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Abstract: Structural optimizations of the piezoelectric layer in nanogenerators have been predicted to
enhance the output performance in terms of the figure of merit. Here, we report the effect of dielectric
constant on electrical outputs of piezoelectric nanogenerator using ZnO/PDMS composites with
varied ZnO coverages. The dielectric constant of piezoelectric layers was adjusted from 3.37 to 6.75.
The electrical output voltage of 9 mV was achieved in the nanogenerator containing the ZnO/PDMS
composite with the dielectric constant of 3.46, which is an 11.3-fold enhancement compared to the
value of the nanogenerator featuring the composite with high dielectric constants. Significantly,
lowering the dielectric constant of the piezoelectric layer improves the electrical output performance
of piezoelectric nanogenerators.

Keywords: nanogenerator; piezoelectricity; dielectric constant; ZnO

1. Introduction

Ever since the conceptual study of piezoelectric nanogenerators (PENGs) in 2006 [1],
most researchers have focused on nanogenerators featuring ZnO nanostructures due in a
large part to their non-toxicity, biocompatibility, and sensitivity to tiny strains. In their early
development, the performance of nanogenerator was governed by the Schottky contact at
the metal–ZnO interface. However, the Schottky barrier concept is problematic especially
for sustainability, reproducibility, processability, and uniformity, and has slowed down
improvements in the performance of such devices. A milestone in 2010 [2], which was the
integration of dielectric barriers into devices, shifted the paradigm for the structural design
of devices. Subsequently, the effective integration of ZnO nanorod arrays dramatically
increased the output performance up to 4.4 W m−2 [3]. Successes in nanogenerators com-
prising ZnO nanostructures have driven the development of many advanced piezoelectric
materials [4–11]. Piezoelectric materials, which have been adopted in nanogenerators, can
be categorized into two different groups: inorganic and organic materials. Specifically,
two-dimensional inorganic and organic materials have been of great interest, as they fulfill
the needs of flexible energy harvesting. Some promising piezoelectricity includes MoS2 [12]
and WSe2 [13], with piezoelectric coefficients of ~3 pm V−1 and 3.4 pm V−1, respectively.
After stacking many units using an efficient approach was found to greatly enhance the
output, PbI2 [14] and hexagonal-BN [15] were used as active materials for nanogenerators.
Researchers have also demonstrated piezoelectric polymers [16] and biomaterials [17–19]
with piezoelectric coefficients in the range of ~7.8 to 30 pm V−1.
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Apart from the material studies, structural optimizations of PENGs have been pro-
posed to improve the performance in terms of the figure of merit (FOM) using the relation-
ship of the open-circuit voltage, Voc, of the piezoelectric layer as follows:

VOC =
dij

εrε0
σijge

where dij is the piezoelectric coefficient, σij is the applied stress, ge is the gap distance be-
tween electrodes, εr is the relative dielectric constant, and ε0 is the vacuum permittivity [20].
Control over the relative dielectric constant of the piezoelectric layer is predicted to be a
factor in enhancing the FOM, and ultimately, the high open-circuit voltage. Herein, we
investigated the effect of dielectric constant modulation on the electrical output of piezo-
electric nanogenerators featuring a ZnO/polydimethylsiloxane (PDMS) composite. The
porous ZnO membranes were fabricated by calcinating the ZnO/poly(methyl methacry-
late) (PMMA) composite, and the elastomeric PDMS was infiltrated into the porous ZnO
membrane to form the ZnO/PDMS composite. Our approach to control the dielectric
constant of the ZnO/PDMS composite relied on regulating the porosity of the ZnO mem-
brane. The dielectric constant of the piezoelectric composite was successfully modulated
from 3.37 to 6.75 by changing the ZnO concentration in the ZnO/PMMA composite. The
output voltage of the piezoelectric nanogenerator was shown to improve approximately
11.3-fold by lowering the dielectric constant of the composite, which is well matched with
our simulation results.

