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Abstract. In this article, we provide the first systematic numerical study on, via the popular4
Fourier-cosine (COS) method, finite-time Gerber-Shiu functions with the risk process being driven5
by a generic Lévy subordinator. These functions play a major role in modern actuarial science,6
and there are still many open problems left behind such as the one here of looking for a universal7
effective numerical scheme for them. By extending the celebrated Ballot theorem to the continuous8
setting, we first derive an explicit integral expression for these functions, with an arbitrary penalty, in9
terms of their infinite-time counterpart. As is common in actuarial or financial practice, an advanced10
knowledge of the characteristic function of the driving Lévy Process facilitates the applicants of11
the Fourier-cosine method to this integral expression. Under some mild and practically feasible12
assumptions, a comprehensive and rigorous (yet demanding) error analysis is provided; indeed, up to13
an arbitrarily chosen error tolerance level, the numerical scheme is linear in computational complexity14
which can even reach the theoretically fastest possible rate of 3; all of these are the most effective15
records of the contemporary state of the art in actuarial science. Finally, the effectiveness of our16
approximation method is illustrated through different representative numerical experiments, some of17
them, such as those driven by Gamma and Generalized Stable Processes, are even achieved for the18
first time in the literature, due to the limitations of most common existing approaches, and we shall19
discuss more in this article.20
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1. Preliminaries.24

1.1. Background. Since the pioneer work of [22], study on Gerber-Shiu func-25

tions has attracted numerous research efforts, and it has now become one of the most26

representative research directions in actuarial science and quantitative finance. The27

main philosophy behind the theory is to consider three important quantities once at28

a time, namely: (i) the time of ruin, (ii) the surplus before the time of ruin, and (iii)29

the deficit at ruin. Particularly, the first-step analysis was adopted in [22] to derive30

a defective renewal equation, from which explicit solutions could be obtained under31

the classical risk model with exponential claim sizes. Traditionally, Gerber-Shiu func-32

tions, being expected discounted penalty functions, are used to evaluate the overall33

financial performance of an insurance company before going bankrupt. For a system-34

atic study on Gerber-Shiu risk theory, one can refer to [3, 29, 49]. More precisely, let35

{Rt}t≥0 be the surplus process of an insurance company, and τ be the random time36

of ruin, then the Gerber-Shiu function, denoted by ϕ, is defined by:37

(1.1) ϕ(u) := E[e−δτκ(Rτ−, |Rτ |)1[0,∞)(τ)|R0 = u],38
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2 X. LI, Y. SHI, S. C. P. YAM, AND H. YANG

where Rτ− is the surplus just before τ , |Rτ | is the deficit at the time of ruin and κ(x, y)39

represents a non-negative penalty when the company bankrupts. Here, 1 denotes an40

indicator function and δ is a given positive constant representing the interest rate41

incurred. The most representative and straightforward use of Gerber-Shiu functions42

is the ruin probability; indeed, setting κ(x, y) ≡ 1 and δ = 0, the Gerber-Shiu function43

becomes φ(u) = E[1[0,∞)(τ)|R0 = u] = P(τ < ∞|R0 = u), which is exactly the ruin44

probability of an insurance company with an initial surplus u, which has been widely45

studied, see [3, 7] and the references therein. Alternatively, by setting δ > 0 and46

κ(x, y) = 1, the Gerber-Shiu function can also be treated as the Laplace transform of47

the time of ruin τ . Generally, δ is interpreted as a discount rate, and κ(Rτ−, |Rτ |) as48

the penalty of the bankruptcy, which arrives at the natural application of ϕ(u), the49

expected discounted penalty function, see [4] for an application in optimal dividend50

problems. Apart from the natural applications in actuarial science, if we interpret51

κ(x, y) as a payoff function, the Gerber-Shiu function can be also connected to the52

pricing of options, see [21]. Further applications in finance have been found in the53

literature, for instance, optimal capital structure problems are considered in [10], and54

[24] studied pricing credit default swaps via the Gerber-Shiu theory.55

Over the infinite-time horizon, researchers started with finding explicit solutions56

for the Gerber-Shiu functions under various settings. The works [37, 38] expressed57

the solution of the defective renewal equation derived in [22] in terms of the tail dis-58

tribution of compound geometric random variables. An explicit expression can still59

be obtained in the Sparre Andersen risk model or a perturbed one, for example, see60

[23], [34], [30] and [33]. An alternative approach of deriving the explicit solution is to61

first transform the integral equation to a boundary value problem, and then to uti-62

lize symbolic techniques to solve for the integro-differential equation, for instance, see63

[1, 2], [41] and [42]. Moreover, [20] extended the theory to general Lévy subordinators.64

Here, the explicit solution often refers to an infinite series of convolutional products65

(see (A.1) for a representative example), however the high order convolutional product66

terms are very hard to compute directly, let alone analytically but also numerically.67

To this end, more recent efforts have been made for developing an efficient numerical68

evaluation of the Gerber-Shiu functions over the infinite-time horizon, [40] considered69

the approximation problem under the classical risk model via a functional approach;70

[47] proposed a nonparametric estimator of the Gerber-Shiu functions under a per-71

turbed compound Poisson risk model; [48] and [52] proposed approximations by a72

Fourier-Sinc series and a Laguerre series expansion, respectively. As for the general73

Lévy risk model, [8] used the Fourier-cosine method, as first developed by [16], to74

obtain an efficient approximation.75

On the other hand, in most practical considerations in finance, the planning time76

horizon is finite, therefore finite-time Gerber-Shiu functions defined by (notations are77

the same as those in (1.1))78

(1.2) ϕ(u, T ) := E[e−δτκ(Rτ−, |Rτ |)1[0,T ](τ)|R0 = u],79

should be more relevant in real world applications. However, the scope of research80

on finite-time Gerber-Shiu functions is still limited; particularly, numerical studies81

of the effective numerical schemes are only available in a few special classes of risk82

models with certain forms of the corresponding penalty function κ. For instance, [28]83

gave an implementable numerical scheme for a family of meromorphic processes. In84

[19], the authors demonstrated numerical examples for three carefully chosen penalty85

functions under the classical compound Poisson model. [24] used a double inverse86
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Fourier transform for the computation of the finite-time Gerber-Shiu functions lead-87

ing to the pricing of credit default swaps, in which the penalty function relies only88

on the deficit at ruin (i.e., κ(Rτ−, |Rτ |) in (1.2) reduces to κ(|Rτ |) ) such that the89

double Laplace transform can be explicitly obtained. Yet, on finding explicit expres-90

sions for the finite-time Gerber-Shiu functions, systematic results remain rare in the91

existing literature. One exception is the recent work of [35] under the classical com-92

pound Poisson model by solving the corresponding integro-differential equation, they93

obtained an integral solution for the finite-time Gerber-Shiu functions in terms of94

the infinite-time Gerber-Shiu functions with zero initial surplus as integrands; later,95

in [36], they further extended the work to a perturbed compound Poisson model.96

Nevertheless, their obtained expressions may be too complicated for implementable97

numerical computations since these contain terms of either finite-time (in [35]) or de-98

rivatives of infinite-time Gerber-Shiu functions (in [36]), both of which mostly possess99

no closed forms, and so they require extra numerical effort (even unstable due to the100

presence of the derivatives). It is worth mentioning that [6] and [32] studied a similar101

mathematical function but with the stopping time τ being replaced by a deterministic102

time T in pricing barrier options, and they also investigated an efficient computation103

of a special case of (1.2) with κ(x, y) = 1 using the Wiener-Hopf factorization for the104

pricing of credit default swaps.105

In this article, we discuss the numerical scheme against a Lévy subordinator for106

modelling the claim process, which certainly includes a Compound Poisson Process, a107

Gamma Process, and a Generalized Stable Process as special cases; particularly, there108

is no effective numerical approach on calibrating one against a Generalized Stable109

Process. To this end, we introduce the T -deferred Gerber-Shiu functions∗ defined as110

(1.3) ϕ(u, T ) := ϕ(u)− ϕ(u, T ) = E[e−δτκ(Rτ−, |Rτ |)1(T,∞)(τ)|R0 = u].111

We aim to relate these T -deferred Gerber-Shiu functions to the infinite-time Gerber-112

Shiu functions by conditioning on the random surplus level U ′ at time T . By defining113

a new risk process starting from this initial surplus U ′ and considering the condi-114

tional expectation given U ′, we can obtain an integral expression for these T -deferred115

Gerber-Shiu functions in terms of the infinite-time Gerber-Shiu functions and the116

conditional probability density of U ′ to be determined. To figure out the conditional117

probability density, we need to develop a continuous analogue of the Ballot Theo-118

rem (Generalized Ballot Theorem in Section SM1 of the Supplementary Materials)119

for the Lévy subordinator; its proof for the classical risk models had been given in120

Lemma 3.1 of [31]. Two different formulae for computing the finite-time ruin proba-121

bilities were obtained via two approaches in [31], they are respectively the Seal-type122

formula by the standard approach, and the PL-type formula obtained using pseudo-123

probability densities. In the present work, we avoid the pseudo-probability density124

method in order to ensure the numerical approximation is still valid for a very large125

amount of the initial surplus u; see also the work of [44] for the numerical insta-126

bility of the PL-type formula even for a moderate size of u. To numerically solve127

for the infinite-time Gerber-Shiu functions, an efficient approach has been proposed128

in [8] which is based on the Fourier-cosine method; now, as an extension, we extend129

this well-received Fourier-cosine method to effectively compute the finite-time Gerber-130

