3] algorithm is used to navigate the
robot in highly dynamic environments. Finally, we develop
a crowd-aware routing algorithm to allow the robots to
approach overly-crowded pedestrian groups and to effectively
promote social distancing using verbal cues. We also investi-
gate the influence of human voices on the effectiveness and
acceptability of quadruped surveillance and social distancing,
because it has been reported that a robotic patrolling inspector
can be terrifying for general citizen∗∗. We demonstrate that
this surveillance robot can be automatically operated with
satisfactory human response by conducting experiments in
various urban scenarios.

The rest of this paper is organized as follows. Section II
reviews the related works. Section III describes the hardware
platform that the surveillance system builds upon. Section IV
presents the robot’s tracking algorithm used for social dis-
tancing detection. Section V illustrates the robot’s naviga-
tion in urban scenarios. Section VI discusses the robot’s
interactions with humans through verbal communication.
Section VII presents the experiments conducted to validate
the proposed algorithms. Section VIII concludes this paper.

II. RELATED WORK
In this section, we will give a brief overview of algorithms
related to our system, including the perception, navigation,
and interaction for surveillance robots.

A. PERCEPTION FOR SURVEILLANCE SYSTEMS
Pedestrian tracking has been widely applied in surveillance
video analysis and is well developed based on research on
multi-object tracking problems [4]–[7].

Discrete velocities are used to model pedestrians’
motion [8], [9]. Although discretization improves the effi-
ciency of prediction, this approach cannot fully satisfy
real-life continuous situations. Chung et al. developed cogni-
tive models to improve the performance of their model [10],
while the facing direction information was omitted due to the
circular modeling of the pedestrians.

Helbing et al. proposed the method of using social force
to model and predict people’s move according to energy

∗∗https://www.fastcompany.com/90539438/
this-covid-swabbing-robot-is-terrifying{\penalty-\
@M}-but-it-doesnt-need-to-be

potential which is caused by people and obstacles [11]. Then
the tracking performance is improved by detecting abnormal
events among pedestrians [12]. Pellegrini et al. developed
Linear Trajectory Avoidance (LTA) to improve the accu-
racy of motion prediction [13]. [14]–[16] developed social
interactions among pedestrians to improve the accuracy of
behavior models. Sheng et al. proposed the Robust Local
Effective Matching Model (RLEMM) to address the issue of
partial detection of objects [17]. However, these approaches
cannot describe pedestrians’ dynamics in dense situations
because they only use linear models. In our system, a
nonlinear model, Frontal Reciprocal Velocity Obstacles
(F-RVO) [4] is used to simulate motions in crowds and also to
model the dynamic behaviors considering pedestrians’ facing
directions.

With the blossom of deep learning, convolutional neural
network (CNN) is well developed to extract the trajectory of a
single object [18]–[20]. Chu et al. developed spatial temporal
attention mechanism (STAM) to detect more objects [21].
Fang et al. improved the performance of tracking by using
recurrent neural network (RNN) [6]. The authors in [7]
developed the simple online and realtime tracking (SORT)
model to track pedestrians. However, by tightly coupling
detection and tracking, these approaches cannot always pro-
vide satisfactory performance in pedestrian detection. Mask
Region Convolution Neural Network (Mask R-CNN) [22]
and You Only Look Once Algorithm (YOLO) [23] are two
state-of-the-art detection networks with sufficient perfor-
mance for detecting purposes, where YOLO is much faster
than Mask R-CNN, and thus is more suitable for real-time
tracking tasks.

B. NAVIGATION IN URBAN ENVIRONMENTS
Compared to the fixed video surveillance system, the surveil-
lance robot not only has the above perception capabilities but
also endows the surveillance camera with mobility. However,
navigating a robot in urban environments is non-trivial.

First, the robot would inevitably interacts with dynamic
obstacles like pedestrians and bicycles. Some methods have
been proposed to deal with the collision avoidance prob-
lems in such dynamic scenarios. References [24], [25] pro-
posed that each agent in dynamics scenarios should take half
of the responsibility of collision avoidance. Based on that,
they developed the multi-agent collision avoidance algorithm
with zero-communication. References [26], [27] presented
the interacting Gaussian processes to capture the cooperative
collision avoidance behavior, and introduced the cooperative
planner for robot navigation. However, these algorithms fail
to track amoving pedestrianwithout the assistance of external
devices. References [28], [29] deployed a light detection and
ranging sensor (LiDAR) with multiple cameras on robot to
track surrounding pedestrians. To navigate the robot in the
crowds, they utilized the reinforcement learning algorithm to
train the socially aware collision avoidance policy. Different
from the above algorithms, [30]–[32] proposed a sensor-level
collision avoidance policy learned via reinforcement learn-
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ing, which can directly process the raw LiDAR data to gen-
erate collision-free actions.

C. ROBOT INTERACTION
Human-like characteristics of social robots would influence
users’ responses. Among various social traits, gender is
important for interpersonal relationships and evokes social
stereotypes [34]. Previous research has pointed out that the
participants were more accepting of the robots if their per-
ceived gender of a robot conformed to their occupation’s
gender role stereotypes (e.g., male security robots or female
healthcare robots). However, perceived trust of the social
robots was not influenced by gender-occupational role con-
formity [35]. In contrast, Kuchenbrandt et al. [36] found
that participants, regardless of gender, evaluated the male
and female robots as equally competent while performing a
stereotypically female task but, in the context of a stereotypi-
cally male task, the female robot was rated as more competent
compared to the male robot. Another study examining the
effects of robot gender on human behavior found that par-
ticipants were more likely to rate the robot of the opposite
gender as more credible, trustworthy, and engaging [37].
Thus, the effects of users and robot attributes, as well as
gender-role stereotypes, are still open questions.

