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Percolation of the two-dimensional XY model in the flow representation
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We simulate the two-dimensional XY model in the flow representation by a worm-type algorithm, up to linear
system size L = 4096, and study the geometric properties of the flow configurations. As the coupling strength K
increases, we observe that the system undergoes a percolation transition Kperc from a disordered phase consisting
of small clusters into an ordered phase containing a giant percolating cluster. Namely, in the low-temperature
phase, there exhibits a long-ranged order regarding the flow connectivity, in contrast to the quasi-long-range
order associated with spin properties. Near Kperc, the scaling behavior of geometric observables is well described
by the standard finite-size scaling ansatz for a second-order phase transition. The estimated percolation threshold
Kperc = 1.105 3(4) is close to but obviously smaller than the Berezinskii-Kosterlitz-Thouless (BKT) transition
point KBKT = 1.119 3(10), which is determined from the magnetic susceptibility and the superfluid density.
Various interesting questions arise from these unconventional observations, and their solutions would shed light
on a variety of classical and quantum systems of BKT phase transitions.
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I. INTRODUCTION

Superfluidity was first discovered in liquid helium with
the frictionless flow, and then it became an important subject
of persistent experimental and theoretical investigations. In
three-dimensional (3D) systems, a normal-superfluid phase
transition is known to be a second-order transition accom-
panied by a Bose-Einstein condensation (BEC) with the
spontaneously breaking of a U (1) symmetry. In 2D, the
spontaneous-breaking continuous symmetry is forbidden by
the Mermin-Wagner-Hohenberg theorem, and BEC cannot
exist. Nevertheless, superfluidity is still developed through the
celebrated Berezinskii-Kosterlitz-Thouless (BKT) transition
[1–4] at a finite temperature, illustrating that BEC is not an
essential ingredient for superfluidity.

In statistical mechanics, the 2D XY model is the simplest
system of the normal-superfluid phase transition belonging to
the BKT universality class. In the XY model, the superfluid
density can be calculated from the helicity modulus (the spin
stiffness) in the spin representation [5] or the mean-squared
winding number in the flow representation [6] which is similar
to the case of the Bose-Hubbard model. In 2D systems, the
superfluid density suddenly jumps from zero to a universal
value at the BKT point [7], and this property has been used
to determine the BKT point numerically [8–14]. Besides, the
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magnetic susceptibility is divergent at the BKT point and in
the whole superfluid phase, referred to as the critical region.
By the renormalization group (RG) analysis [3], the corre-
lation length exponentially diverges when the BKT point is
approached from the high-temperature disordered phase. For
finite system sizes, this exponential divergency introduces
logarithmic corrections around the BKT point, and dramati-
cally increases the difficulty for high-precision determination
of the BKT point by numerical means because of the need
for large system sizes and sophisticated finite-size scaling
(FSS) terms. Nonetheless, recent Monte Carlo (MC) simula-
tions can provide precise estimates for the coupling strength
KBKT = 1.119 96(6) [11,13,15], in agreement with the high-
temperature expansions [16]. It is nevertheless noted that
these estimates depend on assumptions about the logarithmic
finite-size corrections, and different extrapolations can lead to
somewhat different values of the BKT point. For instance, it
was estimated KBKT = 1.119 2(1) in Ref. [14], which deviates
from KBKT = 1.119 96(6) by about seven standard error bars.

For many statistical-mechanical systems, much insight can
be gained by exploring geometric properties of the systems
[17–32]. For the Ising and Potts model, geometric clusters
in the Fortuin-Kasteleyn bond representation have a perco-
lation threshold coinciding with the thermodynamic phase
transition, and exhibit rich fractal properties, some of which
have no thermodynamic correspondence. Similar behavior
is observed for the quantum transverse-field Ising model in
the path-integral representation [23]. For the 2D XY model,
various attempts have also been carried out. In Ref. [33],
geometric clusters are constructed as collections of spins in
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which the orientations of neighboring spins differ less than
a certain angle. The percolation transitions are found to be
in the standard 2D percolation universality, regardless of the
coupling strength. In Ref. [34], spins are projected onto a
random orientation, and geometric clusters are constructed by
a Swendsen-Wang-like algorithm with an auxiliary variable.
In the low-temperature phase K > KBKT, a line of percolation
transitions, consistent with the BKT universality, is observed.

In this work, we study the 2D XY model on the square
lattice in the flow representation, in which each bond between
neighboring sites is occupied by an integer flow, and on each
site, the flows obey the Kirchhoff conservation law. The XY
model in the flow representation can be efficiently simulated
by worm-type algorithms [35,36]. Further, the superfluid den-
sity can be calculated through the winding number and the
magnetic properties can be easily measured. From FSS anal-
ysis of the superfluid density and the magnetic susceptibility,
we determine the coupling strength at the BKT transition as
KBKT = 1.119 3(10), consistent with the most precise result
KBKT = 1.119 96(6) [13].

Given a flow configuration, we construct geometric clus-
ters as sets of sites connected through nonzero flows,
irrespective of flow directions. The emergence of superflu-
idity, having a nonzero winding number, requires that there
exists at least a percolating geometric cluster.

