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Higher-order Weyl superconductors with anisotropic Weyl-point connectivity
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Weyl superconductors feature Weyl points at zero energy in the three-dimensional Brillouin zone and arc
states that connect the projections of these Weyl points on the surface. We report that higher-order Weyl
superconductors can be realized in odd-parity topological superconductors with time-reversal symmetry being
broken by periodic driving. Different from conventional Weyl points, the higher-order Weyl points in the bulk
separate 2D first- and second-order topological phases, while on the surface, their projections are connected not
only by conventional surface Majorana arcs but also by hinge Majorana arcs. Strikingly, without the protection
by a Chern number, the hinge Majorana arcs are anisotropic with respect to surface orientations, forcing a
different connectivity of Weyl points for a rotated surface. We identify such anisotropic Weyl-point connectivity
as a characteristic feature of higher-order Weyl materials. Moreover, with time-reversal symmetry being broken,
the higher-order hinge Majorana arcs are spin polarized, which offers a promising opportunity to observe the
anisotropic Weyl-point connectivity with spin-sensitive probes. Besides condensed-matter systems, we provide
a feasible experimental setup for realizing our predictions in cold-atom systems.
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I. INTRODUCTION

The particular excitations of topological semimetals and
nodal superconductors emerge around gapless degeneracies
and constitute one of the main research activities in the field
of topological materials [1–7]. Typical examples are Weyl and
Dirac semimetals or nodal superconductors whose low-energy
physics around the gapless points can be described by Weyl
or Dirac Hamiltonians [8–15]. Besides exotic quasiparticles
in the bulk, the bulk topology of the systems also gives rise
to fascinating topological boundary states. Conventionally, in
an n-dimensional topological phase, the topological boundary
states are constrained to (n − 1) dimensions.

Recently, inspired by higher-order topology featuring
(n − d )-dimensional hinge or corner states with d � 2
[16–28], new topological phases, termed higher-order topo-
logical gapless phases, have attracted increasing interest
[29–36]. As an important member of gapless phases, Weyl
superconductors must break time-reversal or inversion sym-
metry [11,12,37,38]. Time-reversal symmetry breaking is
particularly important, as most reported first-order (conven-
tional) Weyl superconductors are realized in this way [39–47].
However, so far, there has been no study on higher-order Weyl
superconductors (HOWSCs) with broken time-reversal sym-
metry. The most prominent feature of Weyl materials is that
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the projections of Weyl points on the surface are connected
by Fermi (Majorana) arcs. Such Weyl-point connectivity is
typically isotropic in conventional Weyl materials, because
the Chern number enforces orientation independent Fermi arc
surface states. Remarkably, we will reveal that the situation
is fundamentally different in higher-order Weyl materials and
the Weyl-point connectivity becomes highly anisotropic, as
shown in Fig. 1.

In this paper, we show that HOWSCs with broken time-
reversal symmetry can be realized by periodically driving
a two-dimensional (2D) second-order odd-parity topologi-
cal superconductor. The periodic driving breaks time-reversal
symmetry and offers an unprecedented and realistic way to
extend the 2D superconductor to a third dimension with peri-
odic boundary conditions. Weyl points can be generated in this
dynamic process, which split the system into different regions
of first- (FOTP) or second-order topological phases (SOTP),
leading to a HOWSC. In sharp contrast to the surface Majo-
rana arcs protected by a Chern number in the FOTP regions,
the hinge Majorana arcs in the SOTP regions, which are pro-
tected by inversion symmetry, depend strongly on the surface
orientation due to the higher-order topology. This results in
an intriguing and diverse recombination of surface and hinge
Majorana arcs upon orientation change, leading to an
anisotropic Weyl-point connectivity. By developing an effec-
tive boundary theory capable of describing both surface and
hinge Majorana arcs, we thoroughly analyze this intricate
Weyl-point connectivity of Majorana arcs in every surface ori-
entation. Furthermore, as an important consequence of break-
ing time-reversal symmetry, higher-order hinge Majorana arcs
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FIG. 1. (a) In conventional Weyl semimetals/superconductors,
the Weyl-point connectivity by Fermi arcs is isotropic with re-
spect to surface orientations. (b) In higher-order Weyl semimetals/
superconductors, the Weyl-point connectivity is anisotropic due to
higher-order topology.

acquire a spin polarization that can be easily manipulated by
tuning the phase of the periodic driving. Thus, we suggest
detecting the Majorana arcs and the anisotropic Weyl-point
connectivity by measuring spin polarization at low energies.

II. REALIZATION OF HOWSCs

Our starting point is a 2D second-order odd-parity topo-
logical superconductor that respects time-reversal symmetry.
Different from previous proposals for higher-order topolog-
ical superconductors [48–71], we consider an interorbital
s-wave pairing potential with a constant magnitude �0.
The Hamiltonian in momentum space can be written as
H = H0 + h� with

H0 = m(k)τzσz + v sin kxszσx + v sin kyτzσy − μτz,

h� = �0τysyσx, (1)

where m(k) = M0 − 2m(cos kx + cos ky) and the Pauli ma-
trices s, σ and τ act on spin, orbital, and Nambu spaces,
respectively. μ is the chemical potential, M0, and m and
v are material dependent parameters. The Hamiltonian is
invariant under time-reversal (T ) and particle-hole (C) sym-
metry. The pairing interaction is of odd parity, as indicated
by Ph�P−1 = −h� with the inversion operator P = σ z.
Correspondingly, the BdG Hamiltonian is symmetric un-
der inversion P̃H(k)P̃−1 = H(−k) with P̃ = τzP . Further-
more, spin rotation about the z axis Jz = τzsz is preserved.
Due to the second-order topology, our model features two
zero-dimensional Majorana Kramers pairs at a disk bound-
ary, which are protected by time-reversal and inversion
symmetries.

Next, we show that HOWSCs can be generated on the
basis of Eq. (1) through periodic driving. For concreteness,
we consider a driving described by a vector potential A(t ) =
A0[cos(ωt ), sin(ωt + φ), 0], where φ characterizes the phase
shift, A0 the strength, and ω the frequency. It couples to the
electrons (holes) via the Peierls substitutions k → k ± eA(t ).
Notably, in condensed-matter systems, the model (1) with
the periodic driving A(t ) can be realized by shedding circu-
larly polarized light (CPL) in z direction on quantum spin
Hall insulators in proximity with odd-parity superconductors.
Alternatively, it can be realized in a cold-atom experiment.
By using the internal states and layer index to emulate the
spins and orbits in cold atoms, respectively, Eq. (1) can be
synthesized by the current techniques of laser-assisted tunnel-
ing, while A(t ) can be implemented by artificial non-Abelian
gauge fields. We present the details of the realizations in the
Appendixes.

To proceed analytically and elucidate our main results,
we employ Floquet theory and derive an effective static
Hamiltonian, as discussed in the Appendixes. The effective
Hamiltonian is obtained on the basis of Eq. (1) and contains
a nontrivial correction that preserves spin-rotation symmetry
about the z axis. Explicitly, it reads

h(k) = h0(k) + γ (k) cos φ, (2)

where γ (k) = (2mI/ω)(v sin kxσx + v sin kyσy − v2σz/2m)
and h0(k) = τz[(m(k)+mI )σz+v sin kxσx+v sin kyσy − μ] −
�0τxσx with I = e2A2

0. The periodic driving breaks time-
reversal symmetry. By tuning the phase φ, we see that the
Majorana zero modes (MZMs) at the disk boundary can jump
from the horizontal to vertical positions [insets of Fig. 2(a)].