III. HARDWARE PLATFORM
First, we will introduce the hardware setup of our surveil-
lance robot, which includes three components as shown in
Figure 1: the mobile platform, the perception sensor-kit, and
the computational platform.
• Mobile Platform: We deploy the Unitree Laikago
(a quadruped robot) as our mobile platform for navi-
gating in complex urban environments. Comparing to
wheeled robots, quadruped robots have superiority in
traversability and thus are more suitable for uneven and
unstructured urban scenarios with stairs and bumps.

• Perception Sensor-Kit: To effectively detect and track
pedestrians, we mount four color cameras (RGB cam-
eras) evenly in the horizontal plane of the robot. Each
camera is equipped with a short focal lens with the
horizontal field of view (FOV) of 80 o. Thus, a combi-
nation of four cameras can almost cover all directions
around the robot.Moreover, for better spatial perception,
we use a RoboSense 3D LiDAR with 16 channels to
measure the social distance between pedestrians. The
3D LiDAR also serves the navigation applications in
mapping, localization, and collision avoidance.

• Computational Platform: Two on-board computers are
mounted to process the aforementioned sensor data for
different tasks. We use NVIDIA Jetson AGX Xavier as
the vision computational module that supports a max-
imum of six lanes CSI cameras as the input and uses
512 CUDA cores to GPU-accelerate the processing of
images captured by the cameras. Since other tasks like
mapping and localization would mostly consume CPU
resources, we also deploy an Intel NUC with Intel i5

FIGURE 1. Overview of our hardware and software systems.

8259U CPU. These two computers are connected by
wired network, and the processed data is shared by
Robotic Operating System (ROS).

IV. SOCIAL DISTANCING DETECTION
The tracking algorithm used in our system consists of object
detection, bounding box prediction, feature extraction, and
sparse feature matching. We use YOLO to detect pedes-
trians, and update the traces of pedestrians via matching
sparse features with the help of motion modeling algorithm
F-RVO.
Remark 1: Due to the privacy concern, our system will

not collect any private information but only give a verbal
reminder. Moreover, facial recognition technology is not
embedded in the application, which means the pedestrians’
ID information is unknown to the robot.

A. F-RVO
Modeling pedestrians’ behaviors in crowds from the front
view is challenging, not only because of the non-linearly
varied motions (turning shoulder, side walking, back step-
ping, etc. [38]), but also due to the occlusions that front
view may encounter. In this work, we use a velocity-obstacle
based algorithm, F-RVO [4], to model the pedestrians
motion.

In F-RVO, each pedestrian, pi, is represented by an
8-dimensinal vector: 9t =

[
x, v, vpref , l,w

]
, where x is the

current 2D position, v is the 2D velocity, vpref is the preferred
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FIGURE 2. Our system contains functional modules of tracking, mapping, localization, patrol planning, routing, and motion planning. Tracking module
uses YOLO [23] and F-RVO [4] to extract similar detected objects of consecutive frames and to keep track of people. Mapping is achieved by using the
Lightweight and Ground-Optimized Lidar Odometry and Mapping (LeGO-LOAM) algorithm [33] which is based on 3D Lidar sensor. For localization,
we used the Normal Distributions Transform (NDT) localization algorithm to match lidar data and localize robot in the generated map. According to the
detected crowds and map, crowd-aware routing algorithm and patrol planning algorithm would help robot to determine current target to approach. With
all information needed for motion planning, an end-to-end algorithm, CrowdMove, is used to drive robot toward the goal position. During the
approaching, if the robot detects its distance to the crowds is lower than 5 meters, it starts to play a recorded vocal command to remind people to keep a
proper social
distance.

2D velocity that we assume people would prefer to walk
along the front direction. l and w are the length and width of
human’s shoulder, respectively. For each frame τ , a half-plane
constraint is used to determine the range parameter in F-RVO.
Within the range, each pedestrian pi has an area of velocity
obstacle VOτpi|pj with respect to another neighboring pedes-
trian pj. The convex region of velocity obstacles considering
all neighbors can then be computed as:

FRVOτpi =
⋃
pj∈Hi

VOτpi|pj , (1)

where Hi is the set of all neighbors of pedestrian pi. Out of
the velocity obstacle area, the best velocity is chosen with the
nearest distance to preferred velocity vpref :

vbest = argmin
v

∥∥v− vpref ∥∥, (2)

where v /∈ FRVOτpi .

B. DENSEPEDS
The tracking algorithm, DensePeds, involves three compo-
nents to track pedestrians: object detection, feature extrac-
tion, and feature matching, as shown in upside of Figure 2.
At each time step, we first use YOLO to detect pedestrians
and generate the associated bounding boxes. Denote by P
the set of all detected pedestrians, we use F-RVO to predict
another set of bounding boxes around each pedestrian pi ∈ P.
Given the bounding boxes computed between two adjacent

time steps, we use DeepSort CNN [7] to extract binary feature
vectors from the sub-images as determined by the bounding
boxes. Then we perform matching over these sparse features
to find in frame t + 1 the best matched pedestrians of frame t
and assigned IDs to the pedestrians accordingly. In particular,
the sparse features are matched in two steps. First, we find
the most similar detected pedestrian of a predicted pedestrian
using the cosine metric (cosine value of angle between two
vectors), i.e.,

h∗j = argmin
hj
{d(fpi , fhj ) | pi ∈ P, hj ∈ Hi} (3)

where d(·, ·) is the cosine metric, f (·) is the feature extraction
function, pi ∈ P is one of the pedestrians in a frame, hj
is one detected pedestrian in the set Hi, which is the set of
detected neighbors around the pedestrian pi. In the second
step, we maximize the IoU (Intersection over Union) overlap,
i.e., the overlapped area between predicted boxes and original
YOLO-detected boxes,

ε(i, j) =
Bpi ∩ Bhj
Bpi ∪ Bhj

, (4)

where Bpi and Bhj are the bounding boxes around pi and
hj respectively. Matching a set of detected pedestrians to a
set of predicted pedestrians with maximum overlap even-
tually becomes a max weight matching problem over the
matrix ε(i, j), which can be accelerated using the Hungarian
algorithm [39].
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FIGURE 3. (a) We used LeGO-LOAM for mapping. The blue arrows in (b) shows the potential directions in each cross and corner that robot can go. Based
on the information of the map and current position, the patrol algorithm chooses for the robot a navigation direction with the maximum probability of
crowd appearance.