From another point of view, the flow representation of the
2D XY model can be exactly mapped onto the solid-on-solid
(SOS) model [37], which describes the growth of crystals on
the dual lattice. The BKT transition in the 2D XY model
corresponds to the roughening transition in the SOS model,
of which the domain walls are the geometric clusters in the
flow representation. In the deep smooth phase of the SOS
model, there are only small domain walls. A naive expectation
would be that the percolation transition concides with the
BKT transition and some critical percolating clusters, with
K-dependent fractal dimensions, emerge in the quasi-long-
range-ordered (QLRO) phase for K > KBKT.

To explore percolation in these geometric clusters, we sam-
ple the mean size of the largest clusters per site c1, which acts
as the order parameter for percolation. A percolation threshold
Kperc is observed. For K < Kperc, there are only small geomet-
ric clusters, and c1 quickly drops to zero as the linear system
size L increases. For K > Kperc, c1 rapidly converges to a
K-dependent nonzero value, suggesting the emergence of a
giant cluster and thus of a long-range order. In other words,
as the coupling strength K is enhanced, the 2D XY model
in the flow representation undergoes a percolation transition
from a disordered phase consisting of only small clusters into
an ordered phase containing a giant percolating cluster. This
is dramatically different from the magnetic properties of the
2D XY model, for which the system develops a QLRO phase,
without breaking the U(1) symmetry, through the BKT phase
transition.

The behavior of c1 as a function of K is very similar to the
order parameter for a second-order transition. To further ver-
ify this surprising observation regarding the flow connectivity,
we sample the wrapping probability R, which is known to be
very powerful in the study of continuous phase transitions. It
is observed that R quickly approaches to 0 and 1 for K < Kperc

and K > Kperc, respectively, and thus has a jump from 0 to 1 at

Kperc in the thermodynamic limit. Near the percolation thresh-
old, the R values for different system sizes have approximately
common intersections, which rapidly converge to Kperc. Thus,
the behavior of both c1 and R implies that the percolation
transition is of a second order.

Moreover, we find that, near Kperc, the FSS behavior of R
is well described by the standard FSS theory for a second-
order transition. From the FSS analysis of R, we determine
the percolation threshold Kperc = 1.105 3(4) and the ther-
mal renormalization exponent yt = 0.39(1). The threshold
Kperc is close to but clearly smaller than KBKT = 1.119 96(6).
In addition, the estimated exponent yt = 0.39(1) is signif-
icantly larger than zero. From the FSS behavior of c1,
we also obtain the magnetic renormalization exponent yh =
1.76(2). It is interesting to observe that the critical exponents
[yt = 0.39(1), yh = 1.76(2)] are not equal to (yt = 3/4, yh =
91/48) for the standard 2D percolation. These unconventional
observations for the 2D XY model are much different from
those for the 3D XY model, where the percolation transition
and the normal-superfluid transition nicely coincide, and both
are the second-order phase transition [36].

The remainder of this paper is organized as follows. Sec-
tion II introduces the XY model and the flow representation.
Section III describes the worm algorithm and sampled quanti-
ties. In Sec. IV, the MC data are analyzed, and the results are
presented. A brief discussion is given in Sec. V.

II. XY MODEL AND THE FLOW REPRESENTATION

The XY model is formulated in terms of two-dimensional,
unit-length vectors �s ≡ (cos θ, sin θ ), residing on sites of a
lattice. The reduced Hamiltonian of the XY model (already
divided by kBT , with kB the Boltzmann constant and T the
temperature) reads as

H = −K
∑
〈i j〉

�si · �s j = −K
∑
〈i j〉

cos(θi − θ j ), (1)

where the sum is over all nearest-neighbor pairs. The partition
function of Eq. (1) can be formulated as

Z =
∑
{�si}

exp(−H) =
∫ 2π

0

∏
i

dθi

2π

∏
〈i j〉

exp [K cos(θi − θ j )]

=
∫ 2π

0

∏
i

dθi

2π

∏
〈i j〉

⎧⎨⎩
+∞∑

Ji j=−∞
IJi j (K ) exp[iJi j (θi − θ j )]

⎫⎬⎭
=

∑
{Ji j}

∏
〈i j〉

IJi j (K )
∫ 2π

0

∏
i

dθi

2π
exp(iθi∇ · J i )

=
∑
{JCP}

∏
〈i j〉

IJi j (K ), (2)

where Ji j ∈ (−∞,∞) is the integer flow living on the lattice
bond i j with Ji j = −J ji and the identity exp[K cos(θ )] =∑+∞

J=−∞ IJ (K ) exp(iJθ ) is used and IJ (K ) is the modified
Bessel function. On each site i, ∇ · J i = ∑

j Ji j is the diver-
gence of the flows. After the spin variables are integrated out,
only those flow configurations, obeying the Kirchhoff conser-
vation law ∇ · J i = 0 on each site, have nonzero statistical
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(a) a closed configuration (b) an open configuration

I

M

FIG. 1. Sketch of two types of flow configurations on a square
lattice with periodic boundaries. Gray solid circles are the lattice
sites. The blue lines with arrows represent that there is a flow on
a bond. (a) A closed configuration with three clusters. The cluster,
on the top, is local with winding number Wx = 0,Wy = 0 and none
of the wrapping event R(α) = 0. The middle cluster wraps around
the x direction and has Wx �= 0,R(x) = 1. For the bottom cluster,
although it also wraps around the x direction, winding numbers are
zero. (b) An open configuration with two defects (red-solid circles)
that do not satisfy the Kirchhoff conservation law.

weights. These flow configurations can be regarded to consist
of a set of closed paths. Figure 1(a) shows an example of such
configurations on the square lattice with periodic boundary
conditions.