The model in Eq. (2) is periodic in the parameter φ. We
may regard it as an extra (third) dimension. Since at each φ

time-reversal symmetry is broken, the 2D systems for fixed φ

belong to class A and are characterized by a Chern number
[72]. Strikingly, stacking these 2D systems along φ direction
gives a three-dimensional (3D) Weyl superconductor with 16
Weyl points in the synthetic 3D Brillouin zone, as displayed in
Fig. 2(b). These Weyl points can be grouped into four distinct
sets.

In Fig. 2(a), we stack the 2D disks with different φ, forming
a 3D cylinder. The cylinder is finite in x and y directions
but periodic in φ direction. As can be seen by the dimen-
sions of the boundary states, the system splits into two kinds
of topological phases: (i) FOTPs within each of the Weyl-
point sets, with 2D surface states at the boundary (green
belts); (ii) SOTPs between different Weyl-point sets, with
one-dimensional (1D) hinge states (red lines). As the Weyl
points mediate between the FOTP and SOTPs, we identify the
system as an HOWSC.

III. ANISOTROPIC WEYL-POINT CONNECTIVITY

Figure 3(a) shows the Chern number calculated in kxky

planes for different φ in the HOWSC. It takes the nontrivial
value of 2 or −2 inside each set of Weyl points (corresponding
to the FOTP regions), which leads to conventional surface Ma-
jorana arcs. In contrast, it vanishes between neighboring sets
(corresponding to the SOTP regions), where hinge Majorana
arcs arise [73]. Without the restriction by the Chern number,
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FIG. 2. (a) Schematic of boundary states of HOWSC described
by Eq. (2), obtained by stacking the 2D superconductors o Eq. (1)
in the third dimension parameterized by φ through periodic driving.
In the FOTP regions, the boundary states circle around the whole
disk boundary (green belts), whereas in the SOTP regions, they form
hinge states on 1D lines (red lines). The insets show that by tuning
phase φ of the vector potential A(t ), the position of the Majorana
zero modes can be switched. (b) The 16 Weyl points of model (2)
in the synthetic 3D Brillouin zone. The red and blue points denote
Weyl points with positive and negative chirality χ = ±1, respec-
tively. The Weyl points are grouped into four sets, denoted by their
center positions φ j with j ∈ {1, 2, 3, 4}. Each set consists of four
Weyl points. Their positions divide the Brillouin zone into different
topological sectors. We identify FOTPs (green area) within each of
the four sets and SOTPs between neighboring sets. The parameters
are M0 = 2.20, v = 0.74, μ = 0, ω = 1.10, and �0 = 0.35, in units
of m, with the intensity I = 1.50ω/(2m). This proposal is realizable
in cold-atom experiments (see Appendixes).

hinge Majorana arcs can be anisotropic with respect to surface
orientation. In the following, we show that with the hinge
Majorana arcs, the Weyl-point connectivity is fundamentally
changed and becomes highly anisotropic in HOWSCs.

To visualize the Weyl-point connectivity, we calculate the
surface density of states for different surface orientations. Re-
markably, the form of the Weyl-point connectivity is strongly
anisotropic with respect to surface orientation. Three typi-
cal cases of (100), (010), and (110) surfaces are displayed
in Figs. 3(b)–3(d), respectively. In Fig. 3(b), for the (100)
surface, the connectivity exhibits two separated “H” shapes
rotated by 90 degrees. In this case, while the surface Majo-
rana arcs form the horizontal bars of the “H” shapes within
each Weyl set, the hinge Majorana arcs form the vertical bars
and connect the Weyl-point sets φ1(φ3) and φ2(φ4). Notably,
there are double-hinge Majorana arcs connecting two pairs
of Weyl points with opposite chirality. Next, we turn to the
(010) surface [Fig. 3(c)]. Although the connectivity still forms
two rotated “H” shapes, the vertical bars composed of hinge
Majorana arcs now connect different pairs of Weyl-point sets,
namely, φ4(φ2) and φ1(φ3). Finally, in Fig. 3(d) for the (110)
surface, the Weyl points can only be connected by surface
Majorana arcs in cross shapes. While surface Majorana arcs
can always be observed, the hinge Majorana arcs depend
sensitively on surface orientation. Thus, the Weyl-point con-
nectivity is anisotropic.

IV. EFFECTIVE BOUNDARY THEORY

For a better understanding of the orientation-dependent
connectivity of the Majorana arcs, it is instructive to develop
a boundary theory applicable to any surface orientation. To do
so, we first derive two boundary states (	e↑, 	h↓) for each
φ in the absence of pairing interactions (see Appendixes).
Using these boundary states as a basis, the resulting effective
boundary Hamiltonian can be obtained as

heff(θ ) =
(|v+|k‖ − μ �̃(θ )

�̃(θ )∗ −|v−|k‖ + μ

)
, (3)

where v± = v(1 ± 2mI cos φ/ω), θ is the angle between the
boundary and x direction, and k‖ is the momentum along
the boundary (see Fig. 5 in the Appendixes). The projected
pairing potential �̃(θ ) is obtained as

�̃(θ ) = i

2
F�0sgn(v−)[sgn(v+v−)eiθ − e−iθ ], (4)

with sgn(·) being the sign function. The prefactor F
stems from the overlap of the boundary state wave
functions (see Appendices). It is unity for cos φ = 0
but smaller than 1 in general. The eigenenergies are
given by Eeff = (|v+| − |v−|)k‖/2 + {[(|v+| + |v−|)k‖/2 −
μ]2 + |�̃(θ )|2}1/2. The chemical potential μ can be absorbed
in k‖ in the square root, and the band gap is given by 2|�̃(θ )|.
For simplicity, we set μ to zero in the following discussion.
Notably, Eq. (3) takes the form of a 1D Dirac Hamiltonian
with a Dirac mass �̃(θ ). The mass gaps out the boundary
spectrum everywhere, except for isolated values of θ where
�̃(θ ) = 0. This is the reason why the appearance of hinge
Majorana arcs depends sensitively on the surface orientation
in the SOTPs.

The periodic driving preserves inversion symmetry of
the system. Thus Eq. (3) obeys P̄heff(θ )P̄−1 = heff(θ + π ),
with P̄ = σz the projected inversion operator, enforcing a
constraint on �̃(θ ): �̃(θ + π ) = −�̃(θ ). Obviously, �̃(θ )
changes sign when advancing from θ to θ + π , leading to
a gapless point along θ . The gapless point corresponds to
the positions of a hinge Majorana arc. In this regard, the
SOTP is protected by inversion symmetry. This result is not
restricted to a specific geometry as long as inversion symmetry
is preserved. From Eq. (4) we can determine the positions of
the gapless points explicitly,

θ = π [1 − sgn(v+v−)]/4 + nπ, n ∈ {0, 1}. (5)

When 2mI/ω > 1, v+v− changes sign at φ = φ j with
j ∈ {1, 2, 3, 4}, φ1 = −φ4 = π − arccos(ω/2mI ) and φ2 =
−φ3 = arccos(ω/2mI ). As a result, the positions in Eq. (5)
switch from {0, π} to {π/2, 3π/2}.