Shiu functions numerically. As first introduced in [16], the Fourier-cosine method was131

to deal with European type options with a numerical scheme of linear complexity.132

With an indeterminate integrand function f such that only its Fourier transform is133

∗See [35] and [36] for the definition.
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known, the Fourier-cosine method provides an effective numerical method for evaluat-134

ing
∫

Γ
f(x)dx. Comparing it with the usual approach that first calculates the inverse135

Fourier transform, either analytically or numerically, and then substitutes this result136

back to the integral, the novel idea of the Fourier-cosine method is to directly in-137

corporate the Fourier-cosine expansion of f under the integration and to derive an138

approximation via Fubini’s theorem, and hence avoids the complicated direct inverse139

Fourier transform. Under this Fourier-cosine scheme, up to a predetermined tolerance140

level, we show that the computational complexity is linear in the number of terms to141

be calculated, which is much faster than the traditional Monte Carlo method (when142

the Monte Carlo simulation can still be valid).143

Furthermore, it is demonstrated in [17], [18], [51], [43] that this Fourier-cosine144

method is effective when pricing barrier options, Bermudan options, Asian options as145

well as other financial derivatives. In this present work, the efficiency of the Fourier-146

cosine method will be demonstrated again on computing the finite-time Gerber-Shiu147

functions, which is one of the pillars in the context of insurance and actuarial science.148

The rest of this article is organized as follows. We first give a summary of our main149

formulae in Subsection 1.2, including the integral expressions and the approximations,150

but postpone the model setting in Subsection 1.3. Due to the fundamental difference151

in the analyses for the cases u = 0 and u > 0, we shall discuss them one by one.152

The simpler case u = 0 is discussed in Section 2. We construct an approximation153

in Subsection 2.2 and provide the corresponding error analysis in Section SM3 of the154

Supplementary Materials; in Subsection 2.3, several numerical examples are conducted155

to show the effectiveness of the Fourier-cosine method. Section 3 introduces the156

Fourier-cosine numerical scheme when the initial-surplus is positive, and also provides157

an effective approximation in Subsection 3.1; Subsection 3.2 gives more numerical158

illustrations in this new setting, based on which we can see the efficiency of the159

Fourier-cosine method. All of the proofs are given in the supplementary materials.160

1.2. Main formulae. We here first summarize the useful integral expressions for161

the finite-time Gerber-Shiu functions and the corresponding approximation formulae162

as follows:163

(i) Initial surplus u = 0: the integral expression for the finite-time Gerber-Shiu164

function is given by (also see (2.6))165

ϕ(0, T ) = h1(0)− e−δT [ϕ(T )P(LT = 0) + [gT ∗ ϕ](T )] ,(1.4)166167

and the corresponding approximation formula with a linear complexity is given by168

(also see (2.19))169

ϕ(0, T ) =h1(0)
(
1−e−δT

)
−e−δT

K∑
k=0

′
[
P(LT = 0)F

(1)
k −

h1(0)

T
F

(2)
k +F

(3)
k

]
χk(0, T )+η,

(1.5)

170

171

where the notations involved, e.g. the error term η, can be found in formula (2.19) in172

Section 2;173

(ii) Initial surplus u > 0: the integral expression for the finite-time Gerber-Shiu174
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function is given by (also see (3.5))175

ϕ(u, T ) = ϕ(u)− e−δT
[
P (LT = 0)ϕ(u+ T ) + [fT ∗ ϕ](u+ T )176

−
∫ T

0

fT−z(u+ T − z)
(
P(Lz = 0)ϕ(z) + [gz ∗ ϕ](z)

)
dz

]
,(1.6)177

178

and the corresponding approximation formula with a linear complexity is given by179

(also see (3.9))180

ϕ(u, T ) = h1(0) +

K∑
k=0

′F
(1)
k χk(0, u)−e−δT

{
P (LT =0)

[
h1(0)+

K∑
k=0

′F
(1)
k χk(0, u+T )

]
181

+

K∑
k=0

′
[
h1(0)F

(4)
k (T ) + F

(5)
k (T )

]
χk(0, u+T )−

∫ T

0

[
K∑
k=0

′F
(6)
k (T − z) cos kπ(u+T−z)

a

]
(u+ T − z)n0

182

·

[
h1(0)+

K∑
k=0

′
(
P(Lz = 0)F

(1)
k −h1(0)F

(2)
k (z) + F

(3)
k (z)

)
χk(0, z)

]
dz

}
+ ε′3,(1.7)183

184

where the notations involved, e.g. the error term ε′3, can be found in Theorem 3.3.185

1.3. Model setting. We now lay down the general model setting and introduce186

some useful notations. Let {Rt}t≥0 be the surplus process of an insurance company187

defined by188

(1.8) Rt := u+ t− Lt,189

where u ≥ 0 is the initial surplus, the claim size process {Lt}t≥0 is modelled by a190

Lévy subordinator which consists of only positive jumps with L0 = 0 and the mean191

of Lt is finite, which is increasing in t, for all t ≥ 0; see for an introduction to such192

a process in [13], [39], [46], [29] and the references therein. The premium rate is set193

to be 1 per unit time for simplicity, or we can adjust the time parameter to achieve194

this; to add a point, no matter how we accelerate the process by whatever constant195

multiple, Lt still remains a Lévy Process, so for any constant premium rate, we only196

need to study the case when the premium rate is 1. The characteristic function of Lt197

is given by198

E[exp(iωLt)] = exp

(
t

∫
(0,∞)

(eiωx − 1)ν(dx)

)
=: exp(tΛ(ω)),(1.9)199

200

where the Lévy measure ν is a Borel measure on (0,∞) with
∫∞

0
(|x|2 ∧ 1)ν(dx) <201

∞. In the present work, we further assume the safety loading condition µν :=202 ∫∞
0
xν(dx) < 1 (also see [3] and [25]) to avoid almost certain ruin. For each t > 0,203

the density function of Lt is denoted by ft(x) for all x ∈ (0,∞) and we avoid defin-204

ing ft(0), which could take infinity sometimes, for instance, it is the case of the205

“density”(actually a Dirac delta) of a compound Poisson distribution at 0. We also206

denote the survival function of Lt by St(x) =
∫∞
x
ft(y) dy for x ∈ [0,∞) and thus207

St(0) = 1− P(Lt = 0).208
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6 X. LI, Y. SHI, S. C. P. YAM, AND H. YANG

The time at ruin is defined by τ(u) := inft≥0{t : Rt < 0}. By the zero-one law,209

note that τ(0) 6= 0 almost surely. Hence the case u = 0 is a non-trivial one, which210

will be devoted for further discussion in Section 2.211

Throughout this paper, we shall denote the Fourier transform of an arbitrary212

function h : [0,∞)→ R by ĥ(s) :=
∫∞

0
h(x)eisxdx.213

2. With zero initial surplus. To start with, we first consider the Lévy Process214

with u = 0. As mentioned in the introduction, we try to relate the T -deferred Gerber-215

Shiu function with the infinite-time Gerber-Shiu function as follows, by recalling (1.2),216

(2.1) ϕ(u, T ) = ϕ(u)− ϕ(u, T ).217

We here study how to compute the T -deferred Gerber-Shiu function, and then substi-218

tute it back to (2.1) to get the approximation of the finite-time Gerber-Shiu function.219

Conditioning on the values of LT and by the law of total expectation, we have,220

ϕ(0, T ) = E[e−δτκ(Rτ−, |Rτ |)1(T,∞)(τ)|R0 = 0]221

= E[E[e−δτκ(Rτ−, |Rτ |)1(T,∞)(τ)|R0 = 0, LT , τ ]].(2.2)222223

To calculate the corresponding inner conditional expectation in (2.2), we can simply224

shift the time parameter to commence at 0. Define R̃t := Rt+T , τ̃ := τ − T . Clearly,225

when τ ≤ T , we have E[e−δτκ(Rτ−, |Rτ |)1(T,∞)(τ)|R0 = 0, LT , τ ≤ T ] = 0. Since226

LT > T implies τ ≤ T , so we only have to consider the remaining possibility of227

