
PHYSICAL REVIEW B 103, L180504 (2021)
Letter

Chiral Majorana hinge modes in superconducting Dirac materials
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Chiral Majorana hinge modes are characteristic of a second-order topological superconductor in three dimen-
sions. Here we systematically study pairing symmetry and the leading pairing channels in Dirac materials with
the point group D2h, and find that the s + id-wave pairing superconductivity may exist as a consequence of
competition between s- and d-wave pairing. The superconducting state is topologically nontrivial and possesses
Majorana hinge and surface modes. The chiral Majorana hinge modes can be characterized by a winding
number of the quadrupole moment or quantized quadruple moment at the symmetrically invariant point. Possible
relevance to superconductivity in ZrTe5 is discussed. Our findings suggest the strong spin-orbital coupling,
crystalline symmetries, and electron-electron interaction in the Dirac materials may provide a platform to realize
chiral Majorana hinge modes with no proximity effect or external fields.
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I. INTRODUCTION

Majorana modes are the quasiparticles around a topolog-
ical superconductor and may have potential applications in
topological quantum computations [1–6]. Over the last two
decades, intensive efforts have been made to realize topolog-
ical superconductors [7–13]. The Majorana edge modes in a
px + ipy spinless superconductor, a superconducting analog
of quantum Hall effect state, move in a dissipationless and
unidirectional way, i.e., are chiral because of the violation of
time-reversal symmetry [14–17]. As the p-wave superconduc-
tor is rare in nature, a hybrid system of quantum anomalous
Hall insulator and superconductor was alternatively proposed
to realize the chiral topological superconductor [18–20].
However, the existence of chiral Majorana modes is still in-
conclusive [21–25], although several schemes for detection
and application were proposed [26–28]. Those proposals often
relied heavily on the proximity effect or needed an external
magnetic field to break the time-reversal symmetry, which
all made them difficult to be realized in experiments. Very
recently, a significant advance in the research of topological
quantum phases is a generalization to higher-order topolog-
ical insulators and superconductors that can host localized
modes near the corner, hinge, or vertex of a system [29–46].
Several theoretical proposals have been put forward to real-
ize the Majorana corner modes in second-order topological
superconductors [47–66]. In three dimensions, chiral Dirac
modes can emerge along a hinge between two surface planes
on which the two gapped surface modes encounter when the
time-reversal symmetry is broken [67–70]. This opens a new
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avenue to research chiral Majorana modes in topological su-
perconducting materials.

Here we investigate all possible superconducting pairing
channels in three-dimensional (3D) massive Dirac materials
with the D2h point-group symmetry at the mean-field level
with long-ranged interactions. We find that the leading pair-
ing channel can be s-, d-, or s + id-wave pairing by varying
the relative strength of the intra and interorbital interactions.
The s-wave pairing is topologically nontrivial under time-
reversal invariance and possesses a gapless Majorana surface
mode as proposed by Fu and Berg [71] and Sato [72]. For
the s + id-wave pairing channel, the inclusion of dxy- wave
pairing breaks either the time-reversal symmetry or inversion
symmetry, but preserves the combination of these two sym-
metries. Consequently, the system becomes a second-order
topological superconductor with chiral Majorana hinge modes
circulating along the four hinges parallel to the z-axis. The
topology behind chiral Majorana hinge modes can be charac-
terized by a winding number of the quadrupole moment, or the
quantized quadrupole moment at the particle-hole invariant
momentum. This establishes a robust and new bulk-boundary
correspondence for the topological states of matter. We also
discuss its possible relevance to the superconductivity in a
prototype of massive Dirac material ZrTe5.

II. MODEL

We start with a normal state Hamiltonian for a 3D Dirac
material with D2h point-group symmetry and time-reversal
symmetry

H0 =
∑

k

�
†
k (hk − μ)τz�k (1)
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TABLE I. Eight classes of the basis of the pairing functions
according to D2h point-group symmetry. From left to right, each
column shows the irreducible representations (IRs) of the point
group D2h, intraorbital or interorbital pairing, the pairing channels
ϕΓ (k)Mi j with antisymmetric matrices, the pairing functions Nk,Γ =
ϕΓ ′ (k)U †

k Mi jUk with Uk being a 4 × 2 matrix of conduction band
eigenvectors [78], and the average over the Fermi surface 〈N2

k,Γ 〉.
The Pauli matrices σ̃i denote the Kramers-degenerated conduction
bands and we introduced the notation p = (vxkx, vyky, vzkz ). The

Fermi-surface harmonics ϕ0 = 1 and ϕi j =
√

15
1−m2/μ2

viv j kik j

ε2
k

with εk =√∑
i v

2
i k2

i + m2.