Facilitated by the boundary theory, we are now able to
explain the anisotropic connectivity of the Majorana arcs
obtained numerically in Fig. 3. First, for the (100) surface,
k‖ = ky and θ = 0. In this case, the vanishing of the mass
�̃(θ ) in Eq. (4) is determined by sgn(v+v−) = +1, which
gives φ ∈ (φ1, φ2] ∪ (φ3, φ4]. Thus the hinge Majorana arcs
connect the Weyl-point sets φ1 with φ2 and φ3 with φ4 at
ky = 0, as shown by the vertical bars in Fig. 3(b). Second, for
the (010) surface with k‖ = kx (θ = π/2), �̃(θ ) vanishes at
sgn(v+v−) = −1, leading to φ ∈ (φ4, φ1] ∪ (φ2, φ3]. In this
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FIG. 3. Anisotropic Weyl-point connectivity due to the higher-order topology. (a) Chern number calculated within the kxky planes as a
function of φ. (b)–(d) Surface density of states (SDOS) on the (100), (010), and (110) surfaces, respectively. Surface Majorana arcs connect
Weyl points inside each Weyl-point set and form horizontal bars. In contrast, the two hinge Majorana arcs connect Weyl points from two
neighboring sets and form vertical bars, which depend strongly on the respective surface orientation. (b) On the (100) surface, the hinge
Majorana arcs (vertical bars) connect the Weyl points between φ1(φ3) and φ2(φ4), and form two rotated “H” shapes. (c) On the (010) surface,
the hinge Majorana arcs connect the Weyl points between φ4(φ2) and φ1(φ3). (d) On the (110) surface, the Weyl points are only connected by
surface Majorana arcs in cross shapes.

orientation, the hinge Majorana arcs instead connect φ4 with
φ1 and φ2 with φ3 at kx = 0, as shown by the vertical bars
in Fig. 3(c). In contrast, for the (110) surface associated with
θ = π/4, �̃(θ ) is always nonzero for all φ [Fig. 3(d)]. As a
result, there are no hinge arcs connecting the Weyl points.

V. SPIN-POLARIZED HINGE MAJORANA ARCS

As the periodic driving breaks time-reversal symmetry, we
find that by varying φ, not only the positions of the MZMs at
the boundary of the 2D disk [Fig. 2(a)] can be switched, but
also their spin polarizations [74]. Thus the higher-order hinge
Majorana arcs, constituted of MZMs, are also spin-polarized,
as shown in Figs. 4(b)–4(d).

To elucidate this point, we calculate the spin
polarizations of the MZMs on the arcs. Starting with
the boundary Hamiltonian Eq. (3), we first obtain
the wave functions of the zero-energy modes. From
these zero-energy modes, two MZMs can then be
derived. Their wave functions in the Nambu and spin
basis (	e↑, 	e↓, 	h↑, 	h↓) can be written as 	1 ∝
[eiθ sgn(v+)

√|v−|, i
√|v+|, e−iθ sgn(v−)

√|v−|, −i
√|v+|]T

and 	2 ∝ [ieiθ sgn(v+)
√|v−|,√|v+|,−ie−iθ sgn(v−)

√|v−|,√|v+|]T (see Appendixes). The angular positions θ are either
{0, π} or {π/2, 3π/2}, depending on φ, as we have shown
before. The spin polarization of the Majorana zero modes
can be calculated as 〈Ŝ〉 j = 〈	 j |ŝ|	 j〉, where j ∈ {1, 2} and
ŝ = h̄(τ0 + τz )s/2. We find that the two MZMs have always
opposite spins in x and y directions. Thus together they yield
vanishing 〈Ŝx〉 = 〈Ŝy〉 = 0 at the boundary. In contrast, for
the z component, we find the spin polarization for the MZMs,

〈Ŝz〉 = h̄

2

|v−| − |v+|
|v−| + |v+| , (6)

which is independent of θ . As v± depends on φ, the spin
polarization changes along the hinge Majorana arcs.

Next we explain the spin polarization of Majorana arcs,
with the aid of the phase diagram of the MZMs shown in

Fig. 4(a). As indicated by dashed lines, the spin polarization
〈Ŝz〉 splits into spin-up and spin-down regions with the border
at φ = ±π/2 where the correction γ (k) cos φ in Eq. (2),
induced by the periodic driving, vanishes and time-reversal
symmetry is restored. 〈Ŝz〉 is an even function of φ while it
is an odd function of φ − π/2. In the vicinity of φ = π/2,
it grows linearly with increasing φ, 〈Ŝz〉 ≈ (2h̄mI/ω)(φ −
π/2). The spin polarization approaches its maximal value
in regions where v+ or v− become zero, which is in the

FIG. 4. Spin polarization of Majorana arcs. (a) The phase dia-
gram of MZMs, colored by their spin polarization calculated with
Eq. (6). The thick solid lines separate different SOTPs. The locations
and polarizations of the MZMs on a 2D disk are sketched by the
insets. (b), (c), and (d) display the spin polarization of Majorana
arcs in three representative surface orientations corresponding to
Figs. 3(b), 3(c), and 3(d), respectively. The spin polarization splits
into spin-up and spin-down regions with the border at φ = ±π/2.
Here I is given in units of ω/(2m).
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vicinity of Weyl points as indicated by the thick solid lines
in Fig. 4(a). These features are generic and apply indepen-
dent of the surface in any surface orientation. We emphasize
that while the MZMs are charge neutral, their spin polar-
ization is measurable by spin-polarized scanning tunneling
spectroscopy [75,76], which allows us to detect the Majorana
arcs and the anisotropic Weyl-point connectivity.

VI. CONCLUSIONS

We have proposed to realize time-reversal symmetry bro-
ken HOWSCs in second-order topological superconductors
with odd-parity pairing potential by periodic driving in
condensed-matter and cold-atom experiments. We have re-
vealed an important characteristic feature of higher-order
Weyl materials, namely, the anisotropic Weyl-point connec-
tivity of the surface and hinge Majorana arcs. The anisotropic
Weyl-point connectivity can be measured by spin-polarized
scanning tunneling spectroscopy, as the higher-order hinge
Majorana arcs possess finite spin polarization induced by pe-
riodic driving.

ACKNOWLEDGMENTS

This work was supported by the Key-Area Research
and Development Program of GuangDong Province (Grant
No. 2019B030330001), the CRF (No. C6005-17G) of Hong
Kong, the DFG (SPP1666 and SFB1170 “ToCoTronics”), the
Würzburg-Dresden Cluster of Excellence ct.qmat (EXC2147,
Project ID 390858490), and the Elitenetzwerk Bayern Gradu-
ate School on “Topological Insulators”. Z.D.W. also thanks
support from Guangdong-Hong Kong Joint Laboratory of
Quantum Matter.

APPENDICES

Here we discuss the symmetries of the 2D second-
order odd-parity topological superconductors (Appendix A),
present the derivation of the static effective Hamiltonian
for higher-order Weyl superconductors by applying Floquet
theory (Appendix B), give the details of the effective bound-
ary theory (Appendix C), and compute the wave functions
and spin polarizations of Majorana zero modes (Appendix
D). We discuss the candidate materials for condensed-matter
realizations (Appendix E). We show in detail the experi-
mental setup for realizing our theory in cold-atom systems
(Appendix F). Finally, we give detailed suggestions for cold-
atom systems which can be readily carried out experimentally
(Appendix G).