LT = x ∈ [0, T ], then R̃0 = RT = 0 + T − LT = T − x and we have228

E[e−δτκ(Rτ−, |Rτ |)1(T,∞)(τ)|R0 = 0, LT = x, τ > T ]229

= E[e−δτκ(Rτ−, |Rτ |)1(T,∞)(τ)|RT = T − x, τ > T ]230

= E[e−δτκ(R̃(τ−T )− , |R̃τ−T |)1[0,∞)(τ − T )|R̃0 = T − x, τ − T > 0]231

= E[e−δ(τ̃+T )κ(R̃τ̃− , |R̃τ̃ |)1[0,∞)(τ̃)|R̃0 = T − x, τ̃ > 0]232

= e−δTE[e−δτ̃κ(Rτ̃−, |Rτ̃ |)1[0,∞)(τ̃)|R̃0 = T − x]233

= e−δTϕ(T − x).(2.3)234235

Substitute this result into equation (2.2), we have236

ϕ(0, T ) =E[E[e−δτκ(Rτ−, |Rτ |)1(T,∞)(τ)|R0 = 0, LT , τ ]]237

=e−δTϕ(T )P(LT = 0) + e−δT
∫ T

0

ϕ(T − x)P(LT ∈ (x+ dx), τ > T ).(2.4)238
239

Define the probability density gT (x) as240

(2.5) gT (x)dx := P(LT ∈ (x, x+ dx), τ > T ), 0 < x < T,241

and hence242

(2.6) ϕ(0, T ) = e−δT

[
ϕ(T )P(LT = 0) +

∫ T

0

ϕ(T − x)gT (x)dx

]
.243

By a continuous analogue of Ballot Theorem (also see the Generalized Ballot Theorem244

and its proof in Section SM1), we have245

gT (x) =
T − x
T

fT (x), 0 < x < T.246
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For the sake of computation of the Fourier transform of gT , we propose to extend the247

defective domain (0, T ) of the density gT to the whole positive real line (0,∞), yet248

still denote the extended function by gT :249

(2.7) gT (x) =
T − x
T

fT (x), x > 0,250

which is well-defined since fT (x) is defined for all x > 0.251

The first term in the bracket of (2.6) involving the infinite-time Gerber-Shiu252

function can be easily calculated by various methods, for instance, those developed253

by [47], [8] and [48]. We here choose the method developed by [8] and represent the254

infinite-time Gerber-Shiu function by255

ϕ(T ) = h1(0) +

∫ T

0

V (x)dx,(2.8)256
257

where the definitions of the functions h1 and V together with further properties are258

included in Appendix A, in addition, we assume that V ∈ L1(R+) ∩ L2(R+) in the259

rest of this paper as we also adopted in [8] before.260

For the second term of (2.6), by a simple calculation (see the derivation of (SM1.5)261

in Section SM1 for details), we can obtain that262

∫ T

0

ϕ(T−x)gT (x)dx = h1(0)

[
1− P(LT =0)− 1

T

∫ T

0

ST (x)dx

]
+

∫ T

0

[V ∗ gT ](x)dx,

(2.9)

263

264

where [V ∗ gT ](x) :=
∫ x

0
V (x− z)gT (z)dz is the convolution, since both the supports265

of V and gT contain only non-negative numbers. Combining (2.8) and (2.9), we have:266

ϕ(T )P(LT = 0) +

∫ T

0

ϕ(T − x)gT (x)dx267

=h1(0) +

∫ T

0

(
P(LT = 0)V (x)− h1(0)

T
ST (x) + [gT ∗ V ](x)

)
dx.(2.10)268

269

Substituting (2.10) back into (2.6) and together with (2.1), we obtain a crucial formula270

for the finite-time Gerber-Shiu function,271

ϕ(0, T )=h1(0)
(
1− e−δT

)
−e−δT

∫ T

0

(
P(LT =0)V (x)− h1(0)

T
ST (x) + [gT ∗ V ](x)

)
dx.

(2.11)

272
273

In the rest of this section, we shall propose an approximation based on (2.11) to which274

we apply the Fourier-cosine method. There is a common point in the three terms in275

the integrand in (2.11), which in turn connects with the effectiveness of the Fourier-276

cosine method, namely the Fourier transforms of each term can be readily obtained277

(to be discussed in Subsection 2.2).278

2.1. Fourier-cosine numerical scheme. In this subsection, we sketch out the279

main idea behind the numerical approximation method for the integral in the following280

form:281

(2.12)

∫ γ

0

g(x)dx =

∫ a

0

1{x≤γ}g(x)dx =: Jγ .282
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To start with, for an arbitrary function g defined on [0, π], there is a natural283

symmetric extension of g into an even function on [−π, π] by defining ǧ as284

ǧ(x) =

{
g(x), x ≥ 0;
g(−x), x < 0.

285

Clearly, every even function can be expressed as a Fourier-cosine series (see [16]) as286

follows:287

ǧ(x) =

∞∑
k=0

′ cos(kx)
1

π

∫ π

−π
ǧ(x) cos(kx)dx =

∞∑
k=0

′ cos(kx)
2

π

∫ π

0

g(x) cos(kx)dx,288

where the notation
∑′

denotes a summation with its first term weighted by a half.289

Since g is a part of ǧ, the expansion is also valid for g itself. For any general function290

with the support on [0, a], its Fourier-cosine series expansion can be obtained through291

a simple change of variable y := x
aπ.292

Motivated by the above argument, we write293

g(x) =

∞∑
k=0

′Ak cos

(
kπ

a
x

)
, for 0 ≤ x ≤ a,294

where a is a positive constant, to be determined, greater than γ, and295

Ak =
2

a

∫ a

0

g(s) cos

(
kπ

a
s

)
ds.296

Since
∑n
k=0

′Ak cos
(
kπ
a x
)

converges to
∑∞
k=0

′Ak cos
(
kπ
a x
)

in L2, by Fubini’s theo-297

rem, we have298

Jγ =

∫ a

0

1{x≤γ}

∞∑
k=0

′Ak cos

(
kπ

a
x

)
dx =

∞∑
k=0

′Akχk(0, γ),299

where300

(2.13) χk(0, γ) =

∫ γ

0

cos

(
kπ

a
x

)
dx =

{
a
kπ sin

(
kπγ
a

)
, k 6= 0;

γ, k = 0.
301

The Fourier-cosine method suggests that, if a is large enough, it is tempting to replace302

the coefficient Ak by the real part of the Fourier transform of g(x), as shown below:303

Ak=
2

a

∫ a

0

g(s) cos

(
kπ

a
s

)
ds=

2

a
<
{∫ a

0

g(s)ei
kπ
a sds

}
=Fk−

2

a
<
{∫ ∞

a

g(s)ei
kπ
a sds

}
,

(2.14)

304
305

where <{x} represents the real part of the complex number x, and306

(2.15) Fk =
2

a
<
{
ĝ

(
kπ

a

)}
, k = 0, 1, 2, ...307

In summary, Jγ can be expressed as308

(2.16) Jγ =

∞∑
k=0

′Akχk(0, γ) =

K∑
k=0

′Fkχk(0, γ) + η1 + η2,309
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where the error terms η1 and η2 relating to g are:310

η1 := −
K∑
k=0

′ 2

a
χk(0, γ)<

{∫ ∞
a

g(s)ei
kπ
a sds

}
, η2 :=

∞∑
k=K+1

Akχk(0, γ).(2.17)311

312

Here η1 quantifies the error arisen from replacing Ak by Fk, which involves the Fourier313

transform of g; while η2 quantifies the error arisen from approximating the infinite314

series by a truncated partial sum.315

Remark 2.1. Note that our Fourier-cosine scheme is slightly different from the
original COS method first introduced in [16]. In [16], in order to compute the expec-
tation

EQ[v(y, T )|x] =

∫
R
v(y, T )fY |X(y|x)dy,

they first chopped off the integration range R to [a, b], and then they used the Fourier-
cosine expansion to approximate the truncated integral∫ b

a

v(y, T )fY |X(y|x)dy,

and this in turn introduces an additional integration truncation error∫
R\[a,b]

v(y, T )fY |X(y|x)dy.

As explained in [5] and [11], this truncation error is sensitive to the choice of a and
b and may be problematic especially when the payoff function v(y, T ) grows rapidly
with y approaching infinity and the transition probability density fY |X(y|x) has a fat
right-tail. In contrast, we use the Fourier-cosine scheme directly on the integral

Jγ =

∫ γ

0

g(x)dx,

which already has a finite integration range, and hence does not involve any integration316

range truncation error so that our present method is much more stable with the choice317

of a as will be seen in the demonstration of our theory and the simulations. Our318

replacement error η1 (see (2.17)) related to the parameter a can be well-controlled319

simply by choosing a suitably large enough a, and then for a fixed a, we set another320

large enough K so as to make η2 sufficiently small. As for the recommended numerical321

choices of a and K in our scheme, we put them in Subsection 2.3 and Subsection 3.2.322

2.2. Approximation for finite-time Gerber-Shiu functions. Apply the323

Fourier-cosine method summarised in Subsection 2.1 to the integral term in equa-324

tion (2.11) and define F
(1)
k , F

(2)
k , F

(3)
k , recalling that gT (x) = T−x

T fT (x), as325

F
(1)
k :=

2

a
<
{
V̂

(
kπ

a

)}
, F

(2)
k :=

2

a
<
{
ŜT

(
kπ

a

)}
, F

(3)
k :=

2

a
<
{

̂[V ∗ gT ]

(
kπ

a

)}
,

(2.18)

326
327

for k = 0, 1, 2, 3, · · · . Then we can use (2.16) to replace the integral in (2.11) and328

obtain the following expression (also see (1.7)):329

ϕ(0, T ) =h1(0)
(
1−e−δT

)
−e−δT

K∑
k=0

′
[
P(LT = 0)F

(1)
k −

h1(0)

T
F

(2)
k +F

(3)
k

]
χk(0, T )+η,

(2.19)

330

331
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where the total error η is given by:332

η := −e−δT
[
P(LT = 0)(η

(1)
1 + η

(1)
2 )− h1(0)

T
(η

(2)
1 + η

(2)
2 ) + (η

(3)
1 + η

(3)
2 )