According to the computed bounding boxes, we can
roughly estimate the range and bearing information between
the robot and its surrounding pedestrians. To estimate the
crowds more accurately, we re-project the bounding boxes to
the LiDAR coordinate to query the depth of each pedestrian.
The random sample consensus (RANSAC) algorithm [40]
is applied to filter out the possible outlier points. If there is
a large inconsistency between LiDAR and visual estimates
due to the occupation between pedestrians, the visual esti-
mates would be trusted. Finally, we obtain the social distance
between pedestrians.

V. NAVIGATION IN URBAN
In this section, we will introduce the autonomous navigation
algorithm for urban scenarios. We implement the mapping
and localization function by the state-of-the-art LiDAR-based
approaches. The navigation framework adopts a hierarchical
structure. In particular, we develop a learning-based collision
avoidance algorithm for local planning, and use a global
planner to plan trajectories for the robot to patrol. In addition,
we will describe the routing algorithm enabling a robot to
effectively select a crowded region to approach in order to
accomplish the patrol.

A. MAPPING AND LOCALIZATION
Since LiDAR-based SLAM approaches have been well
developed in recent years, we are not going to develop a
new SLAM approach in this paper. To achieve the best
performance given the limited computational capability,
we choose the Lightweight and Ground-Optimized Lidar
Odometry and Mapping (LeGO-LOAM) algorithm, which
is a light-weighted system and is optimized for the ground
platforms [33]. The generated map is shown in Figure 3a.

Once the 3D point cloud map about the environment is
obtained, the Normal Distributions Transform (NDT) scan
matching algorithm is used for localization [41], which have
been demonstrated in [42] to be able to provide more reliable

result than other matching methods such as Iterative Closest
Points [43].

Although we can compute the 3D point cloud map and the
robot’s localization, it is not easy for the robot to determine
the traversable region in the 2D plane. Therefore, we trans-
form the 3D point cloud to the 2D laser scan, by taking the
closest point within the certain height as a 2D laser point.
Note that, during the navigation the robot may encounter
uneven terrains like stairs or steps. Thus, the transform
ignores the point cloud on the ground plane by filtering
out the cloud points lower than 30 cm. After the transform,
we obtain a 2D occupancy map for the following navigation
algorithm as shown in Figure 3b.

B. PATROL AND ROUTING
Based on the generated map and current position, we propose
a patrol planning algorithm to navigate the robot around the
mapped area. As shown in Figure 3, in different crosses and
corners, the robot would choose different navigation direc-
tions optimized for social distancing. In particular, the robot
would prefer the direction where there is a high probability
that a crowd would appear.

When the robot detects gathered crowds, it would suspend
the patrol algorithm and switch to the routing algorithm
to find an optimal way to approach the crowds. Consider-
ing the time constraints and sizes of crowds, we propose
a crowd-aware routing algorithm based on the depth-first
search method to find a sequence of intermediate waypoints
for the robot to follow.

We formulate the routing problem as follows. Assume that
there are N groups of people within the robot’s perception
range. Each crowd is denoted as a node ni, with its specific
time-window constraint ti, and its relative location to the
robot. Each crowd is assigned a weight wi according to the
number of persons in the group. The routing algorithm aims
at finding an optimal path for the robot to approach as many
crowds as possible with the least energy consumption. The
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TABLE 1. Dependent measures in the user questionnaire.

FIGURE 4. Multi-robot multi-scenario training environments in the Stage
simulator.

optimization objective is:

cost =
∑
pj∈pc

ej −
∑
i∈N

wi − nc, (5)

where pc is the current trajectory which contains a set of
points and edges denoting the positions of crowds and the
paths connecting them. Each edge pj ∈ pc between two posi-
tions has the energy cost ej. The number of crowds explored
in pc is denoted as nc.

Given the directions and positions of the crowds after rout-
ing algorithm, we implement the SBPL lattice planner [44]
to generate a smooth patrol route passing through these
way-points.

C. LEARNING-BASED COLLISION AVOIDANCE
During patrol, the robot will not only encounter the static
obstacles, but also interact with moving pedestrians. For
this case, we deploy the learning-based collision avoidance
approach, CrowdMove [3], for robotic navigation in crowds.

The main training framework refers to our previous
work [30], which takes a 2D laser scan as the input and out-
puts the velocity command. The multiple training scenarios
are designed with multiple robots in the Stage simulator as
shown in Figure 4. We introduce the centralized learning,
decentralized execution training paradigm, which shares the
same navigation policy during the training. Then, we obtain a
multi-robot collision avoidance policy with zero communica-
tion. Furthermore, we validate that the trained policy can be
transferred from the simulation to the real world without any

re-tuning, and it is also suitable for the single robot navigation
in crowds [31], [32]. To adapt the training framework to
our quadrupedal hardware platform, we take the transformed
laser scan which represents the local traversable area as the
input.

VI. VOICE INTERACTION
In our surveillance scenario, we use verbal cues to send
suggestions from robot to human. As we mentioned before,
the user’s gender and the robot’s gender may influence the
user’s acceptance and trust in the robot. Thus, to reach an
effective surveillance result, we gave our robot four types of
gendered voice and designed a user study to select the best
one. In this section, we introduce the study for investigating
(1) the user’s gender-based effects of the autonomous robot
and, (2) user’s attitude, acceptance, trust, and perceived trust
through robot with different voices.