III. SIMULATION

A. Monte Carlo algorithms

The worm algorithm [35] is highly efficient for loop-
or flow-type representations and is employed to simulate
the XY model in this work. For worm-type simulations,
the configuration space is extended to include the partition
function space (the Z space) and a correlation function space
(the G space). The G space can be expressed in the flow
representation as well:

G =
∑
I �=M

G(I,M) =
∑
I �=M

�sI · �sM exp(−H)

=
∑
I �=M

∫ 2π

0

dθI dθM
(2π )2

∫ 2π

0

∏
i

dθi

2π
cosh[i(θI − θM)]

×
∏
〈i j〉

exp [K cos(θi − θ j )]

=
∑
I �=M

∫ 2π

0

dθI dθM
(2π )2

∫ 2π

0

∏
i

dθi

2π
cosh[i(θI − θM)]

×
∏
〈i j〉

⎧⎨⎩
+∞∑

Ji j=−∞
IJi j (K ) exp[iJi j (θi − θ j )]

⎫⎬⎭
=

∑
�θ=±1

∑
{Ji j }

∏
〈i j〉

IJi j (K )
∫ 2π

0

∏
i �=I,M

dθi

2π
exp(iθi∇ · J i )

×1

2

∫ 2π

0

dθI dθM
(2π )2

exp [iθI (∇ · J I + �θ )]

× exp [iθM(∇ · JM − �θ )]

=
∑
{JOP}

∏
〈i j〉

IJi j (K ). (3)

These nonzero weighted configurations {JOP} are called open
configurations, in which two defects on different sites I and
M are connected via an open path. An example is shown in
Fig. 1(b). In the last line of the above equation, there is no
1
2 because of the exchange symmetry G(I,M) = G(M, I ).
The flow configurations in the G space also obey the Kirchhoff
conservation laws for each site except I and M where ∇ ·
J I = −�θ and ∇ · JM = �θ , with �θ = ±1. This means
that there is an additional flow +1 from I to M or vice versa.

The partition function in the extended configuration
space is

Zext = ωGZ + G, (4)

where the relative weight ωG between the G and the Z
space can be arbitrary. For the particular choice ωG = Ld , the
overall partition function becomes Zext = ∑

I,M G(I,M) =∑
{�si}[(

∑
i �si)2 exp(−H)] = χZ , where χ is the magnetic sus-

ceptibility.
The whole configuration space is specified by the flow

variables as well as the positions of the pair of sites (I,M).
The Z space corresponds to those configurations with I = M
and this space has been expanded by ωG = Ld times due to
the defect pair (I,M) locating on an arbitrary lattice site. In
this formulation, one can naturally apply the following local
update scheme: randomly choose I or M (say I), move it
to one of its neighboring sites (say I ′), and update the flow
variable in between such that site I ′ becomes a new defect
and the conservation law is recovered on site I. Effectively,
the defects (I,M) experience a random walk on the lattice.
The detailed balance condition reads as

1

2

1

zd
WμPμ→ν = 1

2

1

zd
WνPν→μ, (5)

where zd is the coordination number of the lattice and factor
1/(2zd ) describes the probability for choosing this particular
update. Statistical weights before and after the update are
accounted for by Wμ,Wν , respectively. Taking into Eqs. (2)
and (3) and the choice ωG = Ld , one has the acceptance prob-
ability according to the standard Metropolis filter as

Paccept = min

[
1,

Iμ
Ji j

(K )

Iν
Ji j

(K )

]
. (6)

The worm algorithm can be simply regarded as a local
Metropolis update scheme for Zext. The superfluid density
is measured in the Z space, where the two defects coincide
with each other I = M. With the choice ωG = Ld , one has
Zext = χZ , and the magnetic susceptibility χ as the ratio of
Zext over Z . In the worm simulation, χ can be simply sampled
as the statistical average of steps between subsequent closed
configurations. The relative weight ωG, of course, can take
other positive value and the worm algorithm is still applicable.
But weights of closed configurations WCP should be scaled to
ωG
Ld WCP in Eq. (5) and the acceptance probability needs to be
modified. In this case, the worm-return time is no longer the
magnetic susceptibility.
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B. Sampled quantities

In the flow representation, the winding number Wα of a
closed configuration is defined as the number of flows along
the spatial direction α. It can be calculated as Wα = ∑

i Ji,i+êα

with êα being the basis vector of the direction α and sites i
align on a line perpendicular to the direction α. Besides, the
two-point correlations can be detected in the worm process.
The magnetic susceptibility (integral of two-pint correlation)
can be evaluated by the number of worm steps between sub-
sequent hits on the Z space, known as worm-return time τw.

Given a flow configuration, we construct geometric clus-
ters as sets of sites connected via nonzero flow variables,
irrespective of the flow direction. Namely, for each pair of
neighboring sites, the bond is considered to be empty (oc-
cupied) if the flow variable is zero (nonzero), and clusters
are constructed in the same way as for the bond percolation
model. For small K , the flow variables are mostly zeros, and
the clusters are small. As K increases, the geometric clusters
grow and percolate through the whole lattice via a percolation
transition. Following the standard insight, we measure the
following observables:

(1) The superfluid density is calculated from the squared
winding number [6]

ρs = 〈
W2

x + W2
y

〉
/2K, (7)

where 〈.〉 represents the statistical average.
(2) The magnetic susceptibility χ = 〈τw〉.
(3) The wrapping probability

R = 〈R〉, (8)

where we set R = 1 for the event that at least one geometric
cluster wraps simultaneously in two or more (x, y, or diagonal)
directions.