]
,333

334

where the error terms η
(i)
1 and η

(i)
2 are the corresponding η1 and η2 in (2.16) for335

i = 1, 2, 3, namely by applying the Fourier-cosine method to the three terms in the336

integrand in (2.11) respectively. The details of the error analysis will be shown in337

Section SM3 of the Supplementary Materials. And we have the following result:338

Theorem 2.2. The total error η in (2.19) is bounded by:339

|η| ≤ 3 max

{
h1(0)

T
, 1

}[∫ ∞
a

|V (s)|+ |ST (s)|+ |[V ∗ gT ](s)|ds+
Ca

Kmin{r(1),r(2),r(3)}

]
,340

provided that the functions V, ST , V ∗ gT ∈ L2(R+), and when k > 1
2 and g = V, ST341

or V ∗ gT so that they all fulfill the condition342

(2.20)

∫ +∞

−∞
(<(ĝ(s)))2(1 + s2)kds <∞,343

where the constant Ca depends only on a, and r(1), r(2), r(3) are the corresponding344

parameters in relation to the functions V , ST and V ∗ gT in Proposition SM3.4 of345

Section SM3.346

Hence we can set the total error η to be arbitrarily small by taking a large enough a.347

We can further improve our error bound by assuming additional decaying structures348

on the Fourier transforms of the functions V , ST and V ∗ gT , namely the algebraic349

index of convergence and the monotonicity. To this end, we define the algebraic index350

of convergence of a generic sequence {Ak, k = 0, 1, 2, · · · } as follows.351

Definition 2.3. A sequence {Ak, k = 0, 1, 2, · · · } has an algebraic index of con-352

vergence of s if it is the greatest possible real number such that lim supk→∞ |Ak|ks <353

∞.354

Theorem 2.4. For T ∈ [ε, a − ε] for an ε > 0, suppose that the sequences355

{F (i)
k }, i = 1, 2, 3 satisfy that:356

1. For any i = 1, 2, 3, the sequence {F (i)
k } has an algebraic index of convergence357

βi, and so that F
(i)
k → 0 as k →∞;358

2. There exists a large enough N ′ such that for all i = 1, 2, 3, ∆F
(i)
k := F

(i)
k+1 −359

F
(i)
k are of the same sign for all k ≥ N ′.360

Then the total error η can be bounded tighter in the sense that for any K ≥ N ′,361

|η| ≤ 3 max

{
h1(0)

T
, 1

}(∫ ∞
a

|V (s)|+ |ST (s)|+ |[V ∗ gT ](s)|ds+
Ca,ε

K1+min{β1,β2,β3}

)
,362

where the constant Ca,ε depends only on a and ε.363

Proof. The proof for bounding the error part caused by replacement in this en-364

hanced theorem is identical to that for Theorem 2.2; while the error part caused by365

truncation can be shown in a similar manner by following the arguments in the proof366

of Theorem 4.5 in [9].367
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Remark 2.5. The condition in Theorem 2.4 is stronger than that in Theorem 2.2368

in the sense that it requires the Fourier transforms of the three functions converge to369

0 at a certain rate, while we only assume their overall integrability in Theorem 2.2.370

However, [8] showed that the conditions in Theorem 2.4 are fulfilled for the Fourier-371

cosine coefficients {F (1)
k } in most common models, such as the Compound Poisson-372

Exponential claim process (see Example 5.1 in [8]), the Lévy-Gamma Process (see373

Example 5.4 in [8]), for more legitimate examples one can refer to [8]. Besides, for374

the coefficients {F (2)
k } and {F (3)

k }, the conditions on them can be also witnessed375

numerically and graphically.376

In (2.19), the values of h1(0) and F
(1)
k can be obtained explicitly, see Appendix A.377

The Fourier transform of ST (x) can be found by:378

ŜT (0) :=

∫ ∞
0

ST (x)dx = E(LT ) = µνT,

ŜT (s) :=

∫ ∞
0

ST (x)eisxdx =
eisx

is
ST (x)

∣∣∣∣∞
0

+
1

is

∫ ∞
0

fT (x)eisxdx

=
f̂T (s)− (1− P(LT = 0))

is
, s 6= 0,

(2.21)379

where the Fourier transform of fT can be obtained by f̂T (s) = E[exp(isLT ), {LT 6=380

0}] = E[exp(isLT )] − P(LT = 0) = exp(TΛ(s)) − P(LT = 0), since there is a point381

mass of LT at 0. The Fourier transform of gT can be found as:382

ĝT (s) =

∫ ∞
0

T − x
T

fT (x)eisxdx =

∫ ∞
0

fT (x)eisxdx− 1

T

∫ ∞
0

xfT (x)eisxdx383

= f̂T (s)− 1

iT

∫ ∞
0

d

ds

[
fT (x)eisx

]
dx = f̂T (s) +

i

T

d

ds
f̂T (s),(2.22)384

385

where the last equation follows from Leibniz’s rule. Finally, the Fourier transform of386

[V ∗gT ] can be derived from the convolution rule and we get V̂ ∗ gT (x) = V̂ (x)
[
f̂T (s)387

+ i
T

d
ds f̂T (s)

]
, where V̂ is given by (A.4). Hence, we can calculate all the coefficients388

in (2.18) precisely:389

F
(1)
k =

2

a
<
{
V̂

(
kπ

a

)}
, k ≥ 0;

F
(2)
k =

2

a
<

{
exp(TΛ(kπa ))− 1

ikπa

}
, k ≥ 1; F

(2)
0 =

2µνT

a
;

F
(3)
k =

2

a
<

{
V̂

(
kπ

a

)[
exp

(
TΛ

(
kπ

a

))(
1 + i

dΛ(s)

ds

∣∣∣∣
s= kπ

a

)
− P(LT = 0)

]}
, k ≥ 0.

(2.23)

390

2.3. Numerical illustrations. Throughout this paper, all the computer pro-391

grams for numerical illustrations were written in Python 3, and they were run on a392

standard Macbook Pro(3.1 GHz Intel Core i5 processor and 8 GB RAM).393

In the following numerical illustrations, we shall take the numerical choice of the394

parameter a as:395

(2.24) a = u+ T +
L

η
+ L
√
c2,396
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where η = (1 − µν)/µν is the safety loading factor by recalling c = 1, and c2 is the397

second cumulant of LT (i.e. the variance of the random variable LT ) being given by:398

c2 = [̂x2fT ](0)−
[
[̂xfT ](0)

]2
= −TΛ′′(0),399

400

which can be derived by the formula (3.7). This choice for a is similar to the formulae401

suggested for the computational purpose in the work of [16], though our definition of402

a is different from the computational domain in their COS method. The term (u+T )403

stems from the condition a > u + T as demanded in Claim SM4.3, Claim SM4.4,404

Lemma SM4.5 and Lemma SM4.6. Note that Λ′′(0) = −
∫

(0,∞)
x2ν(x)dx is a negative405

real number, thus if we set a proper positive L here, L
√
c2 > 0, such that the condition406

a > u+ T is fulfilled. We stress that our approximation is quite robust to the choice407

of L as can be seen in the plots against L in Figures 4 and 7 to 9, but throughout408

this paper, for the sake of convenience, we pick L = 7, which is certainly not the only409

suitable choice of L.410

Example 2.6 (Finite-time ruin probability for a Compound Poisson Process). We411

consider the case when δ = 0 and κ(x, y) ≡ 1, in which the finite-time Gerber-Shiu412

function becomes the finite-time ruin probability, i.e. ϕ(u, T ) = P(τ ≤ T ). For LT ,413

we assume the Poisson rate to be λ and exponentially distributed claim sizes with414

the mean of 1/µ. The Lévy measure for the process is ν(dx) = λF (dx) = λµe−µxdx.415

Λ(s) and the Fourier transform of V are given by:416

Λ(s) = λ

(
µ

µ− is
− 1

)
, V̂ (s) =

λ

µ
· λ− µ

(µ− λ)− is
.417

Thus, the corresponding coefficients in (2.18) can be obtained by (2.23). Here, the418

numerical experiment is conducted with the following parameters: λ = 0.87, µ = 1,419

T = 60 and L = 7. This corresponds to a loading factor η of about 15% (usually420

10%−20%, see P3 of [3] for more interpretations) as the expected claim per unit time421

µν is 0.87. Figure 1 illustrates the ruin probability obtained by the approximation422

formula (2.19). The reference horizontal line is the true value of ruin probability based423

on the numerical integration formula (Proposition 1.3, Chapter V, [3]). As expected,424

the approximated probability tends to the true value as K increases. Table 1 displays425

the absolute errors between the approximated and true ruin probabilities, and the426

convergence is clear. To check the rate of convergence, we obtain the approximations427

with a grid of larger values of K, and plot the negative logarithm of the absolute428

difference between the approximated and true values against logK. Figure 2 plots429

the result, from which we observe that the error decays with an exponential rate430

and reaches the smallest possible error limit soon (an accuracy of around 10−14 for431

K > 55), which is determined by the parameter a. The time required for plotting432

Figure 1 (including 50 points) is only 0.039s.433

K 4 8 16 32 64 128
Error 3.0 · 10−2 2.9 · 10−3 3.6 · 10−5 8.2 · 10−10 8.3 · 10−15 8.3 · 10−15

Table 1
Error magnitude for the Fourier-cosine approximation of the ruin probability with parameters

λ = 0.87, µ = 1, T = 60 and L = 7.