A. METHOD
1) GENDER OF THE ROBOT
We manipulated the gender of the robot through non-verbal
cues by changing the vocal characteristics. Because we aim
to find the robot voice with best performance, the voice
selection is not strictly limited to robot gender effects. In this
experiment, we prepared four types of voices: three gen-
dered voices and a child voice. The gendered voices include
a computer-generated neutral voice, a male and a female
recorded by real adult human, a child voice by a girl.

2) PROCEDURES
Among the various issues in human-robot interaction, trust
was nominated as one of the primary factors to be considered.
In this particular task, trust is performed as how much a
humanwould follow the advice sent by the surveillance robot.
This factor would crucially influence the performance of the
robot. To better measure the users’ experience of the robot,
we suggest four dependent measures which include the users’
attitude towards the robot, perceived trust, and acceptance of
the robot. The details of the measures are shown in Table 1.

As part of a larger study investigating the users’ per-
ceptions in an autonomous surveillance robot, the partici-
pants filled out a survey measuring the factors shown in
Tabel 1. Each measure was assessed on a 5-point Likert scale
(‘1’ = strongly disagree, ‘5’ = strongly agree).
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TABLE 2. Means and standard deviations of all the measures.

FIGURE 5. The screenshots of two videos in the questionnaire. Top:
third-person perspective; bottom: first-person perspective.

This experiment was done in between-subject mode
to minimize the learning and transfer across conditions.
Each participant in this study viewed two videos and then
responded to survey items related to the videos. Both of the
videos demonstrate the same scenario with the same robot
voice. One video was from a third-person perspective, where
the robot is walking towards the crowds while asking them
to keep the social distance. The other video was recorded
from a first-person perspective where the robot is walking
towards the camera while asking the human to keep the
social distance. For both scenarios, the robot starts to play the
voice at about 5meters away from the crowd. The screenshots
of the two videos are shown in figure 5. In this way, a total of 8
videos were recorded, which are 2 perspectives times 4 types
of robot voices. For each scenario, we add a description ‘‘The
robot shown in the videos is a surveillance robot working on
keeping a low density of humans during COVID-19. When
the robot finds a crowd, he/she/it will walk toward the crowd
while asking them to keep a proper social distance. Please
watch these two videos, and imagine you were one of the
humans in the video, then answer the following questions.’’

3) PARTICIPANTS
A total of 218 adults (119 males; 99 females) between
20-55 years old (M = 29.49, SD = 12.02) participated in
the between-subject experiment. Participants were mostly
students and staff from the Southern University of Science
and Technology. The participants were recruited through the
posters and links shared in a social media app. Each partici-
pant needs to read and sign a consent form before they start
the questionnaire.

B. DATA ANALYSES
Amanipulation checkwas performed to ensure that the robots
could manifest gender and age successfully. The perceived
gender was measured through a sliding bar with 0 the most
femininity and 100 the most masculinity. The perceived age
was measured through a sliding bar between 5 to 70. The

one-way ANOVA showed that participants perceived male
voice more masculine (M = 76.14), female voice more
feminine (M = 49.25) an neutral voice in the middle
(M = 64.28). The F and p value is F = 9.902 and
p < 0.0001. The participants also significantly perceived
robot with child’s voice (M = 20.93) younger than others
(M = 28.02, p = 0.008).
We calculated Cronbach’s alpha values to assess the inter-

nal consistency of each psychometric measure. The reported
alpha values were between 0.8-0.9, indicating that the items
have relatively high internal consistency. To calculate the
significance of user gender and robot voice type effect,
a one-way ANOVA was conducted. The robot voice and
user gender were treated as independent variables. For fac-
tors reached significant differences according to conditions,
we used the least significant difference (LSD) to make a
pairwise comparison.

VII. EXPERIMENTS
In this section, we first validate the effectiveness of the
proposed approach individually. Then, we integrate all the
modules to realize the autonomous surveillance robot. To fur-
ther investigate the performance of surveillance robot on
promoting social distancing, we conduct some real-world
experiments in the end.

A. CROWD GATHERING DETECTION
We first record vision and LiDAR data to better analyze and
tune the social distancing detection system. The recorded
dataset includes a wide variety of pedestrian group behaviors,
such as walking, standing, gathering, and scattering.

Crowd gathering is not easy to be well quantified, espe-
cially the occlusion between pedestrians makes the robot
difficult or even impossible to accurately acquire the location
of each pedestrian. To detect each possible crowd gathering,
we establish a graph-based pedestrian network called social
graph, with one example illustrated in Figure 6a. In the social
graph, each node represents the pedestrian’s position. The
green, yellow and red edges represent the safe, warning, and
dangerous social distance, respectively. We consider the dis-
tance less than 2meters to be dangerous, the distance between
2 and 4 meters to be warning, and the distance greater than
4meters to be completely safe.We connect the nodes between
red and yellow edges into a subgraph called the crowd graph,
which is considered as possible crowd gathering. In this
way, we can reduce the dependence of the crowd gathering
detection on the accuracy of estimating pedestrian positions.
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FIGURE 6. Illustration of the crowd gathering detection within the right camera’s field of view (FOV). Although the estimated position of pedestrians is
not very accurate, we can still detect possible crowd gatherings by establishing the crowd subgraph.

TABLE 3. F value and significance of robot voice effect and user gender effect.

FIGURE 7. The legged robot can traverse in uneven terrains.

B. NAVIGATION IN URBAN
The urban navigation would mainly encounter two
challenges, the unstructured environments and the dynamic
obstacles. Thanks to the superior mobility of the quadruped
platform, our robot can navigate over uneven terrains such
as steps without extra visual estimation effort as shown
in Figure 7 and thus can handle unstructured environments
easily.