APPENDIX A: ODD-PARITY SECOND-ORDER
TOPOLOGICAL SUPERCONDUCTORS

AND THEIR SYMMETRIES

The BdG Hamiltonian of second-order topological
superconductors with an odd-parity pairing potential
is given by H = ∑

k �
†
kH(k)�k, where the spinor is

�
†
k = (c†

a,k↑, c†
b,k↑, c†

a,k↓, c†
b,k↓, ca,−k↑, cb,−k↑, ca,−k↓, cb,−k↓),

with the subscripts {a, b} denoting two different orbitals, and

H(k) =
(

0(k) �

�† −∗
0(−k)

)
. (A1)

0(k) is the Hamiltonian describing a noninteracting quantum
spin Hall (QSH) insulator and �(k) is the pairing potential.
They can be written explicitly as

0(k) =

⎛⎜⎝ m(k) K−(k) 0 0
K+(k) −m(k) 0 0

0 0 m(k) −K+(k)
0 0 −K−(k) −m(k)

⎞⎟⎠ − μÎ,

� =

⎛⎜⎝ 0 0 0 −�0

0 0 −�0 0
0 �0 0 0

�0 0 0 0

⎞⎟⎠, (A2)

where K±(k) = v(sin kx ± i sin ky) and m(k) = M0 −
2m(cos kx + cos ky). As shown by Eq. (1) in the
main text, the Hamiltonian can also be written in
terms of Pauli matrices H(k) = H0(k) + h�, where
H0(k) = m(k)τzσz + v sin kxszσx + v sin kyτzσy − μτz and
h� = �0τysyσx. The Pauli matrices s, σ, and τ act on spin,
orbital, and Nambu spaces, respectively. Note that the pairing
potential is of odd parity and satisfies Ph�P−1 = −h�,
with P = σz the conventional inversion operator. The
BdG Hamiltonian satisfies P̃H(k)P̃−1 = H(−k) but
PH(k)P−1 �= H(−k), where P̃ = τzP . Thus the combined
symmetry P̃ can be regarded as an effective inversion for
odd-parity superconductors [77].

The BdG Hamiltonian is also invariant under time-reversal
and particle-hole transformation, as verified by the following
relations:

T H(k)T −1 = H(−k), T = isyK,

CH(k)C−1 = −H(−k), C = τxK, (A3)

where K is the complex conjugate operator. In addition, the
pairing potential does not break the SU(2) spin rotation sym-
metry in z direction. Thus the BdG Hamiltonian respects spin
rotation symmetry, i.e.,

[Jz,H(k)] = 0, and Jz =
(

sz

−s∗
z

)
= τzsz. (A4)

APPENDIX B: FLOQUET THEORY

We consider periodic driving by circularly polarized light
(CPL) which is shed to the sample in z direction and described
by the periodic vector potential A(t ) = A0[cos(ωt ), sin(ωt +
φ), 0]. Hence the choices of phase shift of light φ = 0 and φ =
π correspond to right-handed and left-handed CPL, respec-
tively. The vector potential enters into the BdG Hamiltonian
in Eq. (A1) as

H(k) =
(

0(k + eA) �

�† −∗
0(−k + eA)

)
. (B1)

The vector potential A(t ) turns the Hamiltonian peri-
odic in time, H(k, t ) = H(k, t + T ), with the periodicity
T = 2π/ω. The periodic Hamiltonian can be expanded
as H(k, t ) = H0(k) + ∑

n�1 Hn(k)einωt + H−n(k)e−inωt . To
proceed analytically, we use the Hamiltonian in the con-
tinuum limit H(k) = m(k)τzσz + vkxszσx + vkyτzσy − μτz +
�0τysyσx with m(k) = m0 + mk2

x + mk2
y and m0 = M0 − 4m.
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After the inclusion of the vector potential, we obtain

H0(k) = m̃(k)τzσz + vkxszσx + vkyτzσy − μτz + �0τysyσx,

H±1(k) = eA0m(kx ∓ ie±iφky)τzσz + 1

2
eA0vszσx

∓ i

2
eA0ve±iφτzσy,

H±2(k) = 1

4
e2A2

0m(1 − 2e±2iφ )τzσz, (B2)

with m̃(k) = m(k) + e2A2
0m. Using Floquet theory, an effec-

tive static Hamiltonian can obtained as [78,79]

Heff = H0(k) +
∑
n�1

[H+n(k),H−n(k)]

nω
+ O

(
1

ω2

)
. (B3)

We find that the nontrivial correction term is given by

1

ω
[H+1(k),H−1(k)]

= cos φ
2mI
ω

[
vkyτzszσy + vkxτ0s0σx − v2

2m
τzszσz

]
= �H(k) cos φ, (B4)

with I = e2A2
0 being the intensity of light. We restore to the

lattice system in the following.
We now focus on the effect from the correction

�H(k) cos φ induced by CPL in Eq. (B4). Apparently, it is
particle-hole symmetric. It also preserves inversion symmetry
P̃ = τzσz and z-directional spin-rotation symmetry Jz = τzsz,
as shown by

P̃�H(k)P̃−1 = �H(−k), (B5)

[Jz,�H(k)] = 0. (B6)

However, it breaks time-reversal symmetry T = isyK,

T �H(k)T −1 �= �H(−k), (B7)

when φ �= π/2, 3π/2. Therefore the BdG Hamiltonian under
the influence of CPL,

H̃(k) = H0(k) + cos φ�H(k), (B8)

is invariant under particle-hole transformation, spin-rotation
and inversion, but breaks time-reversal symmetry.

Because particle-hole and spin-rotation symmetry are still
preserved, the system is protected by their combination of

JzC = iτyszK, with (JzC)2 = −1. (B9)

Similar to time-reversal symmetry, this antiunitary symmetry
operator leads to the double degeneracy of Majorana zero
modes at the boundary. To see this, we consider the symmetry
relation in real space as

(JzC)H̃(x)(JzC)−1 = −H̃(x). (B10)

Suppose that |ψ (x)〉 is the eigenstate of the Hamiltonian
with H̃(x)|ψ (x)〉 = E (x)|ψ (x)〉. Due to the above symmetry,
we also have H̃(x)(JzC)|ψ (x)〉 = −E (x)(JzC)|ψ (x)〉, which
means (JzC)|ψ (x)〉 is another eigenstate with energy −E (x).
|ψ (x)〉 and (JzC)|ψ (x)〉 are not the same because if so, we
would get a contradiction by applying (JzC) twice: |ψ (x)〉 =
(JzC)|ψ (x)〉 = (JzC)2|ψ (x)〉 = −|ψ (x)〉. For the Majorana
zero modes, they are doubly degenerate, because E (x) =
−E (x) = 0 results in two independent eigenstates of |ψ (x)〉
and (JzC)|ψ (x)〉.