Example 2.7 (Value-at-Risk for a Gamma Process). We consider the joint distri-434

bution of the deficit at ruin and the time of ruin F (T, p) := P(|Rτ | ≤ p, τ ≤ T ). Let435
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Fig. 1. Approximation for the ruin prob-
ability, where the horizontal line (at 0.8464) is
the true value.
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Fig. 2. Plot of − log |error| against logK
for the ruin probability approximation.

δ = 0 and the penalty function κ(x, y) = 1[0,p](y), then the finite-time Gerber-Shiu436

function (1.2) becomes437

ϕ(u, T ) = E[1[0,p](y)1[0,T ](τ)|R0 = u] = P(|Rτ | ≤ p, τ ≤ T ).438

If we further define439

FT (p) := P(|Rτ | ≤ p|τ ≤ T ) = F (T, p)/F (T,∞),440

then at the confidence level α, VaRα satisfies FT (VaRα) = α. Similar calculations can441

also be found in [28]. We consider a Gamma Process Lt with parameters α = 0.4 and442

β = 0.5, which has been used to evaluate infinite-time Gerber-Shiu functions in [8] and443

[53] as the underlying process for approximating ruin probabilities. Its Lévy measure444

is given by ν(dx)=
(
αe−βx/x

)
dx, with E(Lt) = αt/β. In Figure 3, we plot the finite-445

time Gerber-Shiu function ϕ(u, T ) = F (T, p) with respect to the truncation number446

of terms K in the left subfigure for the parameters u = 0, p = 2, T = 24, L = 7,447

and we also plot ϕ(u, T ) with respect to the parameter p but for a fixed value of448

K = 64 in the right subfigure. We also provide a Monte Carlo simulation benchmark.449

For every path, since the Gamma Process contains infinitely many jumps and the450

jumping times are dense on any nontrivial compact time interval, which is different451

from a Compound Poisson Process, we partition the time interval [0, T ] uniformly with452

a mesh size of 1/213, and simulate Lt on the corresponding time grid by following the453

Monte Carlo procedure in [12], then use this step-wise path to evaluate the value of the454

corresponding finite-time Gerber-Shiu function. Note that there is always a negative455

bias of the Monte Carlo simulation compared with the true value since the possibility456

of ruin has always been underestimated due to the discretization of the path. We457

simulate 50,000 paths in each Monte Carlo simulation, and run the simulation for 50458

times (50 data points) to calculate the mean and the standard deviation. The one459

standard deviation range (i.e. the range centered at the mean and with a radius of460

one standard deviation) is 0.7068± 0.0025 and is shown in Figure 3. We can see the461

approximation falls into the one standard deviation range very fast as K increases.462

The time required to run the Monte Carlo simulation for 50 times (50 data points)463

is 85 minutes, while it only needs 9.4s to generate 500 points (the number of points464

in the second plot of Figure 3) by our Fourier-cosine method with K = 64, which is465

significantly faster and more effective than the Monte Carlo simulation; and in the466

insurance industry, most practitioners are still predominantly using the plain Monte467

Carlo simulation, indeed!468
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Fig. 3. Gerber-Shiu function based on the Fourier-cosine approximation for the Generalized
Stable Process.

3. With a positive initial surplus. We next extend the Fourier-cosine method469

to the case u > 0. Recall that for Lévy subordinators with ν(R+) = ∞, there are470

almost surely countably many jumping times which are dense in [0,∞), while for471

0 < ν(R+) < ∞, there are infinitely countably many isolated jumping times which472

can be counted in an increasing order (but only finitely many in any finite interval),473

and the interarrival time has an exponential distribution with mean 1/ν(R+). For474

more details about Lévy Processes, readers can refer to Theorem 21.3 of [45].475

In the following subsection, we shall introduce the approximation for T -deferred476

Gerber-Shiu functions. To do so, we need to first deal with the probability P(LT ∈477

(x, x+ dx), τ > T ), which appears in our proposed expression (3.3) of the T -deferred478

Gerber-Shiu functions. Similar to the case u = 0, we use the idea of Generalized479

Ballot Theorem to determine that probability, see Section SM2 for details.480

3.1. Approximation for T -deferred Gerber-Shiu functions. We now dis-481

cuss the approximation for the T -deferred Gerber-Shiu function ϕ(u, T ) for a given482

time T > 0 with an initial surplus u > 0. Similar to the case of u = 0, by the tower483

property, we have484

ϕ(u, T ) = E[e−δτκ(Rτ−, |Rτ |)1(T,∞)(τ)|R0 = u]485

= E[E[e−δτκ(Rτ−, |Rτ |)1(T,∞)(τ)|R0 = u, LT , τ > T ]|R0 = u].(3.1)486487

As in Section 2, we define R̃t := Rt+T , τ̃ := τ − T . Since LT > u + T implies488

τ ≤ T , so we only need to consider the possibility of LT = x ∈ [0, u + T ], then489

R̃0 = RT = u + T − LT = u + T − x ≥ 0 and by the derivation for (2.3), the inner490

conditional expectation in (3.1) becomes491

E[e−δτκ(Rτ−, |Rτ |)1(T,∞)(τ)|R0 = u, LT = x, τ > T ]492

=E[e−δ(τ̃+T )κ(R̃τ̃−, |R̃τ̃ |)1[0,∞)(τ̃)|R̃0 = u+ T − x, τ̃ > 0]493

=e−δTϕ(u+ T − x).(3.2)494495

Substitute (3.2) into Equation (3.1), and rewrite it in integral form, we have496

497

(3.3) ϕ(u, T ) = e−δT

[
ϕ(u+ T )P(LT = 0, τ > T )498

+

∫ u+T

0

ϕ(u+ T − x)P(LT ∈ (x, x+ dx), τ > T )

]
.499

500
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For any x ∈ (0, u), there will be no bankruptcy, and so P(LT ∈ (x, x + dx), τ >501

T ) = P(LT ∈ (x, x + dx)) = fT (x); while for any x ∈ (u, u + T ), we define and502

derive in Theorem SM2.1 that hT (x, u)dx := P (LT ∈ (x, x+ dx), τ > T ) = fT (x) −503

P (Lu+T−x = 0) fx−u(x)−
∫ x
u
gu+T−z(x− z)fz−u(z)dz. Hence, we get that504

ϕ(u, T ) = e−δT

[
P(LT = 0)ϕ(u+ T ) +

∫ u

0

fT (x)ϕ(u+ T − x)dx505

+

∫ u+T

u

hT (x, u)ϕ(u+ T − x)dx

]
;(3.4)506

507

by a simple calculation (see the derivation of (SM2.5) in Section SM2 for details), we508

can obtain that509

ϕ(u, T ) = e−δT

[
P (LT = 0)ϕ(u+ T ) + [fT ∗ ϕ](u+ T )510

−
∫ T

0

fT−z(u+ T − z)
(
P (Lz = 0)ϕ(z) + [gz ∗ ϕ](z)

)
dz

]
.(3.5)511

512

Since all the Fourier transforms of the terms in (3.5) are already known, we can apply513

the Fourier-cosine method on (3.5) directly to obtain the approximation for ϕ(u, T ).514

However, in order to enhance the convergence rate of the approximation error, we515

substitute (2.8) and (2.10) into (3.5), to finally achieve:516

ϕ(u, T )=e−δT

{
P (LT =0)

[
h1(0) +

∫ u+T

0

V dx

]
+

∫ u+T

0

[h1(0)fT (x)+[fT ∗ V ](x)] dx517

−
∫ T

0

fT−z(u+T−z)·

[
h1(0) +

∫ z

0

(
P (Lz=0)V (x)− h1(0)

z
Sz(x)+[gz ∗ V ](x)

)
dx

]
dz

}
.