In the disordered phase, the geometric clusters are too
small to wrap and one has R = 0 in the L → ∞ limit.
In the ordered phase with a giant percolating cluster,
one has R = 1 asymptotically. At criticality, the asymptotic
value of R takes some nontrivial number 0 < Rc < 1. The
curves of R as a function of K intersect for different system
sizes L, and these intersections rapidly converge to the perco-
lation threshold Kperc.

(4) The size C1 of the largest cluster. The mean size of
the largest cluster per site c1 = 〈C1〉/L2. In percolation, c1

plays a role as the order parameter. In the thermodynamic
limit, one has c1 = 0 in the disordered phase and 0 < c1 < 1
in the ordered phase. At percolation threshold Kperc, it scales
as c1 ∼ Lyh−d , where yh is the magnetic renormalization expo-
nent and it is also equal to the fractal dimension of percolation
clusters.

IV. RESULTS

We simulate the XY model on the square lattice with pe-
riodic boundary conditions, with linear system sizes in the
range 16 � L � 4096 around K = 1.11. Here we employ a
pseudorandom number generator based on the modulo-2 addi-
tion of two independent shift registers with lengths chosen as
the Mersenne exponents 127 and 9689. This generator is well
tested in Ref. [38], and no biased error has been found thus
far. The worm simulation for the 2D XY model exhibits no

critical-slowing-down, and the integrated autocorrelation time
is in O(10) sweeps or even less [35]. Nonetheless, a significant
fraction of the total independent samples, 25%, is spent on
the thermalization before taking measurements for simplicity.
After thermalizing systems to equilibration, at least 8 × 106

independent samples are produced for each K and L.

A. BKT transition

Instead of an algebraic divergence of the correlation
length ξ (t ) ∼ |t |−ν near a second-order phase transition
with ν the correlation-length critical exponent, around the
BKT transition point, the correlation length ξ (t ) diverges
exponentially as

ξ (t ) ∼ exp
(
bt− 1

2
)
, (9)

where t = KBKT/K − 1 is the reduced temperature, and b
is a nonuniversal positive constant. This type of divergence
for the correlation length leads to the logarithmic correction
[4,8,39,40], which brings notorious difficulties for the numer-
ical study of the BKT transition. Even though, in recent years,
the estimates of KBKT have been significantly improved by
extensive MC simulations [11,13,14] and by tensor network
algorithms [41–43].

The most precise estimate of KBKT for the 2D XY model,
obtained by a large-scale MC simulation with system sizes up
to L = 65 536, is KBKT = 1.119 96(6) [13], which slightly de-
viates from the other MC result KBKT = 1.119 2(1) [14]. The
complicated logarithmic corrections may be the underlying
reason for the inconsistency.

We estimate the BKT transition point KBKT by studying
the FSS of the magnetic susceptibility χ and the superfluid
density ρs.

1. Magnetic susceptibility

According to the RG analysis, the two-point correla-
tion function at KBKT scales as G(r) ∼ r−η(ln r)−2η̂ [3,4,44].
Hence, the magnetic susceptibility χ behaves as

χ ∼
∫

r<ξ

d2rG(r) ∼ ξ 2−η(ln ξ )−2η̂, (10)

with the RG predictions η = 1/4 and η̂ = −1/16.
For finite-size systems, it is hypothesized that the divergent

correlation length near criticality is cut off by the linear system
size as ξ = αL, with α a nonuniversal constant. Using the
linear system size, we have χ ∼ L7/4(ln L + C1)1/8, where
C1 = ln α is a nonuniversal constant. Together with Eq. (9),
one has αL ∼ exp(bt−1/2) near KBKT, and the FSS of χ can
be expressed as

χ (t, L) ∼ L
7
4 (ln L + C1)

1
8 χ̃ [t (ln L + C2)2], (11)

where χ̃ [x ≡ t (ln L + C2)2] is an universal function and C2 =
ln α. Although the nonuniversal constants C1 and C2 do not
affect the asymptotic scaling for L → ∞, we find that they
cannot be simply neglected in finite-size analyses of MC data.
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TABLE I. Fits of the magnetic susceptibility χ for the 2D XY model.

Lmin χ 2/DF KBKT C1 q0 C2 q1 b1 d1

16 70.4/67 1.119 1(6) 4.1(10) 0.811(9) 1.44(9) −0.057 3(15) 0.005(12) −0.02(7)
32 62.3/58 1.119 0(6) 4.5(9) 0.808(10) 1.54(11) −0.055 4(19) 0.000 2(20) 0.01(8)
64 54.2/49 1.119 0(11) 4.5(17) 0.808(18) 1.58(17) −0.055(3) 0.000 05(329) 0.04(9)
64 54.2/51 1.118 9(3) 4.64(22) 0.807(3) 1.57(12) −0.055(2) 0 0.05(9)

χ 128 37.6/42 1.119 2(4) 4.4(4) 0.810(5) 1.42(17) −0.057(3) 0 −0.18(13)
256 23.4/33 1.119 9(7) 3.5(7) 0.821(9) 0.8(3) −0.068(6) 0 −0.79(24)
64 54.5/52 1.118 9(3) 4.62(22) 0.807(3) 1.53(9) −0.055 6(16) 0 0
128 39.7/43 1.119 1(4) 4.5(4) 0.809(5) 1.61(12) −0.054 2(20) 0 0
256 34.3/34 1.119 3(7) 4.3(7) 0.812(9) 1.60(16) −0.054(3) 0 0