According to the topological classification described in
Ref. [72], the BdG Hamiltonian that preserves z-directional
spin-rotation symmetry but breaks time-reversal symmetry
belongs to class A. Due to spin rotation symmetry, the BdG
Hamiltonian in Eq. (B8) has a sparse structure with [72,80]

H0(k) =

⎛⎜⎝K+(k) + m̃(k)σz − μσ0 0 0 −�0σx

0 −K−(k) + m̃(k)σz − μσ0 �0σx 0
0 �0σx K−(k) − m̃(k)σz + μσ0 0

−�0σx 0 0 −K+(k) − m̃(k)σz + μσ0

⎞⎟⎠,

�H(k) = 2mI
ω

⎛⎜⎜⎜⎝
K+(k) − v2

2m σz 0 0 0
0 K−(k) + v2

2m σz 0 0
0 0 K−(k) + v2

2m σz 0
0 0 0 K+(k) − v2

2m σz

⎞⎟⎟⎟⎠, (B11)

where K±(k) = v sin kxσx ± v sin kyσy and m̃(k) = M0 − 2m(cos kx + cos ky) + mI.
Recall that the basis in the second quantized Hamiltonian H̃ = ∑

k �
†
kH̃(k)�k is �

†
k = (c†

a, k↑, c†
b,k↑, c†

a,k↓, c†
b,k↓, ca,−k↑,

cb,−k↑, ca,−k↓, cb,−k↓). We can rearrange the elements of the 8×8 matrix with sparse structure into a 4×4 matrix form:
H̃ = ∑

k �
†
kH̃(k)�k → h = ∑

k �̃
†
kh(k)�̃k [72,80], where the basis becomes �̃

†
k = (c†

a,k↑, c†
b,k↑, ca,−k↓, cb,−k↓). In this re-

arrangement, H0(k) → h0(k) and �H(k) → γ (k) with h0(k) and γ (k):

h0(k) =
(
K+(k) + m̃(k)σz − μσ0 −�0σx

−�0σx −K+(k) − m̃(k)σz + μσ0

)
= m̃(k)τzσz + v sin kxτzσx + v sin kyτzσy − μτzσ0 − �0τxσx,

γ (k) = 2mI
ω

(
K+(k) − v2

2m σz 0
0 K+(k) − v2

2m σz

)
= 2mI

ω

(
v sin kxσx + v sin kyσy − v2

2m
σz

)
, (B12)
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where m̃(k) = m(k) + mI. Therefore the BdG Hamiltonian can be expressed in the compact form as

h(k) = h0(k) + γ (k) cos φ (B13)

in the basis �̃
†
k. Thus we arrive at the effective Hamiltonian stated in Eq. (2) in the main text. Note that under such rearrangement,

the inversion symmetry operator becomes Peff = τzσz. The system is invariant under inversion as

Peffh(k)P−1
eff = h(−k). (B14)

The validity of the rearrangement of the sparse BdG Hamiltonian to the compact form of Eq. (B13) can be seen by
block diagonalizing the full Hamiltonian of Eq. (B11) into two blocks with the basis of �̃

†
k = (c†

a,k↑, c†
b,k↑, ca,−k↓, cb,−k↓) and

�̃′†
k = (c†

a,k↓, c†
b,k↓, ca,−k↑, cb,−k↑), respectively. The block with the basis �̃

†
k is h = ∑

k �̃
†
kh(k)�̃k described in Eq. (B13). It is

equivalent to the other block h′ = ∑
k �̃′†

kh′(k)�̃′
k with the basis of �̃′†

k, because the two bases of �
†
k and �̃′†

k are equivalent to

each other with the relation �̃′†
k = (τx�̃−k )T . Explicitly, the block of h′(k) reads

h′(k) = h′
0(k) + γ ′(k) cos φ (B15)

in the basis of �̃′†
k, where

h′
0(k) = m̃(k)τzσz − v sin kxτzσx + v sin kyτzσy − μτz + �0τxσx,

γ ′(k) = 2mI
ω

(
v sin kxσx − v sin kyσy + v2

2m
σz

)
. (B16)

h′(k) in Eq. (B15) and h(k) in Eq. (B13) are equivalent, as indicated by h′(k) = −τxh∗(−k)τ−1
x . Therefore we focus on the

Hamiltonian in Eq. (B13) in the main text.

APPENDIX C: EFFECTIVE BOUNDARY HAMILTONIAN

In this section, we derive the effective boundary Hamiltonian in the direction defined by θ = arctan(ky/kx ) with the center
at the origin in the kxky plane defined by φ. To calculate the boundary states along any direction, as shown in Fig. 5, we first
transform the coordinates from (kx, ky) to (k‖,k⊥). The relation between (k‖, k⊥) and (kx, ky) is given by(

kx

ky

)
=

(
sin θ cos θ

− cos θ sin θ

)(
k‖
k⊥

)
. (C1)

The boundary states at θ can be obtained by taking periodic boundary conditions in k‖ direction and open boundary conditions
in k⊥ direction.

After the coordinate transformation, the resulting bare Hamiltonian (without pairing potential) from Eq. (B13) in the
continuum limit reads

hbare(k) =

⎛⎜⎜⎝
m̃−(k) − μ v+k+e−iθ 0 0
v+k−eiθ −m̃−(k) − μ 0 0

0 0 −m̃+(k) + μ −v−k+e−iθ

0 0 −v−k−eiθ m̃+(k) + μ

⎞⎟⎟⎠, (C2)

where k=(k⊥, k‖), k±=k⊥ ± ik‖, v±=v(1 ± 2mI cos φ/ω),
m̃±(k) = m0 + m|k|2 + mI ± v2I cos φ/ω. The basis is
�̃

†
k = (c†

a,k↑, c†
b,k↑, ca,−k↓, cb,−k↓). The bare Hamiltonian is in

a block-diagonal form, which enables us to investigate each
block separately.

First we focus on the upper block in Eq. (C2), which reads

hupper(k) =
(

m̃−(k) − μ v+k+e−iθ

v+k−eiθ −m̃−(k) − μ

)
, (C3)

and derive the boundary states along the x‖ boundary at angle
θ . Translational symmetry is preserved along this direction.
As the wave function of a boundary state decays exponentially
away from the boundary (k⊥ direction), the following ansatz

can be adopted:

ψ (r) = eik‖x‖eζx⊥

(
α

β

)
. (C4)

The corresponding Dirac equation reads(
m̃−(k) − μ − ε v+k+e−iθ

v+k−eiθ −m̃−(k) − μ − ε

)
ψ (r) = 0. (C5)

Notice that the replacement k⊥ = −i∂x⊥ → −iζ can be made
in the equation above. It becomes(

mk − mζ 2 − μ − ε iv+(k‖ − ζ )e−iθ

−iv+(k‖ + ζ )eiθ −(mk − mζ 2) − μ − ε

)(
α

β

)
= 0,

(C6)
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FIG. 5. Relation between (kx, ky ) and (k‖, k⊥) at a given angle
θ in the kxky plane. The coordinate transformation allows us to
calculate the boundary states at any θ in the xy plane parametrized
by the phase shift φ of CPL.

where mk = m̃0 + mk2
‖ with m̃0 = m0 + mI − v2I

ω
cos φ. A

nontrivial solution of (α, β )T yields

m2ζ 4 + (−v+2 − 2mmk )ζ 2 + v+2k2
‖ + m2

k − (ε + μ)2 = 0.