IRs orbital ϕΓ (k)Mi j Nk,Γ 〈N2
k,Γ 〉

Ag intra ϕ0σ0s0 ϕ0σ̃0 1
B1g intra ϕxyσ0s0 ϕxyσ̃0 1
B2g intra ϕxzσ0s0 ϕxzσ̃0 1
B3g intra ϕyzσ0s0 ϕyzσ̃0 1
Au inter ϕ0σxs0 ϕ0

p·̃σ
εk

1 − m2

μ2

B1u inter ϕ0σysz ϕ0
(p×σ̃)z

εk

2
3 (1 − m2

μ2 )

B2u inter ϕ0σysy ϕ0
(p×σ̃)y

εk

2
3 (1 − m2

μ2 )

B3u inter ϕ0σysx ϕ0
(p×σ̃)x

εk

2
3 (1 − m2

μ2 )

in the Nambu spinor basis �k = (ψk,−isyψ
∗
−k), where ψk

is a four-component Dirac spinor. In the k · p theory, hk =∑
i=x,y,z vikiσxsi + mσzs0 with vx,y,z being the velocities along

three directions, m the Dirac mass, and s, σ and τ the
Pauli matrices acting on spin, orbital, and Nambu space,
respectively [73,74], ( h̄ = 1). Here μ is the chemical poten-
tial. Furthermore, we consider the phonon-mediated effective
electron-electron interaction. Due to the multiorbital nature
of the Dirac electron, there are two distinct electron-phonon
coupling mechanisms. The first is the deformation-potential
coupling induced by the local dilation of the lattice, which
appears as the diagonal components in the orbital space. The
second one is an effective gauge field or vector potential
coupling induced by the shear deformation, which appears as
the hopping matrix elements in the orbital space. Generally
speaking, the exchange and pairing-hopping terms are rather
small compared with the intra and interorbital terms, thus
can be neglected. By utilizing the Fierz identity [75–78], the
density-density product of four-fermion interaction can be
decomposed into the pairing terms

Hint =
∑

k,k′,i, j

Vi(k − k′)
8	

[�†
kτ+Mi j�k][�†

k′τ−Mi j�k′], (2)

where 	 is the volume of the sample, Mi j ≡ σis j , and τ± =
1
2 (τx ± iτy). The interaction potential Vi(k − k′) can be de-
composed by the Fermi-surface harmonics ϕΓ (k) for each
irreducible representation of the crystal point group Vi(k −
k′) = ∑

Γ V Γ
i ϕΓ (k)[ϕΓ (k′)]∗ [78,79] where the sum over Γ

contains all nonequivalent irreducible representations (IRs) of
the D2h group [80]. The basis functions for each IR are clearly
not unique, and have been truncated to the lowest order in
momenta for simplicity [78]. The overall pairing functions
are constructed by the orbital angular momentum part ϕΓ (k)
and spin-orbital part Mi j listed in Table I. Here we only focus
on the regime with the even s- and d-wave pairing function

[ϕΓ (k) = ϕΓ (−k) ] for the orbital part, which restricts our-
selves to the remaining six antisymmetric pairing matrices
Mi j , i.e., [Mi j (−isy)]T = −Mi j (−isy) due to the Fermi-Dirac
statistics. As a result of products of representations, the overall
paring function ϕΓ (k)Mi j and the orbital angular momentum
part ϕΓ (k) may belong to different IRs.