To validate the dynamic collision avoidance performance
among pedestrians, we create a crowded and narrow indoor
scenario in the lab, as shown in Figure 8. In this experiment,
the robot is required to perform tasks of tracking a specified
target (a bone in this work) while avoiding all the dynam-
ical obstacles (pedestrians). We install in the lab several
ultra-wide band (UWB) tags accounting for indoor localiza-
tion. During the experiments each lasting about 30 minutes,
the robot dog mounted with a 3D LiDAR can achieve nearly

FIGURE 8. The demonstration of the dynamic collision avoidance
experiments. We arranged 6 moving pedestrians in this scenarios about
4m × 4m in size.

zero collision in this scenario. This experiment indicates that
our learning-based collision avoidance policy can be suc-
cessfully transferred and deployed to the real-world robotic
dog.

C. VOICE PREFERENCE
Table 2 shows the means and standard deviations of all
measures according to different robot voice types and user
genders. The score of each factor was calculated by averaging
both/all the related items. It can be seen that the male voice
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FIGURE 9. Examples from the real-world experiment. The top and bottom images describes two different scenarios. Left: The robot detected and
approached the crowds, then persuaded them to keep social distance. Right: The crowds density decreased.

type got the lowest average score on all the measures. Also,
female users marked the highest on all the measures for
neutral voice type.

Table 3 demonstrates the F and p-value. The result shows
that for male users, there is no significant result among all
different robot voice types while for female users, the robot
voice type significantly influences the user’s acceptance
(p = 0.021) and perceived trust (p = 0.092). To find
which condition differs for female users, We used the least
significant difference (LSD) to make a pairwise comparison
between different robot voice types. Surprisingly, For female
users, the acceptance, perceived trust, and attitude toward
robot in neutral robot voice condition are higher than other
robot voice condition, especially for male voice condition
(p = 0.003, 0.013, 0.061 respectively).

We also compare the effects of users’ genders in different
conditions. It is found that female user has higher perceived
ability than male users (p = 0.024), especially in male
voice condition (p = 0.027). In the neutral voice condition,
female’s acceptance and attitude toward robots are signif-
icantly higher than male’s (p = 0.028 and p = 0.057
respectively).

There is no significant difference for male users markings
according to different robot voice types. However, it is quite
surprising that the female users marked very high for the
neutral robot voice. In addition, surveillance should be a
masculine job but both male and female users marked all four
factors the lowest in male voice condition. Therefore, we do
not suggest the usage of the male robot voice. Considering

the means of the four factors among all robot voice con-
ditions, we selected the neutral voice for our surveillance
robot.

D. REAL-WORLD EXPERIMENT ON PROMOTING SOCIAL
DISTANCING
Finally, we integrate all the above modules together, and
investigate whether the robot can navigate in the complex
urban environments with satisfactory social distancing per-
formance without terrifying general citizens. The real-world
experiment was conducted in two public areas including a
university campus and a park. Figure 9 shows some examples
from the real world experiment.

The result shows that our robot successfully fulfills the task
of social distancing. For people who have been interacted
with our robot, about half of them followed the robot sug-
gestions. For the other people, most of them glanced at the
robot and then just walked away, some of them stopped and
looked at the robot. It’s worth to notice that at the time of our
experiment, there were no existing COVID-19 patients in the
testing city, which tends to reduce the pedestrian’s compli-
ance with the verbal social distancing commands. During the
experiment, we selected some people randomly, then asked
them about their attitude towards the robot and why they fol-
lowed/didn’t follow the robot’s advice. Some people reported
that they felt it is a great idea to use the surveillance robot and
they thought the robot’s advice is reasonable. Besides, many
people reported the robot looks like it came from the world
of science fiction so they were very curious about the robot.
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However, some people felt the robot is not friendly enough
so they just wanted to walk away. For the people who ignored
the robot’s advice, most of them said that the pandemic is not
severe so they felt it’s unnecessary to keep the distance.

VIII. CONCLUSION
In the context of the COVID-19 pandemic, we develop an
autonomous surveillance robot system to promote social
distancing. The robot system is mainly composed of social
distance detection, urban navigation, and intelligent voice
interaction. The legged robot shows good adaptation to
different terrain so that they can work well in human life
scenarios. The real-world experiment also demonstrates that
our robot successfully keeps human’s social distance. In this
end, we successfully deploy the system in a real environment
to prevent the spread of COVID-19.

Regarding the usage of the developed platform in response
to the COVID-19 pandemics, there is still room for improve-
ment with respect to social relationship analysis as social
distancing may be affected by many social factors. For exam-
ple, the robot should not remind a group of members from
the same family who are intentionally violating social dis-
tancing. Our future work will focus on identifying the social
relationship of pedestrians from their historical behaviors.
Furthermore, equipping the developed platform with temper-
ature sensors and sanitation tools would grant the robot the
ability to monitor pedestrians’ body temperature and help in
regular cleaning. Such a highly integrated legged platform
would be very efficient in accomplishing various tasks.

Apart from the applications in response to the COVID-19
pandemic, the developed platform has the potential to be
applied in a wide range of social interaction activities in
human’s daily life. For example, the platform can server as
a tour guide in resort parks, can replace human operators
in routine navigation and inspection for factories, and can
accompany and serve elderlies.

ACKNOWLEDGMENT
(Zhiming Chen and Tingxiang Fan contributed equally to this
work.)