(C7)

The solutions of ζ can be found analytically:

ζ 2
± = v+2 + 2mmk

2m2

±
√

(v+2 + 2mmk )2 − 4m2
(
v+2k2

‖ + m2
k − ε2

)
2m2

. (C8)

Note that for the moment we absorb μ in ε for convenience.
The corresponding eigen wave function is

ψζ (x) = eik‖x‖eζx⊥

(
mk − mζ 2 + ε

−iv+(k‖ + ζ )eiθ

)
. (C9)

The wave function of boundary states can be written as

	(r) =
∑

ζ

Cζ ψζ (r). (C10)

We impose hard-wall boundary conditions. Thus, the wave
function must satisfy

ψ (x⊥ = 0) = ψ (x⊥ → ∞) = 0. (C11)

Plugging Eq. (C9) into Eq. (C11), this leads to

Cζ1

(
mk − mζ 2

1 + ε

−iv+(k‖ + ζ1)eiθ

)
+ Cζ2

(
mk − mζ 2

2 + ε

−iv+(k‖ + ζ2)eiθ

)
= 0.

Solving the boundary equations, we find the energy dispersion
of the boundary states as

ε(k‖) = sgn(m)|v+|k‖, (C12)

and correspondingly, the wave function as

	(r) = N eik‖x‖ (eζ1x⊥ − eζ2x⊥ )

(
sgn(mv+)

−ieiθ

)
, (C13)

where

ζ1(2) = −
∣∣∣∣ v+

2m

∣∣∣∣ ∓
√

v+2

4m2
+ mk

m
. (C14)

Similarly, we can find the eigenstates and eigenvectors for
the lower block of the Hamiltonian. In summary, the eigenen-
ergies for the two blocks are

Ee↑(k‖) = sgn(m)|v+|k‖ − μ,

Eh↓(k‖) = −sgn(m)|v−|k‖ + μ, (C15)

respectively, and their eigenvectors in the full basis are

	e↑(x) = F+(x)/
√

2[sgn(mv+),−ieiθ , 0, 0]T ,

	e↓(x) = F−(x)/
√

2[0, 0, sgn(mv−),−ieiθ ]T , (C16)

where F±(x) = N±eik‖x‖ (eζ±
1 x⊥ − eζ±

2 x⊥ ) and N± is the
normalization factor, with ζ

+/−
1(2) = −|(v+/−)/2m| ∓√

(v+/−)2/4m2 + mk/m. Without loss of generality, we
have taken m > 0 in the following.

After the projection, the effective boundary Hamiltonian
can be obtained as

heff(θ ) =
(|v+|k‖ − μ �̃(θ )

�̃(θ )∗ −|v−|k‖ + μ

)
. (C17)

Here, the basis is (	e↑, 	h↓) and the projected pairing poten-
tial can be written as

�̃(θ ) = i

2
F�0sgn(v−)[sgn(v+v−)eiθ − e−iθ ], (C18)

where F results from the overlap of F+(x) and F−(x).
Inversion symmetry is preserved in the boundary Hamilto-

nian. After the projection, the symmetry operator becomes

P̄ = σz. (C19)

The boundary Hamiltonian is invariant under inversion,

P̄heff(θ )P̄−1 = heff(θ + π ), (C20)

which requires the effective pairing potential to satisfy the
following relation:

�̃(θ + π ) = −�̃(θ ). (C21)

APPENDIX D: MAJORANA ZERO MODES
AND THEIR SPIN POLARIZATION

In this section, we derive the wave functions and spin
polarizations of Majorana zero modes in the second-order
topological phases. We start with the effective boundary
Hamiltonian described in Eq. (C17).

The Majorana zero modes are localized exponentially at
the positions with vanishing �̃(θ0) = 0 at the boundary. We
make the ansatz for the wave function as

	 = eζ ι

(
c1

c2

)
, (D1)

where ι denotes the distance away from one out of
these positions. With the replacement k‖ = −i∂ι → −iζ , the
eigenequation for the zero-energy mode reads(−i|v+|ζ − μ �̃(θ )

�̃(θ )∗ i|v−|ζ + μ

)(
c1

c2

)
= 0. (D2)
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HIGHER-ORDER WEYL SUPERCONDUCTORS WITH … PHYSICAL REVIEW B 103, 184510 (2021)

This yields a secular equation
|v+v−|ζ 2 − iμ(|v+| + |v−|)ζ − |�̃(θ )|2 − μ2 = 0, (D3)

where |�̃(θ )| =
√

2
2 F�0

√
1 − sgn(v+v−) cos(2θ ).

Consider μ = 0. The two solutions of ζ to the above equa-
tion are found as

ζ± = ± |�̃(θ )|√|v+v−| . (D4)

The corresponding eigen wave functions are(
c1

c2

)
=

(
�̃(θ )/|�̃(θ )|
±i

√|v+/v−|
)

. (D5)

Near the given position θ0 satisfying �̃(θ0) = 0, we ap-
proximate �̃(θ )/|�̃(θ )| = eiθ0 sgn(v+δθ ), where δθ = θ −
θ0. Thus, the eigen wave functions become(

c1

c2

)
=

(
eiθ0 sgn(v+δθ )
±i

√|v+/v−|
)

. (D6)

Notice that ζ± = ±ξ with ξ > 0. Close to the position θ0, the
wave function of the zero-energy mode can be written as

	> = αe−ξ ι

(
eiθ0 sgn(v+)

−i
√|v+/v−|

)
, θ > θ0,

	< = βe+ξ ι

(
eiθ0 sgn(v+)

−i
√|v+/v−|

)
, θ < θ0. (D7)

Considering the continuity of the wave function at θ = θ0

(i.e., ι = 0), we obtain α = β. Therefore, the wave function
is finally given by

�(θ0) = K(r)(eiθ0 sgn(v+)
√|v−|, −i

√|v+|)T
, (D8)

where K(θ ) accounts for both the spatial distribution and the
normalization.

To obtain the wave functions for the Majorana zero modes,
we need to consider the full Hamiltonian in Eq. (B11). The
procedure from Eq. (C2) to Eq. (D8) of finding the zero-
energy modes can be similarly performed for the lower block
h′(k) stated in Eq. (B15). For h′(k), the eigenenergies, coun-
terparts of Eq. (C15), are found as

Ee↓(k‖) = −|v−|k‖ − μ,

Eh↑(k‖) = |v+|k‖ + μ, (D9)

and the corresponding eigenvectors, counterparts of
Eq. (C16), are

	e↓(x) = F+(x)/
√

2[sgn(v−),−ie−iθ , 0, 0]T ,

	h↑(x) = F−(x)/
√

2[0, 0, sgn(v+),−ie−iθ ]T , (D10)

where F±(x) are the normalization factors.
After projecting the pairing interaction onto the boundary

states, the effective boundary Hamiltonian for h′(k) reads

h′
eff(θ ) =

(|v−|k‖ − μ �̃(θ )
�̃(θ )∗ −|v+|k‖ + μ

)
, (D11)

in the (	e↓, 	h↑), where the projected pairing potential reads
�̃(θ ) = iF�0sgn(v−)[sgn(v+v−)eiθ − e−iθ ]/2. In a similar
way as we did for h(k), we find a zero-energy mode with the
wave function

�′(θ0) = K(r)(eiθ0 sgn(v+)
√|v+|, −i

√|v−|)T
. (D12)

Using the wave functions in Eqs. (D8) and (D12) for the
zero-energy modes, the wave functions for two Majorana zero