III. DETERMINATION OF THE PAIRING SYMMETRY

Now we evaluate the transition temperature T Γ
c for each

pairing channel listed in Table I. It can be obtained by solving
the linearized gap equation near the transition temperature Tc

at which the order parameter is vanishingly small. Generally
speaking, T Γ

c � 1.13ωD exp [− 1
λΓ 〈N2

k,Γ
〉 ] associated with each

IR can be different. The transition temperature is dictated
by two factors. The first one is the average of the square of
the projected pairing matrix 〈N2

k,Γ 〉 over the Fermi surface.
The second one is the dimensionless coupling strength λΓ =
2gΓ ρ(μ) with the effective interaction gΓ and the density of
states ρ(μ) near the Fermi level. The interorbital interaction
Vi=x,y(r − r′) and the intraorbital interaction Vi=0,z(r − r′) give
rise to pairing in the odd-parity channels (Au, B1u, B2u, B3u)
and even-parity channels (Ag, B1g, B2g, B3g), respectively. The
four odd-parity pairing channels are generated from the local
interorbital interaction and the transition temperatures satisfy
T Au

c 	 T B1u
c , T B2u

c , T B3u
c . Thus we need only to consider the

s-wave superconductivity belonging to the Au representation
among the four odd-parity pairing channels. Without loss of
generality, we assume gB1g > gB2g > gB3g . Under this condi-
tion, it is unlikely for the system to form the order parameter
in B2g and B3g channels. Depending on the pairing interaction,
we cannot avoid the possibility of the pairing belonging to
the Ag representation. Since this order parameter breaks no
additional symmetries besides the U (1) gauge symmetry, we
disregard this conventional pairing for the further discussions.
We also checked numerically that the conclusion remains
unchanged even with the inclusion of this pairing.

From now on, we focus on the topological nontrivial
phases with s- and d-wave pairing which belong to two dif-
ferent irreducible representations Au and B1g, respectively.
Generally, the superconductivity order parameter for each IR
ηΓ is complex which can be parameterized as ηΓ = |ηΓ |eiφΓ .
By minimizing the free energy with the two superconducting
order parameters, the relative phase should to be �φ = ±π/2
if they coexist [78]. Then the pairing function can be ex-
pressed as

∑
Γ ηΓ NΓ

k = ηAu Nk,Au − iηB1gNk,B1g , with Nk,Au =
ϕ0

p·̃σ
εk

and Nk,B1g = ϕxyσ̃0. Thus, the projected Bogoliubov–de
Gennes Hamiltonian is

h̃BdG
k = (εk − μ)σ̃0τz + ηAu

μ
p · σ̃τx +

√
15ηB1gvxvykxky

μ2 − m2
σ̃0τy.

(3)

The gap equations are reduced to a pair of coupled self-
consistent equations of superconducting gap for the two
paring amplitudes ηAu (T ) and ηB1g (T ).

IV. s + id WAVE PAIRING STATE

Now we turn to explore the possibility of a mixed
s + id-wave pairing superconductivity which breaks the
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FIG. 1. (a) Zero-temperature phase diagram as a function of
1 − m2/μ2 and λB1g/λAu . The temperature dependence order pa-
rameter (b) ηAu for s-wave pairing (black lines with open circles),
(d) ηB1g for d-wave pairing (red lines with open squares), and (c) for
s + id-wave pairing. λAu is set to be 1/2 and 1 − m2/μ2 = 0.6. For
regimes (b) and (d) with single-order parameter, the temperature is in
the unit of its transition temperature T0 = T Γ

c . For the mixed pairing
regime (c), T0 = T Au

c .

time-reversal symmetry spontaneously. The type of mixed
pairing has been discussed in cuprates [81,82] and iron pnic-
tides [83–85]. Figure 1(a) shows the phase diagram at zero
temperature as a function of 1 − m2/μ2 and the interaction
ratio λB1g/λAu with fixed λAu to illustrate the competition be-
tween the s- and d-wave pairing superconductivity. The red
and black dotted lines indicate the phase boundary separating
the purely s- or d-wave pairing and the mixed s + id-wave
pairing. The competition between the s- and d-wave pairing
channels can lead to either a purely s- or d-wave pairing
state, or a mixed s + id-wave state. The mixed s + id-wave
pairing state may appear at the intermediate region − 14

15λAu <

λAu/λB1g − (1 − m2/μ2)−1 < 0. It is intuitively clear that for
such an s + id-solution to be held, the pairing strengths λAu

and λB1g need to be comparable: otherwise, a s-wave or a d-
wave will dominate. Adjusting the chemical potential toward
the band edge, the region for the mixed pairing shrinks. Thus,
the mixed pairing is more likely to occur in a system when the
chemical potential is located away from the band edge.