(3.6)

518

519

To this end, we shall apply the Fourier-cosine technique to calibrate term by term of520

(3.6) in order to obtain the approximation formula for ϕ(u, T ). However, the error521

for approximating the term ft(u + t) directly by the Fourier-cosine method may be522

divergent when t = T − z → 0. However, if it is valid that for any t ∈ (0, T ], the523

real part of the Fourier coefficient f̂t
(
kπ
a

)
is monotone with respect to k ≥ K, for a524

sufficiently large K, this error converges to zero and the proof can be done in parallel525

with the argument leading to Lemma SM4.5. Nevertheless this condition is hard to526

verify since it demands that f̂t
(
kπ
a

)
is monotone with respect to k for all t ∈ (0, T ]527

and it does not hold under some representative examples such as a Compound Poisson528

Process with beta distributed claims. So instead of tackling ft(u+ t) directly, we can529

first approximate (u+ t)n · ft(u+ t) by the Fourier-cosine method, and then divide it530

by (u+ t)n in order to get the approximation of the function ft(u+ t). Note that the531

Fourier transform of xnft(x) is simply:532

[̂xnft](s) = (−i)n · dnf̂t(s)

dsn
= (−i)n · dn

dsn

(
etΛ(s) − P (Lt = 0)

)
,(3.7)533

534

which is readily accessible and here Λ(s) :=
∫

(0,∞)
(eisx−1)ζ(x)dx (also refer to (1.9)),535

where ζ denotes the density of the Lévy measure, i.e., ν(dx) = ζ(x)dx. In order to536
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warrant the error η(6)(t) to decay uniformly (in t) and monotonically to zero when537

we attempt to approximate xn · ft(x) by the Fourier-cosine method for t ∈ (0, T ], we538

impose the following assumptions in the rest of Section 3:539

Assumption A. There exists a positive integer n0 such that540

i) the magnitude of the first and n0-th order derivatives of Λ(s) possesses the541

same order of |Λ(1)(s)|n0 = O
(
s−(1+θ)

)
and |Λ(n0)(s)| = O

(
s−(1+θ)

)
for some542

θ > 0;543

ii) furthermore for n0 ≥ 2 and any integer m = 2, · · · , n0, xmζ(x) and xmζ ′(x) ∈544

L1(R+); otherwise if n0 = 1, no additional condition is required.545

Remark 3.1. The forms of Λ(s) are simple for most common models, for instance,546

the Lévy measure of a Gamma Process with parameters α> 0 and β > 0 is ν(dx) =547 (
αe−βx/x

)
dx, thus Λ(s) = −α log(1 − is

β ), then we can simply choose n0 = 2 so548

that Assumption A holds. More examples will be given in the following numerical549

illustrations in Subsection 3.2.550

Remark 3.2. There is a supplement on choosing a suitable n0 in Assumption A.551

To determine the order of Λ(m)(s) = im
∫∞

0
xmζ(x)eisxdx, that is to investigate the552

asymptotic behavior of the Fourier integral
∫∞

0
h(x)eisxdx as s→∞, which is related553

to the well known Erdélyi lemma (see [14, 15]) and is entirely determined by the554

behavior of h(x) in the neighborhood of the end points 0 and ∞ of the integration555

domain and the points at which h(x) or some of its derivatives are discontinuous. If556

the Lévy density ζ(x) ∈ C∞(R+) with an exponential decay tail and has only one557

singularity at the origin of the type x−ι, i.e. ζ(x) ∼ x−ι as x→ 0+, where ι < 2 due to558

the safety loading condition
∫∞

0
xζ(x)dx <∞, then by the Theorem 2 in [50] we have559

|Λ(m)(s)| = O
(
s−(m+1−ι)) for all integers m, and particularly, |Λ(1)(s)| = O

(
s−(2−ι)).560

For the finite Lévy measure case, we have
∫∞

0
ζ(x)dx <∞, thus ι < 1 and n0 = 1, and561

they fulfill Assumption A, more illustrations can be found in our numerical examples562

in Subsection 3.2.1; while for the infinite Lévy measure case, ι ∈ (1, 2), we can choose563

n0 to be the smallest integer which is strictly larger than 1
2−ι , more illustrations can564

be found in our numerical examples in Subsection 3.2.2.565

Assumption B. ft(x) is jointly continuous for (x, t) ∈ R+ × (0, T ], and there is an566

x0 > 0, such that f ′t(x) < 0 in (x, t) ∈ (x0,∞)× (0, T ].567

Assumption C. The algebraic index of convergence of V̂ , βV > 0.568

To write down the approximation formula for ϕ(u, T ), we first introduce some569

notations. Define, for k = 0, 1, 2, . . . , and t > 0,570

F
(1)
k :=

2

a
<
{
V̂

(
kπ

a

)}
, F

(2)
k (t) :=

2

a
<
{

1

t
Ŝt

(
kπ

a

)}
, F

(3)
k (t) :=

2

a
<
{

̂[gt ∗ V ]

(
kπ

a

)}
,

F
(4)
k (t) :=

2

a
<
{
f̂t

(
kπ

a

)}
,F

(5)
k (t) :=

2

a
<
{
̂[ft ∗ V ]

(
kπ

a

)}
,F

(6)
k (t) :=

2

a
<
{
̂[xn0ft]

(
kπ

a

)}
.

(3.8)

571

Hence, by applying the Fourier-cosine approximation on each term of ϕ(u, T ) in572

(3.6), we can then conclude with the following theorem and its complete proof is put573

in Section SM4 of the Supplementary Materials.574

Theorem 3.3. Assume that the insurer has an initial surplus u > 0, and suppose575

that Assumptions A, B and C also hold. For a given T > 0 and any ε > 0, there576

exists a K ∈ Z+ and a > 0 such that, the T -deferred Gerber-Shiu function (also see577
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(1.7))578

ϕ(u, T )=e−δT

{
P (LT =0)

[
h1(0) +

K∑
k=0

′F
(1)
k χk(0, u+ T )

]
+

K∑
k=0

′
[
h1(0)F

(4)
k (T )579

+F
(5)
k (T )

]
· χk(0, u+T )−

∫ T

0

[
K∑
k=0

′F
(6)
k (T−z) cos kπ(u+T−z)

a

]
(u+T−z)n0

580

·

[
h1(0)+

K∑
k=0

′
(
P (Lz=0)F

(1)
k −h1(0)F

(2)
k (z) + F

(3)
k (z)

)
χk(0, z)

]
dz

}
+ ε3,(3.9)581

582

where the explicit formula for the approximation error ε3 is given in (SM4.11) and583

|ε3| < ε.584

This theorem presents only the approximation formula for the T -deferred Gerber-585

Shiu function ϕ(u, T ). To get the final approximation for the finite-time Gerber-Shiu586

function ϕ(u, T ), we simply apply the formula ϕ(u, T ) = ϕ(u)−ϕ(u, T ) in (1.3) to get587

the desired approximation (1.7), and the approximation error in (1.7) is ε′3 := η(1)−ε3,588

where the definition and the bound of η(1) can be found in (SM3.1). And for the last589

integral term in the Equation (3.9), since it can be shown that the Fourier-cosine590

approximation converges uniformly in z to the original integrand on the integration591

domain, where the proof is put in Section SM4, we can utilize a suitable numerical592

integration method to approximate it. In this paper, we choose Simpson’s rule with593

a suitable partition size (say the number of partition points on [0, T ] is N = 200) to594

calculate the corresponding integral numerically.595

3.2. Numerical illustrations. In this subsection, we provide various numerical596

illustrations for the approximation of finite-time Gerber-Shiu functions under different597

processes with the initial surplus u > 0. For the choice of a when applying the formula598

ϕ(u, T ) = ϕ(u)− ϕ(u, T ) in (1.3), since the T -deferred Gerber-Shiu function ϕ(u, T )599

depends on T , but the infinite-time Gerber-Shiu function ϕ(u) does not involve the600

parameter T , it is more reasonable to choose different a for the two terms. More601

precisely, for the T -deferred Gerber-Shiu function ϕ(u, T ), we still choose a by (2.24),602

while for the infinite-time Gerber-Shiu function ϕ(u), we suggest to use a′ as603

a′ = u+
L

η
,604

605

yet with the same L = 7 as proposed before. As can be seen in our simulation study606

on the robustness against L (see Figures 4 and 7 to 9), the approximations are stable607

for a sufficiently long range of values of L as expected. Nevertheless, an exaggeratedly608

large value of L may still cause a large approximation error; If L is too small, the609

corresponding replacement error η1 (see (2.17)) may be large; while if L is too large,610

we need to increase K accordingly to make the truncation error η2 small enough,611

which would consume more time in computation.612

We shall split our illustrations for each type of Lévy Processes, i.e. the Lévy613

Processes with a finite Lévy measure and those with an infinite Lévy measure.614

3.2.1. Finite Lévy measure case. In this subsection, we shall first consider615

the case when ν(R+) <∞. Under this assumption, the Lévy Process Lt is actually a616

Compound Poisson Process with Poisson intensity parameter λ = ν(R+). Moreover,617
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P(Lt = 0) = e−λt for all t ≥ 0. For the claim distribution, we choose Exponential,618

Gamma and Beta distribution families to characterize the claim size random variables.619

These three distribution families are commonly used to fit insurance data with both620

flexibility and good performance. The gamma and the exponential distributions are621

positively skewed distributions over the positive real half line. Actuaries can use622

gamma distributions to easily control the tail behaviour of risks, especially to render623

the heavy-tail nature for insurance risks by taking appropriate parameters. While,624

having a bounded support, beta distributions are well suited for modeling insurance625

claims with ceilings. We also provide the corresponding Monte Carlo benchmark626

values for each example. For each Monte Carlo simulation we simulate 50,000 paths,627

and then produce 50 Monte Carlo results to calculate the mean and the standard628

deviation. As we can see in the numerical examples, our method is much faster and629

more accurate than the Monte Carlo one; and in each example, we shall count in the630

comparisons between time costs incurred.631

Example 3.4 (Finite-time ruin probability for a Compound Poisson Process with632

exponential claims). Take δ = 0 and κ(x, y) ≡ 1 like the zero initial surplus case in633

Example 2.6. The density function of an exponential claim is µe−µx and one can derive634

that |Λ(1)(s)| = λ|iµ(µ− is)−2| = O(s−2), thus we can choose n0 = 1 in Assumption635

A. The approximation formula (3.9) is applied to the same setting as in Example 2.6636

but with a larger value of u, i.e., with λ = 0.87, µ = 1, T = 60 and L = 7; also u = 20.637