REFERENCES
[1] J. Nalewicki. (2020). Singapore is Using a Robotic Dog to Enforce

Proper Social Distancing During COVID-19. [Online]. Available:
https://www.smithsonianmag.com/smart-news/singapore-using-robotic-
dog-enforce-proper-social-distancing-during-covid-19-180974912/

[2] A. J. Sathyamoorthy, U. Patel, Y. A. Savle, M. Paul, and D. Manocha,
‘‘COVID-robot: Monitoring social distancing constraints in crowded sce-
narios,’’ 2020, arXiv:2008.06585. [Online]. Available: http://arxiv.org/
abs/2008.06585

[3] T. Fan, X. Cheng, J. Pan, D. Manocha, and R. Yang, ‘‘Crowd-
Move: Autonomous mapless navigation in crowded scenarios,’’ 2018,
arXiv:1807.07870. [Online]. Available: http://arxiv.org/abs/1807.07870

[4] R. Chandra, U. Bhattacharya, A. Bera, and D. Manocha, ‘‘DensePeds:
Pedestrian tracking in dense crowds using front-RVO and sparse fea-
tures,’’ 2019, arXiv:1906.10313. [Online]. Available: http://arxiv.org/
abs/1906.10313

[5] R. Chandra, U. Bhattacharya, C. Roncal, A. Bera, and D. Manocha,
‘‘RobustTP: End-to-End trajectory prediction for heterogeneous road-
agents in dense traffic with noisy sensor inputs,’’ in Proc. ACM Comput.
Sci. Cars Symp., Oct. 2019, pp. 1–9.

[6] K. Fang, Y. Xiang, X. Li, and S. Savarese, ‘‘Recurrent autoregressive
networks for online multi-object tracking,’’ in Proc. IEEE Winter Conf.
Appl. Comput. Vis. (WACV), Mar. 2018, pp. 466–475.

[7] N. Wojke, A. Bewley, and D. Paulus, ‘‘Simple online and realtime tracking
with a deep association metric,’’ in Proc. IEEE Int. Conf. Image Process.
(ICIP), Sep. 2017, pp. 3645–3649.

[8] G. Antonini, S. V. Martinez, M. Bierlaire, and J. P. Thiran, ‘‘Behavioral
priors for detection and tracking of pedestrians in video sequences,’’ Int. J.
Comput. Vis., vol. 69, no. 2, pp. 159–180, Aug. 2006.

[9] T. Robin, G. Antonini,M. Bierlaire, and J. Cruz, ‘‘Specification, estimation
and validation of a pedestrian walking behavior model,’’ Transp. Res. B,
Methodol., vol. 43, no. 1, pp. 36–56, Jan. 2009.

[10] S.-Y. Chung and H.-P. Huang, ‘‘A mobile robot that understands pedes-
trian spatial behaviors,’’ in Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst.,
Oct. 2010, pp. 5861–5866.

[11] D. Helbing and P. Molnár, ‘‘Social force model for pedestrian dynamics,’’
Phys. Rev. E, Stat. Phys. Plasmas Fluids Relat. Interdiscip. Top., vol. 51,
no. 5, p. 4282, 1995.

[12] R. Mehran, A. Oyama, and M. Shah, ‘‘Abnormal crowd behavior detection
using social force model,’’ in Proc. IEEE Conf. Comput. Vis. Pattern
Recognit., Jun. 2009, pp. 935–942.

[13] S. Pellegrini, A. Ess, K. Schindler, and L. van Gool, ‘‘You’ll never walk
alone: Modeling social behavior for multi-target tracking,’’ in Proc. IEEE
12th Int. Conf. Comput. Vis., Sep. 2009, pp. 261–268.

[14] S. Pellegrini, A. Ess, and L. Van Gool, ‘‘Improving data asso-
ciation byjoint modeling of pedestrian trajectories and groupings,’’
in Proc. Eur. Conf. Comput. Vis. Berlin, Germany: Springer, 2010,
pp. 452–465.

[15] W. Choi, K. Shahid, and S. Savarese, ‘‘What are they doing? : Collective
activity classification using spatio-temporal relationship among people,’’
in Proc. IEEE 12th Int. Conf. Comput. Vis. Workshops, ICCV Workshops,
Sep. 2009, pp. 1282–1289.

[16] K. Yamaguchi, A. C. Berg, L. E. Ortiz, and T. L. Berg, ‘‘Who are you with
and where are you going?’’ in Proc. CVPR, Jun. 2011, pp. 1345–1352.

[17] H. Sheng, L. Hao, J. Chen, Y. Zhang, and W. Ke, ‘‘Robust local effective
matching model for multi-target tracking,’’ in Proc. Pacific Rim Conf.
Multimedia. Cham, Switzerland: Springer, 2017, pp. 233–243.

[18] S. Hong, T. You, S. Kwak, and B. Han, ‘‘Online tracking by learning
discriminative saliency map with convolutional neural network,’’ in Proc.
Int. Conf. Mach. Learn., Jun. 2015, pp. 597–606.

[19] C.Ma, J.-B. Huang, X. Yang, andM.-H. Yang, ‘‘Hierarchical convolutional
features for visual tracking,’’ in Proc. IEEE Int. Conf. Comput. Vis. (ICCV),
Dec. 2015, pp. 3074–3082.

[20] L. Wang, W. Ouyang, X. Wang, and H. Lu, ‘‘STCT: Sequentially training
convolutional networks for visual tracking,’’ in Proc. IEEE Conf. Comput.
Vis. Pattern Recognit. (CVPR), Jun. 2016, pp. 1373–1381.

[21] Q. Chu, W. Ouyang, H. Li, X. Wang, B. Liu, and N. Yu, ‘‘Online
multi-object tracking using CNN-based single object tracker with spatial-
temporal attention mechanism,’’ in Proc. IEEE Int. Conf. Comput. Vis.
(ICCV), Oct. 2017, pp. 4836–4845.

[22] K. He, G. Gkioxari, P. Dollár, and R. Girshick, ‘‘Mask R-CNN,’’ in IEEE
Int. Conf. Comput. Vis., Oct. 2017, pp. 2961–2969.