Then we discuss the behaviors of two different order
parameters ηAu and ηB1g at finite temperatures, which are
calculated by solving the gap equations as a function of
temperature for several values of λB1g/λAu and fixed m2/μ2 =
0.4. Figures 1(b) to 1(d) show the temperature dependence
of the order parameters in the s-, mixed s + id-, and d-wave
pairing states, respectively. For the pure s- and d-wave pairing
states, the superconducting transition is only specific to one
of the IRs and the critical temperature is precisely determined
by T Γ

c . For the mixed pairing state (λB1g/λAu = 0.7), as the
temperature decreases down to a certain value ∼1.63T0, the
d-wave pairing ηB1g first appears. After that, the s-wave pair-
ing ηAu appears and ηB1g increases gradually with temperature
until ∼0.55T0. The d-wave component reduces while the
s-wave component grows up as the temperature decreases
to zero. This indicates that, with decreasing the tempera-

FIG. 2. (a) Schematic of cross-section lattice and the boundary
of the x-y plane. The unit cell (the dash green box) consists of
two sublattices indicated by blue and red circles. (b) The schematic
of Majorana hinge modes and gapless Majorana surface modes in
the case of s + id-wave pairing. (c) The dispersion spectrum of
Majorana hinge modes for quasi-1D hinges along z direction with
Lx = Ly = 60. (d) The dispersion spectrum of the Majorana surface
modes in the x-y plane. The open boundary condition is adopted
along z direction with the height Lz = 200 and the periodic bound-
aries are adopted along x and y directions(see Sec. VII of Ref. [78]).
The chemical potential μ = 0.5.

ture, it undergoes a topological phase transition from pure
d-wave to s + id-wave superconductivity in specific condi-
tions. Thus the s + id-wave superconductivity can exist at low
temperatures.

V. MAJORANA HINGE AND SURFACE MODES IN THE
s + id WAVE PAIRING STATE

The s + id-wave pairing superconducting state is higher-
order topologically nontrivial, which is revealed from the
existence of Majorana hinge and surface modes. We adopt
the tight-binding approximation on a cubic lattice with the
lattice orientation of the x-y plane as shown in Fig. 2(a) [78].
Four chiral Majorana hinge modes and two Majorana surface
modes are illustrated in Fig. 2(b). The origin of the topological
hinge modes in the state can be heuristically explained in the
following picture. According to the odd-parity superconduc-
tivity criterion [71], the system of the single s-wave paring
(Au) should be a time-reversal-invariant topological supercon-
ductor with massless helical Majorana modes on the surface.
The inclusion of the d-wave order parameter gaps out the
Dirac cones of the Majorana surface modes on the surfaces
parallel to the z-axis as its relative π/2 phase to the s-wave
order parameter breaks the time reversal symmetry. However,
the d-wave pairing gap function vanishes at the mirror planes
and acts as mass domain walls for Majorana surface modes.
Consequently, the chiral Majorana hinge modes are formed
around the domain wall or along the hinges. The dispersion
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FIG. 3. The quadrupole moment qxy(kz ) as a function of kz for
μ = 0.5 (red) with the winding number �qxy = 1 and μ = 0.1 (blue)
with �qxy = 0. The bottom: qxy is rolled as a tube with qxy module
1. The other parameters used are the same as Fig. 2.

spectra for the Majorana hinge states as a function of kz are
presented in Fig. 2(c). The gapless Majorana hinge modes
in the gap are marked by the red lines and localized near
the four hinges along the z-direction. Their dispersions are
linear in kz, Ehinge = ± ηAu

μ
vzkz, obtained from the projected

Hamiltonian in Eq. (3). On the top and bottom surfaces of the
x-y plane, the d-wave pairing breaks the time-reversal symme-
try, but does not open the band gap of surface Majorana states.
The dispersion spectra are plotted in Fig. 2(d), in which the
gapless Majorana surface states are marked by the red lines.
The BdG Hamiltonian with the odd-parity s-wave pairing
(∝ σxτx ) possesses the time-reversal symmetry T = isyK and
the inversion symmetry Ĩ ≡ Iτz = σzτz. The inclusion of the
d-wave pairing (∝ kxkyτy) breaks either T or Ĩ, but preserves
ĨT . This combined symmetry makes the Majorana hinge
modes at diagonal hinges and the Majorana surface states at
the opposite surface related by the symmetry operation ĨT .