Near KBKT, we perform least-squares fits of the χ data by
the ansatz

χ = L
7
4 (ln L + C1)

1
8

[
q0 +

4∑
k=1

qkε
k (ln L + C2)2k

+ b1(ln L + C3)−1 + b2L−1 + d1ε
2(ln L + C2)2

]
, (12)

where ε = KBKT − K . Here we take the Taylor expansion of
χ̃ around K = KBKT to the fourth order. The terms with b1

and b2 account for the multiplicative and addictive logarithmic
corrections respectively. The term with d1 reflects the nonlin-
ear dependence of the scaling field on K .

As a precaution against correction-to-scaling terms that we
have neglected in our chosen ansatz, we impose a lower cutoff
L � Lmin on the data points admitted in the fit, and systemat-
ically study the effect by the chi-squared test (χ2 test) when
Lmin is increased. In general, our preferred fit for any given
ansatz corresponds to the smallest Lmin for which χ2 divided
by the number of degrees of freedom (DFs) is O(1), and for
which subsequent increases in Lmin do not cause χ2 to drop
by much more than one unit per degree of freedom. The error
bars of the fitting parameters are determined by the inverse of
the curvature matrix at the minimum of χ2, according to the
standard error estimation method of nonlinear curve fitting.

The results are reported in Table I. In the fits with b1, b2

and d1 free, we find that b1 is consistent with zero. Further,
stable fits are also obtained with b1 = b2 = 0. It is worth
noting that the fitting value of d1 is smaller than the resolution
of our fits in small L, but clearly nonzero when L � 256.
This illustrates that the RG invariant function of the 2D XY
model plays the role of thermal nonlinear scaling field, i.e.,
a1ε + a2ε

2 + · · · [45], in which the nonuniversal coefficient
a2 cannot be neglected.

We find that the χ data for 16 � L � 4096 and 1.104 �
K � 1.136 are well described by Eq. (12), and we esti-
mate the BKT transition point KBKT = 1.119 3(10) for the
2D XY model. Our estimate is consistent with the most
precise numerical estimate KBKT = 1.119 96(6) [13]. The in-
tersections, in Fig. 2, show the scaled magnetic susceptibility
χL−7/4(ln L + C1)−1/8 as a function of K for several system
sizes. The collapse of these curves in the inset of Fig. 2
confirms the scaling behavior in Eq. (12).

2. Superfluid density

In the renormalization-group analysis, the superfluid den-
sity ρr

s has a jump at the BKT point as the temperature
decreases, and, according to the Nelson-Kosterlitz criterion
[7], the size of the jump is given by

lim
K → K−

BKT
L → ∞

ρr
s (K, L) = 2

πKBKT
. (13)

In the MC study of the 2D XY model, the situation is more
subtle: the size of the jump depends on how the thermody-
namic limit is approached. More precisely speaking, the jump
of the superfluid density ρs, calculated from the mean-square
winding number of Eq. (7), becomes frρ

r
s , where the factor

fr depends on the aspect ratio Lx/Ly, with Lx and Ly being
the linear sizes along the x and y directions, respectively. For
the case of Lx = Ly, one has fr = 1 − 16πe−4π , as proved in
Ref. [46].
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versus the coupling strength K with C1 = 4.5. Lines are added be-
tween the data points for clarity. The expectation value and the
error bar of KBKT are marked with the black dashed line and the
gray strip, respectively. The inset shows χL−7/4(ln L + C1)−1/8 vs
−ε(ln L + C2)2 with C2 = 1.57. The good collapse indicates that
the addictive logarithmic corrections are small, consistent with the
results shown in Table I.
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FIG. 3. Superfluid density ρs versus the coupling strength K .
The lines connecting the data points are added for clarity. The
vertical dashed line is the BKT transition coupling KBKT ≈ 1.1193
(as determined in this paper) of the 2D XY model. The red line is
f (K ) = 2 fr/(πK ), with fr = 1 − 16πe−4π . The superfluid density
ρs(KBKT, L) will approach to the intersection of the dash line and the
red line with increasing system sizes L.

The MC data for ρs are shown in Fig. 3, where the slow
convergence of ρs at the BKT point is due to logarithmic
corrections.

Around KBKT, we perform least-squares fits of the ρs

data by

ρs = ρs,c +
3∑

k=1

qkε
k (ln L + C)2k + b1(ln L + C′)−1 + b2L−1,

(14)

where ε = KBKT − K , ρs,c = 2 fr/(πKBKT), and the leading
logarithmic correction has been taken into account. The re-
sults are summarized in Table II. With C and C′ being free
parameters, we have stable fits with b1 free and b2 = 0.
We obtain KBKT = 1.119 3(10), consistent with our estimate
from χ .

Similar to χ , the logarithmic corrections of ρs exist, and
some literature achieve different estimates of the BKT point
by analyzing the FSS of ρs [8–14], because of different forms
of the logarithmic corrections.

B. Geometric properties

To have an overall picture of the geometric properties of
the geometric clusters, we simulate the 2D XY model with the
coupling strength in a relatively wide range 0.84 < K < 2.04.