2. Experimental Section
2.1. Fabrication of ZnO/PDMS Composite and Nanogenerators

A schematic illustration of a homogenous ZnO/polydimethylsiloxane (PDMS) com-
posite is displayed in Figure 1. The ZnO powder was purchased from Sigma Aldrich
and was used without further purification. The precursor solutions composed of ZnO
powder in ethanol (15% w/w) and poly(methyl methacrylate) (PMMA, Sigma Alrich) in
toluene (20% w/w) were stirred for 24 h (Figure 1a), and then were blade-casted onto the
gold-coated glass substrate (Figure 1b). The ZnO/PMMA composites were heated to 75 ◦C
for 10 min to evaporate the volatile solvent. The blade casting and subsequent drying
process were repeated thrice. The ZnO/PMMA composites were heated to 400 ◦C for 4 h
in a furnace to yield the porous ZnO membranes by calcinating PMMA (Figure 1c). Next,
the porous ZnO membranes were immersed in a PDMS (SYLGARD™ 184, Dow Chemical)
elastomeric layer (Figure 1d), which served not only as a potential barrier, but also as
a buffer layer to improve the robustness and durability of the ZnO/PDMS composite,
followed by curing at 70 ◦C for 120 min (Figure 1e). We deposited an adhesion layer
of 5-nanometer-thick chromium (Cr), followed by a 100-nanometer-thick gold (Au) film
using a radio frequency sputter. The Au films positioned at the top and bottom surfaces
of the ZnO/PDMS composite serve as the electrodes for piezoelectric nanogenerators.
Then, the composite with electrodes was immersed in a polydimethylsiloxane (PDMS)
elastomeric layer.

2.2. Characterization

The morphologies of the composite were observed using a field-emission scanning
electron microscope equipped with energy dispersive X-ray spectrometer (Hitachi S-4700),
and X-ray diffraction (Xpert, 2016) analysis was performed to check the crystallinity of the
ZnO after annealing. Adobe photoshop image analysis ‘count tool’ was used to determine
the porosity of ZnO templates and study the ZnO and PDMS coverage of the compos-
ites. The dielectric constant was characterized using a broadband dielectric spectrometer
(Concept 80, Novocontrol Corp). The output performance of PENGs was measured using
an oscilloscope (Agilent DSO-X-2014A) equipped with a current preamplifier (SRS SR-
570) under different pushing loads applied by a customized pushing tester driven by a
linear motor (LS Mechapion APM-SB02ADK). The output voltage was measured with a
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direct connection to a standard probe with 10 MΩ resistance, while the output current was
recorded with a probe with 50 Ω resistance. The power of the system was calculated using
varied load resistance. The COMSOL Multiphysics was used to simulate the piezoelectric
potential in the ZnO/PDMS composite with varying ZnO coverage.
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membrane. (e) ZnO/PDMS composite. 
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PMMA matrix [21–23], facilitating the formation of the homogenous porous ZnO mem-
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Figure 1. Schematic illustration of the ZnO/PDMS composite fabrication. (a) Preparation of ZnO/PMMA precursor.
(b) Blade casting of ZnO/PMMA composite. (c) PMMA removal by thermal annealing. (d) Infiltration of PDMS into ZnO
membrane. (e) ZnO/PDMS composite.

3. Results and Discussion

The scanning electron microscopy (SEM) images presented in Figure 2a–f show the
typical morphologies of the porous ZnO membranes made from the precursor solutions of
varying ZnO concentrations from 0.3 to 1 M. As the ZnO concentrations decreased, more
PMMA agglomerates were trapped in the ZnO membranes, and then the sacrificial PMMA
agglomerates were completely removed after calcination at 400 ◦C for 4 h. It is worth
noting that the ZnO particles are known to be homogeneously dispersed in the PMMA
matrix [21–23], facilitating the formation of the homogenous porous ZnO membrane. The
SEM images indicate that the porous ZnO membranes, with thicknesses ranging from
8.7 to 11.3 µm, were successfully achieved over a large scale as high as 65 × 25 mm2, and
the average volumetric density of ZnO in a given region considerably increased as a result of
controlling the ZnO concentrations. Using energy-dispersive X-ray spectroscopy (Figure 2g), we
confirmed that the carbon concentrations in the porous ZnO membrane decreased significantly
after the calcination, indicating that the sacrificial PMMA was successfully removed from
the ZnO/PMMA composite. The crystalline structures of the porous ZnO membrane
of differing annealing temperatures from 400 to 600 ◦C were investigated using X-ray
diffraction (XRD), as shown in Figure 2h. All of the diffraction peaks corresponding to
(100), (002), (101), (102), (110), (103), and (112) planes belong to the standard pattern for
ZnO powder, and can be indexed to the wurtzite structure of ZnO with lattice constants of
a = 3.248 and c = 5.199 Å, which is in accordance with the reported values (a = 3.25 and
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c = 5.207 Å) in the JCPDS files (card no. 36-1451). The intensity ratio of (100)/(002) and
(101)/(002) planes was calculated and is given in Table 1. A low annealing temperature
resulted in the highest relative ratios of 1.50 and 2.15, respectively, with an increase in
annealing temperature decreasing the relative ratios down to 1.09 and 1.17, respectively.
We then calculated the lattice aspect ratio using the full width at half maximum of the
(100) and (002) diffraction peak in Scherrer’s equation. The results indicated that the lattice
aspect ratio was negligibly improved with increasing the annealing temperature, so that
the subsequent measurements described below using the porous ZnO membranes were all
performed with the samples annealed at 400 ◦C.
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Figure 2. Porous ZnO membrane. (a–c): Cross-sectional SEM images of porous ZnO membranes made from the precursor
solutions of varying ZnO concentrations from 0.3 to 1 M. Scale bar = 5 µm. (d–f): Surface morphology of the porous ZnO
membranes. Scale bar = 5 µm. (g): EDX spectrum of the porous ZnO membrane before (left) and after (right) the calcination.
(h): XRD results of the porous ZnO membranes annealed at different temperatures.