FIG. 6. Spin polarization 〈Ŝz〉 against the phase shift φ of light
for a fixed intensity I = 2(ω/2m). The four typical examples at I–IV
are at φ = 0.2π, 0.39π, 0.61π , and 0.8π, respectively.

modes at θ = θ0 can be found as

	1(θ0) = K(r)

⎛⎜⎜⎜⎝
eiθ0 sgn(v+)

√|v−|
i
√|v+|

e−iθ0 sgn(v+)
√|v−|

−i
√|v+|

⎞⎟⎟⎟⎠,

	2(θ0) = K(r)

⎛⎜⎜⎜⎝
ieiθ0 sgn(v+)

√|v−|√|v+|
−ie−iθ0 sgn(v+)

√|v−|√|v+|

⎞⎟⎟⎟⎠ (D13)

in the full Nambu and spin basis (	e↑, 	e↓, 	h↑, 	h↓).
With the full wave functions for Majorana zero modes,

we next calculate their spin polarization. The x-component
of spin polarization can be calculated by 〈Ŝx〉 j = 〈	 j |ŝx|	 j〉,
where j ∈ {1, 2} and ŝx = h̄

4 (τ0 + τz )sx. It is straightforward
to find that the two Majorana zero modes have the opposite
〈Ŝx〉,

〈Ŝx〉 j = h̄

2

(−1) j−1sgn(v+)
√|v+v−| sin θ0

|v−| + |v+| . (D14)

Although the two Majoranas individually may have finite 〈Ŝx〉
which depend on the position θ0, they together give vanishing
〈Ŝx〉 at the boundary. Similarly, for the y component of spin
polarization given by 〈Ŝy〉 j = 〈	 j |ŝy|	 j〉 with ŝy = h̄

4 (τ0 +
τz )sy, we find opposite values for the two Majoranas,

〈Ŝy〉 j = h̄

2

(−1) jsgn(v+)
√|v+v−| cos θ0

|v−| + |v+| . (D15)

Thus no net 〈Ŝy〉 can be measured at θ = θ0.
In contrast, for the z component given by 〈Ŝz〉 j =

〈	 j |ŝz|	 j〉 with ŝz = h̄
4 (τ0 + τz )sz, the two Majoranas have

the same spin polarization,

〈Ŝz〉 = h̄

2

|v−| − |v+|
|v−| + |v+| . (D16)

Notably, it is independent of the position θ0. Therefore they
together allow a finite 〈Ŝz〉 which may be probed by magnetic
STM. In Fig. 6, we illustrate 〈Ŝz〉 for a fixed intensity of light
as a function of the phase shift φ.
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FIG. 7. Sketch of the setup in condensed-matter systems. The
circularly polarized light is applied to a quantum spin Hall
insulator with proximity-induced odd-parity s-wave spin-singlet
superconductivity.

In the vicinity of φ = π/2, we denote φ = π/2 + δφ and
perform the series expansion cos(π/2 + δφ) ≈ −δφ. Then
we can approximate the corresponding correction as v± =
v(1 ∓ 2mIδφ/ω). Hence the spin polarization around π/2
can be written as

〈Ŝz〉 ≈ h̄

2

|1 + αδφ| − |1 − αδφ|
|1 + αδφ| + |1 − αδφ| = 2h̄mI

ω
δφ,

where α = 2mI/ω. Clearly, in the vicinity of π/2, 〈Ŝz〉 grows
linearly with increasing φ.

APPENDIX E: CONDENSED-MATTER CANDIDATES

In condensed-matter systems, our proposal can be realized
by applying CPL to a QSH insulator with proximity-induced
odd-parity s-wave spin-singlet superconductivity, as shown in
Fig. 7. For the material candidates, we note that QSH insula-
tors have been discovered in various materials, for instance,
HgTe [81] and monolayer WTe2 [82]. Odd-parity s-wave
spin-singlet superconductivity has been found, for instance,
in iron-based superconductors FeAs/Se [83,84]. Circularly
polarized lights have also been applied to manipulate topo-
logical superconductors and Majorana zero modes (see, e.g.,
Ref. [85]).

APPENDIX F: COLD-ATOM REALIZATION

The model Hamiltonian in Eq. (1) of the main text can
be engineered alternatively using existing technologies in
ultracold atoms. Here we take the fermionic 40K atoms as
an example to show its realization. The setup is illustrated
in Fig. 8 for the lattice model of Eq. (1) in the main
text. We choose the two lowest hyperfine levels, |F, mF 〉 =
|9/2,−9/2〉 and |9/2,−7/2〉, as pseudospins, and consider
the atomic gases loaded into a bilayer structure. The two
layers are stacked along z direction, and their index mimics
the orbital degrees of freedom. In each layer, the atoms are
confined in the two-dimensional optical lattice with the trap
potential, VL(r) = VL[sin2(kLx) + sin2(kLy)]. The atoms are
prepared to be half filled and thus μ = 0. VL is the trap
strength, kL = π/d , and d is optical lattice constant. In or-
der to generate an orbital dependent hopping, we employ
the laser-assisted tunneling technique [86,87]. The prepara-

ca↑  ca↓

cb↑  cb↓

M0

FIG. 8. Model setup projected in the x-y plane: (i) the nearest-
neighbor hopping m (blue arrow); (ii) orbit coupling v in x (red
arrow) and y (green arrow) directions generated by optical fields
M1(r) and M2(r), respectively; (iii) on-site pairing �0 (purple ar-
row); and (iv) effective vector potential A(t ) (black arrow). As the
layer index emulates the orbits, each site is composed of four degrees
of freedom in the projection, in which a Zeeman shift M0 is present.

tion of a spin-dependent magnetic gradient in this technique
can simultaneously give rise to an orbital dependent Zeeman
shift M0szσz that locally acts on atoms. The original nearest-
neighbor hoppings are prominently suppressed due to the
magnetic gradient. However, the intralayer one can be restored
by using counterpropagating lasers that drive a transition be-
tween atoms in adjacent sites via an intermediate excited level,
i.e., the laser-assisted tunneling. In the tight-binding model,
the above-mentioned terms are expressed as

H0 =
∑

j,η

−m(�†
j szσ0� j+eη

+ H.c.) + M0�
†
j szσz� j, (F1)

where � j = (ca, j,↑, cb, j,↑, ca, j,↓, cb, j,↓)T , cα, j,β stands for the
annihilation operator for atoms with the orbit α ∈ {a, b} and
spin β ∈ {↑↓} on the jth site, and e = (ex, ey) denotes the
unit vector of the lattice. We remark that in Eq. (F1), the
hopping is both spin and orbital dependent. In the presence
of the spin-dependent magnetic gradient, the relative π phase
in the hopping is attainable by initial setups of the counter-
propagating lasers.