TABLE II. Fits of the superfluid density ρs for the 2D XY model.

Lmin χ 2/DFs KBKT C q1 C′ b1

32 23.2/55 1.119 4(4) 5.3(6) −0.013(2) 0.25(13) 0.247(10)
ρs 64 21.1/47 1.119 3(6) 5.5(7) −0.013(2) 0.2(3) 0.234(18)

128 18.3/39 1.119 2(8) 5.3(9) −0.013(3) 0.2(5) 0.23(3)
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FIG. 4. Mean size of the largest cluster per site c1 and the
magnetization-density-like quantity m′ versus coupling strength K .
(a) c1 vs K. The curves of different system sizes converge to a single
curve in the ordered phase. (b) m′ vs K . In the whole low-temperature
phase, due to the absence of spontaneous symmetry breaking, m′

decreases monotonically with increasing system size and reaches
zero in the thermodynamic limit. As an example, the inset illustrates
the algebraic decay of m′ as a function of L for K = 1.512.

Figure 4(a) shows the mean size of the largest cluster per site
c1, which plays a role of the order parameter for percolation.
The behavior of c1 as a function of K is very similar to that for
a conventional percolation transition. In the disordered phase
with small K , all the geometric clusters are small and finite,
and c1 quickly drops to zero as system size L increases; in the
ordered phase, a giant percolation cluster emerges, and thus
a long-range order develops. For K � 1.3, Figure 4(a) clearly
shows that c1 rapidly converges to a nonzero value.

Figure 4(a) indicates that, for the 2D XY model, the ge-
ometric features of the flow configurations are very different
from the spin properties. In the flow representation, since the
spin degrees of freedom are integrated out, we cannot directly
sample the magnetization density m—the order parameter for
spin properties. Nevertheless, the magnetic susceptibility χ

relates to m as χ = Ld〈m2〉, and we can define an effective pa-
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FIG. 5. Wrapping probability R versus coupling strength K .

rameter as m′ ≡
√

χ/Ld . As shown in Fig. 4(b), m′ also drops
rapidly to zero in the disordered phase (K < KBKT), similar
to c1. However, in the low-temperature phase (K > KBKT), m′
keeps decreasing as L increases, which is still clearly seen for
K as large as K ≈ 2. According to the RG analysis, the whole
region for K > KBKT is critical, one has an algebraic decay
m′ ∼ L−η for K > KBKT, where η is a K-dependent exponent.
As an illustration, the inset of Fig. 4(b) displays the algebraic
decay of m′ for K = 1.152, with η ≈ 0.132.

To further demonstrate the second-order-like percolation
transition of the geometric clusters, we plot in Fig. 5 the
wrapping probability R versus K . In the absence or presence
of a giant cluster, one expects R → 0 or 1 in the L → ∞
limit, respectively. This is indeed supported by Fig. 5, in
which the wrapping probability R quickly converges to 1 as
long as K > 1.2, illustrating the emergence of a giant cluster
penetrating the lattice. Moreover, as for a second-order phase
transition, the R curves for different system sizes have an
approximately common intersection, indicating the location
of the percolation threshold Kperc. As L increases, the inter-
section of the R curves quickly approaches to Kperc.

In short, the scaling behaviors of c1 and R as a function of
K are both consistent with those for a second-order phase tran-
sition, instead of a BKT transition. This is an unconventional
and surprising phenomenon.

1. Percolation threshold

To have a quantitative numerical estimate of the percola-
tion threshold Kperc, we plot in Fig. 6 the MC data for the
wrapping probability R near Kperc. It can be seen that the
uncertainty of the intersections of R for sizes L ∈ [16, 4096]
is at the third decimal place, varying in range 1.104 < K <

1.110. As L increases, the intersection moves downward from
K ≈ 1.110 for L ≈ 32 to K ≈ 1.104 for L ≈ 512, and then
slightly moves upward to K ≈ 1.105.

As in the earlier discussions, the percolation transition of
the flow configurations looks like a second-order transition.
Near Kperc, the R data in Fig. 6 are indeed well described
by the following standard FSS ansatz for a continuous phase
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K
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 128
 256
 512

1024
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4096

FIG. 6. Wrapping probability R versus coupling strength K
around Kperc. The lines connecting the data points are added for
clarity. The expectation value and the error bar of Kperc are marked
with the black dashed line and the gray strip, respectively.

transition

R(ε, L) = R̃(εLyt ), (15)

where R̃ is a universal function and yt = 1/ν is the thermal
renormalization exponent. Taylor expansion of Eq. (15) leads
to

R(ε, L) = Rc +
3∑

k=1

qkε
kLkyt + b1Lyi + b2Lyi−1

+ b3Lyi−2 + c1εLyt +yi + d1ε
2Lyt , (16)

where ε = K − Kperc and the terms with exponent yi < 0 ac-
count for finite-size corrections. We fit the R data by Eq. (16),
and find that the correction exponent is yi ≈ −1. The results
with yi = −1 are summarized in Table III. We obtain Kperc =
1.105 3(4) and yt = 0.39(1), of which the error bar of Kperc is
at the fourth decimal place.

Assuming that the precision of Kperc is reliable, we
conclude that the percolation threshold Kperc = 1.105 3(4)
is significantly smaller than the BKT transition KBKT =
1.119 96(6). Actually, the deviation, at the second decimal
place, can be already seen from a bare eye view of Fig. 6.
Therefore, our numerical data suggest that the percolation
threshold does not coincide with the BKT transition. It is
noted that, since the emergence of superfluidity requests the
existence of a percolating cluster, one must have Kperc �
KBKT, which is indeed satisfied in our results.