Table 1. Geometric parameters of the ZnO nanostructures calculated from XRD spectra.

Annealing
Temperature (◦C)

Crystalline Size
(nm)

Relative Intensity XRD Lattice
Aspect Ratio(100)/(002) (101)/(002)

400 58.9 1.50 2.15 1.00
500 53.9 1.15 1.29 1.01
600 48.5 1.09 1.17 0.99

We employed the image analysis technique to further investigate the approximate
porosity of ZnO membranes in the projected SEM images (Figure 3a, left). The white and
dark regions were considered as the ZnO membrane and voids, respectively, and then
the area of each region was calculated by counting the number of pixels. Remarkably,
the porosity, representing the fraction of ZnO in the given area, was enhanced up to
35.7% as the ZnO concentration in the precursor solutions was decreasing. After infil-
trating the PDMS into the porous ZnO membranes, the approximate ZnO coverages,
CoverageZnO = AZnO/(AZnO + APDMS), where AZnO and A PDMS denote the area of ZnO
and PDMS, respectively, in the ZnO/PDMS composites were also computed in a similar
manner (Figure 3a, right). The white and grey regions were taken into account as the ZnO
membrane and PDMS infiltrated, respectively (Inset of Figure 3a). The ZnO coverage
is shown to increase with the decreasing of the porosity, and the ZnO coverage shrunk
down to 40% in the ZnO membrane with a porosity of 35.7%, representing the successful
infiltration of PDMS into the porous ZnO membrane. A broadband dielectric spectrometer
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was used to characterize the dielectric constant of ZnO/PDMS composites in a symmetric
Au | ZnO/PDMS composite | Au configuration, as shown in Figure 3b. The experimental
dielectric constant substantially increased with the ZnO coverage at 10 Hz. We estimated
the dielectric constant of the composites using theoretical models developed by Maxwell
Garnett, which is suitable for a two-phase composite and given by [24]:

εcomposite = εPDMS
2εPDMS + εZnO + 2 fZnO(εZnO − εPDMS)

2εPDMS + εZnO − fZnO(εZnO − εPDMS)

where fZnO is the volume content of ZnO in the composite, and εPDMS, εZnO, and εcomposite
represent the dielectric constant of the PDMS region, ZnO region, and composites, re-
spectively. The relative permittivity of PDMS (εPDMS) and ZnO (εZnO) are known as 2.47
and 8.96, respectively, according to the previous studies [25,26]. It can be noticed that the
Maxwell Garnett model yields a similar prediction of εZnO around 8.89, with a coefficient of
determination, R2, very close to 1, reflecting an excellent correlation between the empirical
data and estimated values. All the above results allow us to confirm that the dielectric
constant of composites was clearly modified from 3.37 to 6.75 by modulating the ZnO
coverage in the ZnO/PDMS composite.
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Figure 3. ZnO coverage and dielectric constant of the ZnO/PDMS composites. (a): porosity and ZnO coverage in the
composite as a function of the ZnO concentration in the precursor solution. (b): Dielectric constant of the ZnO/PDMS
composites. The data of 100% ZnO coverage and 0% ZnO coverage (fully covered by PDMS) were extracted from the
literature: PDMS [25] and ZnO [26].