Figure 4 plots the ruin probability as a function of K (the number of terms used in638

each partial sum) and L respectively. The highlighted band (0.0174 ± 0.0005) is the639

Monte Carlo simulation one standard deviation range centered at the mean. The total640

running time of the Monte Carlo simulation to generate 50 results (equivalently, 50641

data points) is about 12.6 mins, while for the Fourier-cosine method it requires only642

3.8s to generate even up to 100 points with parameter K = 512 in the second plot of643

Figure 4. Upon comparison with the true ruin probability based on the integration644

formula in [3], as we expected the approximation converges to the true value as K645

increases. The absolute errors between the approximated and true ruin probabilities646

for several values of K are given in Table 2, while a plot on the rate of convergence is647

in Figure 5. We observe that the convergence rate is of an order close to O(K−3.0).648

Figure 6 plots the results of the finite-time ruin probability with respect to the time649

T , from the plot we observe that the Fourier-cosine approximation coincides with650

the reference value and converges to the infinite-time ruin probability as T tends to651

infinity, which verifies that the Fourier-cosine method is stable for any sufficiently652

large T .653

K 32 64 128 256 512 1024
Error 5.1 · 10−4 1.3 · 10−4 2.4 · 1.0−5 2.7 · 10−6 1.4 · 10−7 1.7 · 10−7

Table 2
Error magnitude for the Fourier-cosine approximation of the finite-time ruin probability with

parameters λ = 0.87, µ = 1, T = 60, L = 7 and u = 20.

Example 3.5 (Finite-time Gerber-Shiu function for a Compound Poisson Process654

with Gamma claims). Let the penalty function κ(x, y) = x + y (see [48] for more655

examples of penalty functions) and the claim size Y be distributed as Gamma(α, β)656

with a density function βα

Γ(α)x
α−1e−βx. One can easily derive that |Λ(1)(s)| = λ|αiβ (1−657

is
β )−α−1| = O

(
s−1−α), so we can choose n0 = 1 in Assumption A. In Figure 7, two658

illustrative plots of the finite-time Gerber-Shiu function against K and L with a659

parameter set {δ = 0.05, λ = 2, α = 0.5, β = 1.1, u = 3, T = 6, L = 7} are given.660
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Fig. 4. Ruin probability based on the Fourier-cosine approximation. The horizontal line (at
0.01729) is the true ruin probability.
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The one standard deviation range of the Monte Carlo simulation is (0.4010± 0.0040),661

as shown in the highlighted region in the plots, the time required to run the Monte662

Carlo simulation 50 times (50 data points) is about 223s, while for the Fourier-cosine663

method it requires only 4.3s to generate 100 points with K = 512 in the second plot664

of Figure 7. The approximation of the Gerber-Shiu function stabilizes as K increases,665

and for a large range of values of L, it falls into the one standard deviation range of666

the Monte Carlo simulation.667
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Fig. 7. Gerber-Shiu functions based on the Fourier-cosine approximation for the compound
Poisson model with gamma-distributed claims.

Example 3.6 (Finite-time Gerber-Shiu function for a Compound Poisson Process668

with Beta claims). Let the penalty function κ(x, y) = y and the claim size Y be669

distributed as Beta(α, β) with a density function 1
B(α,β)x

α−1(1 − x)β−1. Under this670
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case, one can derive that671

|Λ(1)(s)| = λ

∣∣∣∣ αi

α+ β
1F1(α+ 1;α+ β + 1; is)

∣∣∣∣672

∼
∣∣∣∣Γ(α+ β + 1)

(
eis(is)−β

Γ(α+ 1)
+

(−is)−α−1

Γ(β)

)∣∣∣∣ = O
(
s−max{β,α+1}

)
,673

|Λ(n0)(s)| ∼ λ |1F1(α+ n0;α+ β + n0; is)| = O
(
s−max{β,α+n0}

)
,674

675

where 1F1(·; ·; ·) is the hypergeometric function. Thus for β > 1 we can choose n0 = 1676

in Assumption A. In Figure 8, two more illustrations of the Gerber-Shiu function677

approximation as a function of K and L with a parameter set {δ = 0.04, λ = 1.1, α =678

7, β = 2, u = 3, T = 10, L = 7} are provided. The highlighted region (0.0292±0.0004)679

is the one standard deviation range centered at the Monte Carlo simulation mean,680

the total running time of the Monte Carlo simulation for 50 times (50 data points)681

is about 111s, while for the Fourier-cosine method it requires only 3.8s to generate682

100 points with K = 512 in the second plot of Figure 8. The approximation of the683

Gerber-Shiu function stabilizes as K increases, and for a large range of values of L,684

it falls into the one standard deviation range of the Monte Carlo simulation.685

Remark 3.7. When β < 1, Assumption A does not hold. However, the following686

numerical study (as shown in Figure 9) with parameters being set as δ = 0.06, λ =687

1, α = 9, β = 0.3, u = 5, T = 20, L = 7 shows that our algorithm still converges even688

if β < 1 yet with a slower convergence rate (the Monte Carlo one standard deviation689

range is (0.0359 ± 0.0004)). We leave the theoretical justification of this claim to690

future study by interested readers.691
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Fig. 8. Gerber-Shiu functions based on the Fourier-cosine approximation for the compound
Poisson model with beta-distributed claims.

3.2.2. Infinite Lévy measure case. In this case, Lt can be decomposed as692

a sum of a Compound Poisson Process and a pure jump process such that they are693

independent. On any nontrivial compact time interval with interior, the Lévy Process694

Lt contains infinitely many jumps and the jumping times are dense in this arbitrary695

interval, see [45] for more discussion. In particular, for any time t > 0, P(Lt = 0) = 0.696

The work [28] built an implementable numerical scheme to approximate the finite-697

time Gerber-Shiu functions when the risk processes are meromorphic ones belonging698

to Beta and Theta families of Lévy Processes, which were first introduced in [26] and699

[27]; their method relies on inverting the Laplace transform of ϕ(u, T ) with respect700

to the T -variable which can be given by a closed form expression in terms of the cor-701

responding infinite-time Gerber-Shiu counterpart. Their work was a breakthrough in702
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Fig. 9. Gerber-Shiu functions based on the Fourier-cosine approximation for the compound
Poisson model with beta-distributed claims.

the contemporary literature and they also provided a comprehensive numerical study703

and demonstrated the efficiency of their method, for instance, computing the Value-704

at-Risk of the deficit at the ruin, conditional on the event that the ruin happens before705

the deterministic time T , particularly under the Theta families of risk processes with706

the density of the corresponding Lévy measure having a singularity at zero of order707

3/2. Nevertheless, their approach is apparently workable only for a restricted class of708

Lévy Processes under which the infinite-time Gerber-Shiu functions acquire a closed709

form. Now, under our proposed Fourier-cosine method, in addition to demonstrating710

the approximation of the conditional VaR under the special case of Theta families711

as considered in [28] as discussed above; we further extend our numerical scheme to712

the more general classes of risk processes under which the infinite-time Gerber-Shiu713

functions fail to have a closed form. For instance, Gamma Processes and Generalized714

Stable Processes will be considered, and again they are beyond the scope of [28]. To715

this end, we first compute the conditional distribution function716

FT (p) := P(|Rτ | ≤ p|τ ≤ T ) =
P(|Rτ | ≤ p, τ ≤ T )

P(τ ≤ T )
,(3.10)717

718

then by defining at the confidence level α, VaRα satisfies FT (VaRα) = α. To find719

the value VaRα, we compute the finite-time ruin probability P(τ ≤ T ) first in each720

example, and then compute the finite-time Gerber-Shiu function F (T, p) := P(|Rτ | ≤721

p, τ ≤ T ) as in Example 2.7 and use (3.10) to get the desired value.722

Example 3.8 (Value-at-Risk for Theta families with a singularity of order 3/2).723

The Lévy measure of Theta families is ν(dx) = cβ
µπ e
−αβxΘ1(βx), where Θ1(y) =724

2
∑∞
n=1n

2e−n
2y †, with E(Lt) = ct

2µβ (α−1/2 coth(π
√
α)−π sinh−2(π

√
α)). The first725

order derivative of Λ(s) is726

Λ(1)(s) =
ci

2µβ

[
(α− is

β
)−1/2 coth(π

√
α− is

β
)− π sinh−2(π

√
α− is

β
)

]
,727

728

and one can check that |Λ(1)(s)| = O(s−1/2) as s → ∞, as a result we can choose729

n0 = 3 in Assumption A. The illustration is conducted with parameters µ = 20, c =730

5.4, α = 0.5, β = 0.35, u = 2, T = 20. The finite-time ruin probability P(τ ≤ T ) is731

shown in Figure 10, and the finite-time Gerber-Shiu function F (T, p) := P(|Rτ | ≤732

†Note that the function Θ1(y) is just the first order derivative of the Theta function θ3(0, e−y),
see [27].
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p, τ ≤ T ) is shown in Figure 11. We can see that the approximations appear to733

stabilize as K increases. Then we use the formula (3.10) to compute the conditional734

distribution FT (p), and the plot of FT (p) against p is given in Figure 12. From the735

plot, we can see the VaR0.95 for Theta families with a singularity at zero of order736

3/2 is 5.47, while the benchmark value in [28] is 5.472856602. For reference, we also737

provide a table of more accurate values of VaRα for α = {0.95, 0.96, 0.97, 0.98, 0.99}738

in Table 3 by setting a denser grid and using the fourth order Lagrange polynomial739

interpolation to improve the precision (see [28] for details). The time needed for740

generating Figure 10, Figure 11 and Figure 12 (each includes 500 points) are 16s, 25s741

and 29s, respectively. We also provide a plot of F (T, p) against T in Figure 13, from742

the plot, we observe that as T tends to infinity, the approximation approaches the743

value of the corresponding infinite-time Gerber-Shiu function, which justifies that our744

method is stable with the time parameter T and is consistent with the corresponding745

Fourier-cosine approximation of the infinite-time Gerber-Shiu function ϕ(u).746

0 100 200 300 400 500
K

0.156

0.158

0.160

0.162

0.164

0.166

0.168

0.170

Ge
rb

er
-S

hi
u 

fu
nc

tio
n

Theta : = 0.5, = 0.35, c = 5.4, = 20, u = 2, T = 20, L = 7

Fig. 10. Approximation of ruin probability
for Theta families.
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Fig. 11. Approximation of F (T, p) for
Theta families.