[23] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, ‘‘You only look once:
Unified, real-time object detection,’’ in Proc. IEEE Conf. Comput. Vis.
Pattern Recognit. (CVPR), Jun. 2016, pp. 779–788.

[24] J. van den Berg, M. Lin, and D. Manocha, ‘‘Reciprocal velocity obstacles
for real-time multi-agent navigation,’’ in Proc. IEEE Int. Conf. Robot.
Autom., May 2008, pp. 1928–1935.

[25] J. Van Den Berg, S. J. Guy, M. Lin, and D. Manocha, ‘‘Reciprocal n-body
collision avoidance,’’ in Robotics Research. Berlin, Germany: Springer,
2011, pp. 3–19.

[26] P. Trautman and A. Krause, ‘‘Unfreezing the robot: Navigation in dense,
interacting crowds,’’ in Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst.,
Oct. 2010, pp. 797–803.

[27] P. Trautman, J. Ma, R. M. Murray, and A. Krause, ‘‘Robot navigation in
dense human crowds: The case for cooperation,’’ in Proc. IEEE Int. Conf.
Robot. Autom., May 2013, pp. 2153–2160.

[28] Y. F. Chen, M. Everett, M. Liu, and J. P. How, ‘‘Socially aware motion
planning with deep reinforcement learning,’’ in Proc. IEEE/RSJ Int. Conf.
Intell. Robots Syst. (IROS), Sep. 2017, pp. 1343–1350.

[29] M. Everett, Y. F. Chen, and J. P. How, ‘‘Motion planning among dynamic,
decision-making agents with deep reinforcement learning,’’ in Proc.
IEEE/RSJ Int. Conf. Intell. Robots Syst. (IROS), Oct. 2018, pp. 3052–3059.

VOLUME 9, 2021 8401



Z. Chen et al.: Autonomous Social Distancing in Urban Environments Using a Quadruped Robot

[30] P. Long, T. Fanl, X. Liao, W. Liu, H. Zhang, and J. Pan, ‘‘Towards
optimally decentralizedmulti-robot collision avoidance via deep reinforce-
ment learning,’’ in Proc. IEEE Int. Conf. Robot. Autom. (ICRA), May 2018,
pp. 6252–6259.

[31] T. Fan, P. Long, W. Liu, and J. Pan, ‘‘Distributed multi-robot collision
avoidance via deep reinforcement learning for navigation in complex
scenarios,’’ Int. J. Robot. Res., vol. 39, no. 7, pp. 856–892, Jun. 2020.

[32] T. Fan, X. Cheng, J. Pan, P. Long, W. Liu, R. Yang, and D. Manocha,
‘‘Getting robots unfrozen and unlost in dense pedestrian crowds,’’ IEEE
Robot. Autom. Lett., vol. 4, no. 2, pp. 1178–1185, Apr. 2019.

[33] T. Shan and B. Englot, ‘‘LeGO-LOAM: Lightweight and ground-
optimized lidar odometry and mapping on variable terrain,’’ in Proc.
IEEE/RSJ Int. Conf. Intell. Robots Syst. (IROS), Oct. 2018, pp. 4758–4765.

[34] N. L. Muscanell and R. E. Guadagno, ‘‘Make new friends or keep the old:
Gender and personality differences in social networking use,’’ Comput.
Hum. Behav., vol. 28, no. 1, pp. 107–112, Jan. 2012.

[35] B. Tay, Y. Jung, and T. Park, ‘‘When stereotypes meet robots: The double-
edge sword of robot gender and personality in human–robot interaction,’’
Comput. Hum. Behav., vol. 38, pp. 75–84, Sep. 2014.

[36] D. Kuchenbrandt, M. Häring, J. Eichberg, F. Eyssel, and E. André, ‘‘Keep
an eye on the task! how gender typicality of tasks influence human–robot
interactions,’’ Int. J. Social Robot., vol. 6, no. 3, pp. 417–427, 2014.

[37] M. Siegel, C. Breazeal, and M. I. Norton, ‘‘Persuasive robotics: The
influence of robot gender on human Behavior,’’ in Proc. IEEE/RSJ Int.
Conf. Intell. Robots Syst., Oct. 2009, pp. 2563–2568.

[38] A. Best, S. Narang, and D. Manocha, ‘‘Real-time reciprocal collision
avoidance with elliptical agents,’’ in Proc. IEEE Int. Conf. Robot. Autom.
(ICRA), May 2016, pp. 298–305.

[39] H. W. Kuhn, ‘‘The hungarian method for the assignment problem,’’ Nav.
Res. Logistics Quart., vol. 2, nos. 1–2, pp. 83–97, Mar. 1955.

[40] M. A. Fischler and R. C. Bolles, ‘‘Random sample consensus: A paradigm
for model fitting with applications to image analysis and automated car-
tography,’’ Commun. ACM, vol. 24, no. 6, pp. 381–395, 1981.

[41] M. Magnusson, A. Lilienthal, and T. Duckett, ‘‘Scan registration for
autonomous mining vehicles using 3D-NDT,’’ J. Field Robot., vol. 24,
no. 10, pp. 803–827, 2007.

[42] M. Magnusson, A. Nuchter, C. Lorken, A. J. Lilienthal, and J. Hertzberg,
‘‘Evaluation of 3D registration reliability and speed–A comparison of
ICP and NDT,’’ in Proc. IEEE Int. Conf. Robot. Autom., May 2009,
pp. 3907–3912.

[43] P. J. Besl and N. D.McKay, ‘‘Method for registration of 3-D shapes,’’ Proc.
SPIE, vol. 1611, pp. 586–606, Apr. 1992.

[44] M. Likhachev and D. Ferguson, ‘‘Planning long dynamically feasible
maneuvers for autonomous vehicles,’’ Int. J. Robot. Res., vol. 28, no. 8,
pp. 933–945, Aug. 2009.