In order to have an insight into the distribution of the electric field within the
ZnO/PDMS composite, a two-dimensional finite element method simulation was car-
ried out. The ZnO circular particles with a diameter of 200 nm were embedded in the
PDMS matrix with a 20 µm width and 10 µm thickness. The ZnO coverage was controlled
by varying the distance between particles while maintaining the particle size. Therefore,
the number of ZnO particles for 78.7% ZnO coverage was 6250, and this value decreased to
5000, 4000, and 3000 in the ZnO coverages of 63%, 50.4%, and 37.8%, respectively. To repre-
sent the crystalline direction of the ZnO nanoparticles, we set the unit cell consisting of the
ZnO/PDMS composite with a dimension of 1 µm × 1 µm, where the dominant polarization
directions of each particle were randomly assigned (Figure 4a, left). Then, the imaginary
circle, which was much larger than our sample, was set to be grounded as the zero potential
references. The floating potential with zero initial potential was designated for both the
top and bottom surfaces of the ZnO/PDMS composite. Upon the compressive force to the
top surface, the ZnO/PDMS composite can be freely deformed in both lateral and vertical
directions, while the movement of the bottom surface was restricted in a vertical direction.
Figure 4a illustrates the electric field distribution in the ZnO/PDMS composite with a
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78.7% ZnO coverage under a compressive pressure of 2 MPa. The ZnO/PDMS composite
showed the random potential distribution, which is attributed to the random orientation
of polarization induced by ZnO particles, but the net polarization induced the potential
difference between the top and bottom electrodes. The open-circuit voltage was calculated
from the potential difference between the top and bottom surfaces of the composite, and is
presented in Figure 4b. Notably, the open-circuit voltage was found to increase gradually
with decreasing ZnO coverage (i.e., lowering dielectric permittivity), whereas the charge
induced by the piezo-potential plateaus for all ZnO coverages, implying a decrease in
dielectric constants, enabled them to improve the output voltage of the nanogenerator in
terms of the figure of merit.
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Figure 4. Effect of dielectric constant on piezoelectric output. (a): computed potential distribution in ZnO/PDMS composite
with a 78.7% ZnO coverage under a compressive pressure of 2 MPa. (b): computed open-circuit voltage and charge
simulated of ZnO/PDMS composites. (c): Output voltage of nanogenerator under different compressive loads. Inset
indicates the photo of nanogenerator fabricated. Scale bar = 1 cm. (d): output voltage and power from nanogenerator as a
function of different resistors as external loads. (e): Output voltage and output current as a function of dielectric constant.
Inset indicates the charge values extracted from the integration of a single current peak.

We constructed the piezoelectric nanogenerators comprising the ZnO/PDMS compos-
ites with different ZnO coverages. The ZnO/PDMS composites acted as a piezoelectric
material, and the top and bottom electrodes were deposited on both surfaces of the compos-
ite using a thermal evaporator. Encapsulation with an additional PDMS layer provides high
structural stability of the nanogenerators. The dimensions of our device were 65 × 25 mm2

in the area and ~100 µm in thickness (Inset of Figure 4c). Each nanogenerator included the
ZnO/PDMS composite with an almost similar thickness of 23–34 µm. The output voltage
and current were measured by applying periodic compressive loads using a programmed
linear motor. Under a compressive stimulus (37 N) perpendicular to the nanogenerator,
the output voltage of the nanogenerator featuring composites with 52.6% ZnO coverage
reached up to ~3.2 mV (Figure 4c). The electrical output increased linearly with applied
loads from 30 N to 60 N. Then, the maximum peak power of the nanogenerator was investi-
gated using different resistors, with a value of 5.34 pW at a load resistance of approximately
0.75 MΩ in the presence of 15 N external load (Figure 4d). We then investigated the effect
of the dielectric constant of composites on the electrical output (Figure 4e). The electrical
output voltage of 0.8 mV was achieved in the nanogenerator involving the ZnO/PDMS
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composite with the dielectric constant of 6.75, and this value increased to 4 and 9 mV
in those with the dielectric constants of 4.81 and 3.46, respectively. The nanogenerator
featuring the ZnO/PDMS composite with the highest dielectric constant produced an
average output current of 28 pA, and the current was shown to increase up to 105 pA
with the lowering of the dielectric constant. The charge values were extracted from the
integration of a single current peak and the charge values plateau occurred for all dielectric
constants, which exhibited good agreement with our simulation results. Ultimately, control
over the relative dielectric constant of the piezoelectric layer is a promising approach for
enhancing the FOM, and ultimately, the high open-circuit voltage.

4. Conclusions

The effect of the dielectric constant of the piezoelectric layer on electrical outputs of the
piezoelectric nanogenerator was investigated using ZnO/PDMS composites with differing
ZnO coverage. We adjusted the porosity of the ZnO membrane from 11.6% to 35.7% by
changing the ZnO concentration in the precursor solution, and then the elastomeric PDMS
was permeated into the porous ZnO membrane, yielding the ZnO/PDMS composites with
the dielectric constants in the range of 3.37 and 6.75. The output voltage of the piezoelectric
nanogenerator comprising the piezoelectric composite with the lowest dielectric constant
was found to be boosted approximately 11 times compared to that of the nanogenerator
with the highest dielectric constant. Additionally, the results found in experiments were
well matched with those of the simulation study.
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