The orbital coupling in Eq. (1) of the main text can be
also synthesized by optical fields. Taking advantage of the
selection rules, one can drive a transition between opposite
orbits with the same spin via an intermediate level. Such a
coupling Hamiltonian is written as

Hoc =
∫

dr
∑

α,α′=a,b

∑
β=↑↓

i�̂β (r)ψ†
α,β (r)ψα′,β (r) + H.c.,

(F2)
where ψ (r) denotes the atomic operator in the free space.
The effective field mode �̂(r) can be designed to be spin
dependent as [88,89]

�̂↑(r) = M1(r) + iM2(r), �̂↓(r) = −�̂↑(r), (F3)

184510-10



HIGHER-ORDER WEYL SUPERCONDUCTORS WITH … PHYSICAL REVIEW B 103, 184510 (2021)

where M1(r) = �eff sin(kLx) cos(kLy) sin(kLz), M2(r) =
�eff cos(kLx) sin(kLy) sin(kLz), and �eff is the effective field
strength. Since the Wannier wave function W (r) is of even
parity with respective to each site center, the on-site and
intralayer terms in Eq. (F2) vanish. By contrast, the interlayer
nearest-neighbor coupling dominates. In the tight-binding
model, since the spatial distribution of atoms ψ (r) is
expanded in terms of Wannier wave function W (r), Eq. (59)
reduces to

Hoc =
∑

j

i(−1) jx+ jy
∑
ββ ′

[sz]ββ ′
∑
ζ=±

ζ (vxc†
a, j,βcb, j+ζex,β ′

+ ivyc†
a, j,βcb, j+ζey,β ′ ) + H.c., (F4)

with the effective coupling strength vx,y determined
as vx = ∫

M1(r)W ∗(r)W (r + dex + dez )dr and vy =∫
M2(r)W ∗(r)W (r + dey + dez )dr. Since W (r) is isotropic

in the x-y plane, vx and vy are indeed identical. For simplicity,
we denote them as vx = vy ≡ v.

In ultracold atoms, the contact interaction is controllable
by Feshbach resonances [90]. The interacting Hamiltonian
describes a two-body scattering process,

Hint = −U
∑

j

∑
α

c†
α, j,↑c†

α, j,↓cα, j,↓cα, j,↑, (F5)

where U = g
∫ |W (r)|4dr, and g is the bare interaction

strength in the spatial space. In the mean-field Bogoliubov–de
Gennes (BdG) approach, by assuming the order parameter as
�0 = U 〈cα, j,↓cα, j,↑〉/2, it gives

Hint = −2�0

∑
j

(c†
a, j,↑c†

a, j,↓ + c†
b, j,↑c†

b, j,↓) + H.c. (F6)

We note that a phase of a checkerboard pattern (−1) jx+ jy

exists in Eq. (F4), which originates from the spatial configu-
ration of the optical field modes (F3). In order to remove it,
we make the following operator representation:

ca, j,↓ → cb, j,↓,

cb, j,↓ → ca, j,↓(−1) jx+ jy ,

cb, j,↑ → cb, j,↑(−1) jx+ jy , (F7)

which does not violate the anticommutation relation of opera-
tors c’s. Under the representation in Eq. (F7), Eqs. (F1), (F4),
and (F6) are mapped to

H0 =
∑

j,η

[−m(�†
j s0σz� j+eη

+ H.c.) + M0�
†
j s0σz� j], (F8)

Hoc =
∑

j

iv
∑
ββ ′

[sz]ββ ′
∑
ζ=±

(ζc†
a, j,βcb, j+ζex,β ′

+ ic†
a, j,βcb, j+ζey,β ′ ) + H.c., (F9)

Hint = −2�0

∑
j

(c†
a, j,↑c†

b, j,↓ + c†
b, j,↑c†

a, j,↓) + H.c. (F10)

Combining Eqs. (F1), (F4), and (F6), we obtain the total
Hamiltonian as

Htotal = H0 + Hoc + Hint. (F11)

Performing the Fourier transformation, one can find that the
Hamiltonian, Eq. (F11), is identical to the model Hamiltonian,
Eq. (1), of the main text.

The vector potential A can be introduced via a tilt driving
potential in the x-y plane [91] whose mode is

Hdr =
∫

dr
∑
α,β

Vdrψ
†
α,β (r)[−x sin(ωt )

+ y cos(ωt + φ)]ψα,β (r). (F12)

In the tight-binding lattice space, it reads

Hdr =
∑
j,α,β

Vdrd[− jx sin(ωt ) + jy cos(ωt + φ)]c†
α, j,βcα, j,β .

(F13)
By performing the unitary rotation Û= exp{i ∑ j,α,β

Vdrd
ω

[ jx cos(ωt ) + jy sin(ωt + φ)]c†
α, j,βcα, j,β}, the effective

Hamiltonian in the rotated frame is obtained as
Heff = ÛHtotalÛ † − iÛ∂tÛ †. This will leave a global phase
Vdrd cos(ωt )/ω in x direction, while Vdrd sin(ωt + φ)/ω in
y direction, to the hopping and orbit-coupling terms, which
emulates the Peierls phase. According to the vector potential
defined in the main text, in this simulation scheme, A is
approximated as

A = A0[cos(ωt ), sin(ωt + φ), 0], A0 = Vdr/ω. (F14)

APPENDIX G: EXPERIMENTAL SUGGESTIONS

In this section we give experimental suggestions and
realistic parameters for the cold-atom experiment. In the
model Hamiltonian, Eq. (1), of the main text, the normal
part described by H0 = [M0 − 2m(cos kx + cos ky)]τzσz +
v sin kxszσx + v sin kyτzσy is essentially a QSH insulator
model. For simplicity, we focus on the phase transition in-
duced by the gap closing around the � point [i.e., (kx, ky) =
(0, 0)]. The model is nontrivial in the region of M0 − 4m < 0,
with the energy gap Egap = 2|M0 − 4m|. Thus M0 shall be in
the range of M0 < 4m. The pairing interaction h� is respon-
sible for generating the higher-order topological phase, which
shall not break the original QSH phase by closing the bulk
gap. Thus it is required that �0 < Egap = 2|M0 − 4m|.

For the periodic vector potential A(t ), its frequency shall
be greater than the width of the static energy band. For typical
Floquet experiments, the frequency is taken approximately in
the same order as the nearest-neighbor hopping magnitude m
[92,93]. According to the phase diagram in Fig. 4(a) in the
main text, to induce Weyl points, the intensity I = e2A2

0 shall
be larger than ω/(2m).

Next we proceed to give a set of parameters fulfilling these
requirements, which are accessible in cold-atom experiments.
In practice, the optical lattice is created by counterpropagat-
ing λL = 1064-nm lasers, with the lattice constant d = λL/2
and the recoil energy ER = h2/(2matomλ2

L ) ≈ 212 nK. We set
the trap depth of the optical lattice as VL = 5ER, and the
corresponding nearest-neighbor hopping magnitude is m =
0.093ER. By preparing the effective field strength as �eff =
40ER, we can obtain the generated orbit coupling v ≈ 0.74m.
The onsite potential can be tuned as M0 = 2.20m. By set-
ting the bare interaction strength g = 0.016ER, we acquire
the order parameter �0 ≈ 0.35m, fulfilling the require-
ments. For engineering the vector potential A(t ), we set the
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TABLE I. Realistic parameters to be explored experimentally.
Here m = 0.093ER = 19.716 nK is taken as the unit.

Unit m M0 v �0 h̄ω A0

×19.716 nK 1.00 2.20 0.74 0.35 1.10 1.80 μm−1

experimentally feasible value of h̄ω ≈ 1.10m, and take Vdr =
39 nK/μm so that the 2mId2/(h̄ω) ≈ 1.5 > 1.0, where we
have restored h̄ and d to the expression. Here, the corre-
sponding intensity is A0 = 1.80 μm−1. Note that all these
parameters can be feasibly tuned experimentally, which we
list in Table I for convenience.
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