ZHIMING CHEN received the B.S. degree in
material forming and control engineering from the
Huazhong University of Science and Technology,
Wuhan, China, and the M.S. degree in mechani-
cal manufacture and automation from the Harbin
Institute of Technology, Harbin, China. He is cur-
rently a Research Assistant with the SUSTech
Institute of Robotics (SIR), Southern University
of Science and Technology, Shenzhen, China. His
research interests include navigation and motion

planning of mobile robots, computer vision, and machine learning.

TINGXIANG FAN (Graduate Student Member,
IEEE) received the B.S. degree in aerospace engi-
neering from the Beijing Institute of Technol-
ogy, Beijing, China. He is currently pursuing the
Ph.D. degree with The University of Hong Kong,
Hong Kong. His research interests include robotic
navigation and artificial intelligence.

XUAN ZHAO received the B.S. degree in mechan-
ical engineering from Xi’an Jiaotong University,
Xi’an, China, and theM.S. degree in robotics from
the University of Bristol, Bristol, U.K. She is cur-
rently pursuing the Ph.D. degree with the City Uni-
versity of Hong Kong, Hong Kong. Her research
interests include human-robot collaboration and
user-friendly robot motion planning.

JING LIANG received the B.S. degree in
autonomous control from the China University of
Geosciences, Beijing, China, in 2014, and theM.S.
degree in robotics from the University of Mary-
land, College Park, MD, USA, in 2020, where he
is currently pursuing the Ph.D. degree in computer
science. From 2016 to 2017, he worked at Clever
Sys Inc., VA, USA, as a System Engineer. Since
2020, he has been working at WaterMirror Tech-
nology. His research interests include robotics,
planning, perception, and artificial intelligence.

CONG SHEN received the B.S. degree in mechan-
ical engineering from the Southern University of
Science and Technology, Shenzhen, China. He is
currently pursuing the M.S. degree in mechan-
ical engineering with the Huazhong University
of Science and Technology, Wuhan. His research
interests include modelling and motion control of
wheel-bipedal robot.

HUA CHEN (Member, IEEE) received the B.S.
degree in automation from Zhejiang University,
in 2012, and the Ph.D. degree in electrical and
computer engineering from The Ohio State Uni-
versity, in 2018. From January 2019 to June 2019,
he was a Postdoctoral Researcher with the Depart-
ment of ECE, The Ohio State University. Then,
he joined the Southern University of Science and
Technology, Shenzhen, China, where he is cur-
rently a Research Assistant Professor with the

Department of Mechanical and Energy Engineering. His research interests
include the intersection of control, optimization and reinforcement learning,
with applications in intelligent robotic and autonomous systems.

DINESH MANOCHA (Fellow, IEEE) is currently
a Paul Chrisman-Iribe Chair in Computer Science
and ECE and a Distinguished University Professor
with the University of Maryland College Park.
His research interests include virtual environ-
ments, physically-based modeling, and robotics.
His group has developed a number of software
packages that are standard and licensed to 60+
commercial vendors. He has published more than
600 papers and supervised 40 Ph.D. dissertations.

He is a Fellow of the AAAI, AAAS, and ACM, a member of the ACM
SIGGRAPH Academy, and a recipient of Bézier Award from the Solid
Modeling Association. He received the Distinguished Alumni Award from
IIT Delhi, and the Distinguished Career in Computer Science Award from
the Washington Academy of Sciences. He was a Co-Founder of Impulsonic,
a developer of physics-based audio simulation technologies, which was
acquired by Valve Inc., in November 2016.

8402 VOLUME 9, 2021



Z. Chen et al.: Autonomous Social Distancing in Urban Environments Using a Quadruped Robot

JIA PAN received the B.S. degree in control
theory and engineering from Tsinghua Univer-
sity, in 2005, the M.S. degree from the Chinese
Academy of Sciences, in 2008, where he worked
on Computer-Aided Design (CAD), and the Ph.D.
degree from the Department of Computer Sci-
ence, University of North Carolina at Chapel
Hill (UNC), in 2013. In 2014, he completed a
postdoctoral position at UC Berkeley, working
with Pieter Abbeel. In October 2014, he started

at the Computer Science Department, University of Hong Kong, and then
moved to the Department of Mechanical and Biomedical Engineering, City
University of Hong Kong, as an Assistant Professor, in 2015. After three
years, he moved back to The University of Hong Kong, where he is cur-
rently an Assistant Professor with the Computer Science Department. His
research focuses on creating algorithms that allow robots to efficiently and
intelligently interact with the world and collaborate with people. These
general-purpose sensing, control, planning, and manipulation algorithms can
be applied to robots that work in homes, factories, laboratories, or fields.

WEI ZHANG (SeniorMember, IEEE) received the
B.S. degree in automatic control from the Univer-
sity of Science and Technology of China, in 2003,
the M.S. degree in electrical and computer engi-
neering from the University of Kentucky, in 2005,
and the M.S. degree in statistics and the Ph.D.
degree in electrical engineering both from Pur-
due University, in 2009. From January 2010 to
August 2011, he was a Postdoctoral Researcher
with the EECS Department, University of Califor-

nia, Berkeley, CA, USA. He has served as an Assistant Professor (2011–
2017) and then as an Associate Professor (with tenure) of Electrical and
Computer Engineering at the Ohio State University. In May 2019, he joined
the Southern University of Science and Technology, Shenzhen, China, where
he is currently a Professor with the Department of Mechanical and Energy
Engineering. His research interests include control and optimization theory,
machine learning, motion planning, and their applications in robotics and
autonomous systems. He is a recipient of the NSF CAREER Award and the
Lumley Research Award at the Ohio State University. He is an Associate
Editor of the IEEE TRANSACTIONS ON CONTROL SYSTEM TECHNOLOGY.

VOLUME 9, 2021 8403