The estimated thermal exponent yt = 1/ν = 0.39(1) is
much larger than zero. If it were true, the characteristic ra-
dius of the geometric clusters would diverge as a power law
∼ε−ν , different from the exponential growth of the correlation
length near the BKT transition. This provides another piece
of evidence that the percolation transition is not BKT-like. In
addition, since the standard uncorrelated percolation in 2D
has the thermal exponent yt = 3/4, the result yt = 0.39(1)
suggests that the percolation of the flow configurations is not
in the 2D percolation universality class.
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TABLE III. Fits of the wrapping probability R.

Lmin χ 2/DF Kperc yt Rc q1 b1 c1 d1

64 60/38 1.104 95(5) 0.390(3) 0.211 2(6) −0.62(1) −1.9(2) 3.3(4) −1.7(5)
R 128 32.2/31 1.105 30(9) 0.392(4) 0.217(2) −0.61(2) −4.6(6) 3.6(9) −1.9(6)

256 27.9/24 1.105 5(2) 0.393(6) 0.220(4) −0.62(3) −8(3) 4(2) −1.9(7)

Further, we fit the data for the mean size of the largest
cluster per site c1 at K = 1.106 by the FSS ansatz

c1(L) = Lyh−2(a0 + a1Ly1 ), (17)

where yh is the magnetic exponent. The results are shown
in Table IV, and we have yh = 1.76(2), smaller than yh =
91/48 ≈ 1.89 for the 2D percolation universality.

V. DISCUSSION

We simulate the XY model on the square lattice in the
flow representation by a variant of the worm algorithm. From
the FSS analysis of the magnetic susceptibility χ and the
superfluid density ρs, we estimate the BKT transition to be
KBKT = 1.119 3(10), consistent with the most precise result
KBKT = 1.119 96(6).

We study the geometric properties of the flow configu-
rations by constructing clusters as sets of sites connected
through nonzero flow variables. An interesting observation is
that, in the low-temperature phase, there is a giant cluster that
occupies a nonzero fraction of the whole lattice, indicating
the emergence of a long-range order parameter for the flow
connectivity. Given a flow configuration, a nonzero winding
number of flows implies a superfluid state, and can occur
only if at least a geometric cluster wraps around the lattice.
Such a percolating cluster can be either giant or fractal; for
the latter, the cluster size per site vanishes in the thermo-
dynamic limit. Since the low-temperature phase of the 2D
XY model is a quasi-long-range-ordered state, the geometric
clusters are expected to be fractal. The unexpected emergence
of a giant cluster raises an important question: what is the
nature of the percolation transition separating the disordered
phase of small clusters and the ordered phase of a giant
cluster?

The overall behaviors of the size of the largest cluster per
site c1 and of the wrapping probability R indicate that the
percolation transition is of a second order. Further, the R data
near the threshold Kperc are well described by a standard finite-
size scaling ansatz for a continuous phase transition. From the
least-squares fits of R, we obtain the percolation threshold as
Kperc = 1.105 3(4), which is close to but clearly smaller than
the BKT point KBKT = 1.119 96(6). The thermal exponent
yt = 1/ν = 0.39(1) is also significantly larger than zero. This

TABLE IV. Fits of the mean size of the largest cluster per site c1.

Lmin χ 2/DF yh a0 a1 y1

16 1.7/5 1.773(7) 0.46(5) 0.50(4) −0.214(12)
c1 32 1.4/4 1.768(10) 0.49(7) 0.47(6) −0.23(3)

64 1.0/3 1.762(13) 0.54(10) 0.44(7) −0.25(6)

implies an algebraic divergence of the characteristic radius of
the geometric clusters instead of an exponential growth of the
correlation length near the BKT transition.

We determine the magnetic renormalization exponent as
yh = 1.76(2) from the size of the largest cluster. The set of
critical exponents (yt = 0.39(1), yh = 1.76(2)) significantly
deviates from (yt = 3/4, yh = 91/48) for the standard perco-
lation in 2D. With the assumption that the estimated error
margins are reliable, we obtain that the percolation transi-
tion of the geometric clusters belongs to a new universality.
Caution is needed that, compared to the percolation threshold
Kperc, the critical exponents are more sensitive to the specific
ansatz formula. Thus, there may exist some systematic errors
that are not taken into account in the finally quoted errors of
yt and yh.

Many open questions arise from these unconventional ob-
servations. First, since the difference between KBKT and Kperc

is at the second decimal place, can it be simply due to compli-
cated logarithmic FSS corrections that have not been carefully
taken into account in the analyses? If this were the case, the
intersections of R for different system sizes would eventually
converge to KBKT ≈ 1.20. However, as shown in Fig. 6, the
intersections of R are mostly in range K ∈ (1.104, 1.106), ex-
cept for some small sizes. Thus, finite-size corrections would
change dramatically for L > 4096 if the final convergence is
near K ≈ 1.20. To clarify this point, simulation for L 
 4096
is needed, which is beyond our current work. Second, what is
the nature of the percolation transition for the geometric clus-
ters? Figures 4(a) and 5 indicate that in the low-temperature

x

y

I

M

(a)

I

M

(b)