VI. TOPOLOGICAL INVARIANTS

Now we come to establish the bulk-hinge correspondence
to connect the Majorana hinge modes to the topology of the
bulk band structure. We take the periodic condition along
the z axis such that kz is still a good quantum number.
The quadrupole moment for each kz-sliced layer is given
by [86–88]

qxy(kz ) = 1

2π
Im log

[
Det[U †

kz
QUkz ]

√
DetQ†

]
, (4)

where the matrix Ukz is constructed by the occupied ground
states, Q = e2π ix̂ŷ/LxLy , x̂ and ŷ are the position operators, and
Lx and Ly the length of our system in the x and y direc-
tions, respectively. Generally the particle-hole symmetry P is
broken for a specific kz as the two states at kz and −kz are
connected by the symmetry. However, the symmetry restores
at kz = 0 and π (half of the reciprocal lattice vector), i.e., the
particle-hole invariant momentum. At these momenta, we can
prove that the quadrupole moment qxy is quantized to be 0

or 1/2 module 1 [78]. The quantized quadrupole moment of
qxy = 1/2 means the existence of the corner states of zero
energy, a signature of the second-order topological phase in
two dimensions [29,30]. The quantization is removed once
kz moves away from the invariant momentum. Additions of
the corner states for different kz evolve into the chiral hinge
states in three dimensions with a linear dispersion crossing the
point of kz = 0. Furthermore, the symmetry P connects the
unoccupied states at momentum kz with unoccupied states at
−kz, which gives qxy(kz ) + qxy(−kz ) = 0 for a trivial case and
1 for a nontrivial case. Thus in the s + id-wave pairing state, a
winding number can be introduced �qxy = ∫ π

−π
dkz∂kz qxy(kz ).

Two kz-dependent quadrupole moments for the trivial (blue
line with circle) and nontrivial (red line with square) cases are
plotted in Fig. 3. For μ = 0.5, qxy = 1/2 at kz = 0, and 0 at
kz = π . Thus, the winding number �qxy = 1, which indicates
the state is topologically nontrivial and is related to the pres-
ence of chiral Majorana hinge modes. In this way, we establish
a bulk-hinge correspondence in the topologically nontrivial
superconducting state.

VII. POSSIBLE RELEVANCE TO ZrTe5

The transition-metal pentatelluride ZrTe5 is the prototype
of massive Dirac materials with finite band gaps whose low-
energy excitations near the Fermi level are well described
by the Hamiltonian (1) [89–92]. External pressure may re-
duce some of the crystalline symmetries of the system while
preserving both the inversion symmetry and time reversal
symmetry, thus the Kramers degeneracy of the bands re-
mains. Under the high pressure, ZrTe5 crystal can undergo a
structural phase transition accompanied with its space group
changing from the orthorhombic Cmcm (D2h) to monoclinic
C2/m (C2h), then to triclinic P − 1 (Ci) phases. The IRs of
higher-symmetry point group will collapse into the IRs of
point group with lower symmetry [78]. The two supercon-
ducting order parameters have opposite parities and fall into
two different IRs. Furthermore, using a perturbative analysis
[78], we find the critical temperatures for these two pairing
channels can be enhanced by the external pressure when
the band gap tends to be closed by increasing the pressure.
It is anticipated that the external pressure may promote the
formation of mixed s + id-wave pairing superconductivity in
ZrTe5, which is the regime we focused on in our work. The
pressure-induced superconductivity was already reported ex-
perimentally in ZrTe5 [93]. A two-step-like transition in the
resistance measurement is observed, indicating the possible
coexistence of the two superconducting phases. More substan-
tial evidence will be anticipated to draw a conclusion.
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