α 0.95 0.96 0.97 0.98 0.99
VaRα 5.472452523 5.897355828 6.445308494 7.217829473 8.539040167

Table 3
VaRα of different α for Theta families.

Example 3.9 (Value-at-Risk for a Gamma Process). The Lévy measure of a747

Gamma Process with parameters α > 0 and β > 0 is ν(dx) =
(
αe−βx/x

)
dx, with748

E(Lt) =αt/β and Λ(1)(s) = αi
β (1 − is

β )−1. In this case we can choose n0 = 2 in As-749

sumption A since one can check that |Λ(1)(s)| = O(s−1). The illustration is conducted750

with the same parameters in Example 2.7 but with a positive u = 4. The finite-time751

ruin probability P(τ ≤ T ) is shown in Figure 14, and the finite-time Gerber-Shiu752

function F (T, p) := P(|Rτ | ≤ p, τ ≤ T ) is shown in Figure 15. The setting of Monte753

Carlo simulation is the same with the one in Example 2.7 and the corresponding754

one standard deviation range for P(τ ≤ T ) and F (T, p) are (0.2575 ± 0.0019) and755

(0.2271 ± 0.0019), respectively. Again, we can see that both approximations fall756

rapidly into the one standard deviation limited range as K increases. Then we use757

the formula (3.10) to compute the conditional distribution FT (p), and the plot of758

FT (p) against p is given in Figure 16. From the graph, we can see the VaR0.95 for759

this Gamma Process is 4.38. We also provide a table of more accurate values of VaRα760

for α = {0.95, 0.96, 0.97, 0.98, 0.99} in Table 4 for readers’ references. The time for761
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running the Monte Carlo simulation 50 times (50 data points) is around 85 minutes,762

while the time for generating Figure 14, Figure 15 and Figure 16 (each includes 500763

points) are 13s, 2 mins and 3.5 mins, respectively.764
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Fig. 12. Approximation of FT (p) for Theta
families.
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Fig. 13. Approximation of F (T, p) against
T for Theta families.
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Fig. 14. Approximation of ruin probability
for the Gamma Process.
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Fig. 15. Approximation of F (T, p) for the
Gamma Process.

α 0.95 0.96 0.97 0.98 0.99
VaRα 4.378096648 4.743214622 5.218267029 5.89531416 7.070394497

Table 4
VaRα of different α for the Gamma Process.

Example 3.10 (Value-at-Risk for a Generalized Stable Process). The Lévy mea-765

sure of a Generalized Stable Process with parameters β ∈ (0, 1) and λ > 0 is766

ν(dx) = βe−λx

Γ(1−β)xβ+1 dx, with E(Lt) = βtλβ−1 and Λ(1)(s) = βi(λ − is)β−1. One767

can check that |Λ(1)(s)| = O(s−(1−β)), thus we can choose n0 as the smallest inte-768

ger larger than 1
1−β in Assumption A. The illustration is conducted with parameters769

λ = 0.3, β = 0.45, u = 24, T = 120. The finite-time ruin probability P(τ ≤ T ) is shown770

in Figure 17, and the finite-time Gerber-Shiu function F (T, p) := P(|Rτ | ≤ p, τ ≤ T )771

is shown in Figure 18. We can see that both approximations appear to stabilize as772

K increases. Then we use the formula (3.10) to compute the conditional distribu-773

tion FT (p), and the plot of Ft(p) against p is given in Figure 19. From the plot, we774

can see the VaR0.95 for this Generalized Stable Process is 6.19. We also provide a775

table of more accurate values of VaRα for α = {0.95, 0.96, 0.97, 0.98, 0.99} in Table 5776

for reference. The time needed for generating Figure 17, Figure 18 and Figure 19777
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(each includes 500 points) are 15s, 3.6 mins and 9.6 mins, respectively. Note that778

the calculations for the Gamma Process and the Generalized Stable Process are much779

slower than for the Theta families, the reason is that for the Gamma Process and the780

Generalized Stable Process, the corresponding Fourier transforms of V involve the781

computation of incomplete Gamma functions which we cannot use vectorization in782

Python to compute for approximating Ft(p).783
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Fig. 16. Approximation of FT (p) for the
Gamma Process.
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Fig. 17. Approximation of ruin probability
for the Generalized Stable Process.
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Fig. 18. Approximation of F (T, p) for the
Generalized Stable Process.
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Fig. 19. Approximation of FT (p) for the
Generalized Stable Process.

α 0.95 0.96 0.97 0.98 0.99
VaRα 6.185790705 6.737914506 7.459858661 8.494905258 10.305576768

Table 5
VaRα of different α for the Generalized Stable Process.

Supplementary Materials. All the proofs and the detailed error analyses are784

presented in the Supplementary Materials. The proofs for the Generalized Ballot785

Theorem and the non-crossing probability as well as the derivations of Equation (2.9)786

and Equation (3.5) are put in Section SM1 and Section SM2; the detailed error analy-787

ses for Theorem 2.2 and Theorem 3.3 are shown in Section SM3 and Section SM4,788

respectively.789
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Appendix A. Overview on Gerber-Shiu functions. [22] first introduced812

the function ϕ named after them, its effectiveness was demonstrated by the systematic813

characterization of important financial quantities in actuarial science. In their first814

work, the classical risk model was used, and they showed that ϕ satisfies a defective815

renewal equation, to which the solution can be expressed as an infinite sum of the816

order of convolution products. This result has been generalized to the model (1.8) in817

[20], with the following representation:818

(A.1) ϕ(u) =

∞∑
k=0

h1 ∗ h∗k2 (u),819

where v∗k denotes the k-th order convolution for a function v such that the custom820

of v∗1 = v and v∗k = v∗(k−1) ∗ v is adopted; and we denote f ∗ v∗0 = f . The functions821

h1 and h2 are given by822

h1(x) :=

∫ ∞
x

∫ ∞
0

e−ρ(z−x)κ(z, y)ζ(z + y)dydz, h2(x) :=

∫ ∞
x

e−ρ(y−x)ζ(y)dy, x ≥ 0,823
824

where ζ denotes the density of the Lévy measure, i.e., ν(dy) = ζ(y)dy, and the825

constant ρ is the unique non-negative solution of the following equation in λ,826

δ − λ− Λ(iλ) = 0.827

It has been shown in [8] that the Gerber-Shiu function has the following representa-828

tion:829

(A.2) ϕ(u) = h1(0) +

∫ u

0

V (x)dx,830

where831

(A.3) V (x) := h1(0)

∞∑
k=1

h∗k2 (x) + ρ

∞∑
k=0

h1 ∗ h∗k2 (x)−
∞∑
k=0

h3 ∗ h∗k2 (x),832
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and833

h3(x) := ρh1(x)− h′1(x) =

∫ ∞
0

κ(x, y)ζ(x+ y)dy.834

Notice that from (A.2) we have ϕ(0) = h1(0). In our work, we demonstrated that835

the Fourier transform of functions h1, h2 and h3 are easy to calculate, and it can be836

shown that |ĥ2(s)| < 1 for all s ∈ R under the safety loading condition (see [8] for837

details). Thus from (A.3), the Fourier transform of V can be calculated by838

V̂ = h1(0)

∞∑
k=1

ĥk2 +

∞∑
k=0

ĥ1ĥ
k
2 −

∞∑
k=0

ĥ3ĥ
k
2 =

h1(0)ĥ2 + ρĥ1 − ĥ3

1− ĥ2

.(A.4)839

840
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tion for a family of Lévy risk processes, Scandinavian Actuarial Journal, 2014 (2011),917
pp. 1–31, https://doi.org/10.1080/03461238.2011.627747.918

[29] A. E. Kyprianou, Gerber–Shiu Risk Theory, Springer International Publishing, 2013, https:919
//doi.org/10.1007/978-3-319-02303-8.920

[30] D. Landriault and G. Willmot, On the Gerber–Shiu discounted penalty function in the921
Sparre Andersen model with an arbitrary interclaim time distribution, Insurance: Mathe-922
matics and Economics, 42 (2008), pp. 600–608, https://doi.org/10.1016/j.insmatheco.2007.923
06.004.924
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