FIG. 7. (a) A typical flow configuration for the 2D XY model
in representation of Eq. (A4). The red and blue lines with arrows
represent a flow with J+

i j and J−
i j on a bond, respectively. (b) A typical

flow configuration for the 2D O(4) spin model in the representation
of Eq. (B6). The red solid, blue solid, black dotted, and green dotted
lines with arrows represent that there is a flow with J+(1)

i j , J−(1)
i j ,

J+(2)
i j and J−(2)

i j on a bond, respectively. Integer flow variable J+ (J−)
counts along the positive (negative) direction of lines in both (a) and
(b) configurations.
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FIG. 8. Plots of Re vs K (a) and PB vs K (b) for the 2D XY model. The solid lines connecting data points are added for clarity.

region, a giant cluster emerges, and a long-range order param-
eter develops for percolation. Therefore, with the assumption
that there is only one percolation transition, the disordered
phase of small geometric clusters and the ordered phase of
a giant cluster are expected to be separated by a second-order
transition, consistent with the behaviors of c1 and R. Third,
what universality does the percolation transition belong to if
it were of a second order? The estimated critical exponents
(yt = 0.39(1), yh = 1.76(2)) suggest that the percolation is
not in the same universality as the standard percolation in 2D.
Fourth, do these unconventional phenomena occur in other
systems exhibiting the BKT transition?

A possible scenario is that, as the coupling strength K is
enhanced, the 2D XY model in the flow representation first
experiences a second-order percolation transition Kperc for the
flow connectivity and then enters into the superfluidity phase
via the BKT transition KBKT. In the flow configurations, the
superfluid flows for K > KBKT live on top of the giant cluster,
which already appears when K > Kperc. In the small inter-
mediate region KBKT > K > Kperc, the giant cluster, while
wrapping around the lattice, is effectively built up by a set
of local flow loops, and thus no superfluidity occurs.

To further verify this scenario, we explore the 2D XY
model in another flow representation (Appendix A). There
are two kinds of nonnegative flow variables J+

i j and J−
i j on

each bond, representing flows along positive and negative
directions. Mathematically, we can obtain the flow represen-
tation through Eq. (3) by taking a substitution Ji j = J+

i j − J−
i j ,

J̄i j = min{J+
i j , J−

i j } and then summing over J̄i j . At the same
temperature, there will be more bonds with flows. Hence
more local geometric cluster at high temperatures, and perco-
lating clusters will form earlier with decreasing temperature
in this representation. We expect the percolation threshold
K ′

perc < Kperc so that the intermediate region is enlarged. Our
numerical result gives K ′

perc = 1.062 8(2) < Kperc < KBKT, as
expected.

It is proved that the percolation transition in the flow
representation of the Ising model coincides with the thermo-
dynamic phase transition in Ref. [47], while the percolation
transition threshold Kperc is smaller than the BKT point.

Hence, we guess that the finite-temperature percolation tran-
sition may exist in the flow representation of the 2D O(n)
spin model with n � 3, though there is no thermodynamic
or BKT transition at any finite temperature. Our numerical
results of the 2D O(4) spin model (Appendix B) show that
there is a percolation transition at K = 1.888 70(6) belonging
to the standard 2D percolation universality class. Therefore,
we reach a general conclusion: in the flow representation,
whether the percolation threshold conincides with physical
phase transition is model-dependent.

As for the BKT transition, there are many systems besides
the 2D XY model, and the Bose-Hubbard (BH) model is a
typical example of such systems. Given a finite temperature,
as the on-site coupling strength is decreased, the 2D BH
model undergoes a BKT phase transition from the normal
fluid into the superfluid phase. Using a worm-type quantum
Monte Carlo algorithm, we simulate the 2D BH model in the
path-integral representation, and obtain evidence that the per-
colation threshold of the geometric clusters does not coincide
with the BKT transition. Future works shall focus on an ex-
tensive study of low-dimensional quantum systems exhibiting
the BKT phase transition.
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APPENDIX A: XY MODEL IN ANOTHER
FLOW REPRESENTATION

We consider the XY model in another different flow
representation, and show stronger evidence to support our
conclusion that the percolation transition in the flow config-
urations can be inconsistent with the BKT transition. For the
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FIG. 9. Plots of Re vs K (a) and PB vs K (b) for the percolation model in the flow representation of the O(4) spin model. The solid lines
connecting data points are added for clarity.

partition function of the XY model

Z =
∫ 2π

0

∏
i

dθi

2π

∏
〈i j〉

eK cos(θi−θ j ), (A1)

we can decompose the Boltzmann statistic factor into
exp(Kei(θi−θ j )/2) exp(Ke−i(θi−θ j )/2) and expand the exponent
for each bond into Taylor series [35] as

eK cos(θi−θ j ) =
+∞∑

J±
i j =0

(K/2)J+
i j +J−

i j

J+
i j !J−

i j !
ei(J+

i j −J−
i j )(θi−θ j ). (A2)

Then we can rearrange terms and obtain the partition function
in the flow representation as

Z =
∑

{J+,J−}

(∏
〈i j〉

(K/2)J+
i j +J−

i j

J+
i j !J−

i j !

)∫ ∏
i

dθi

2π
eiθi[

∑
j sgn(i→ j)(J+

i j−J−
i j )]

=
∑

{J+,J−}

(∏
〈i j〉

(K/2)J+
i j +J−

i j

J+
i j !J−

i j !

)

×
∏

i

δ

(∑
j

sgn(i → j)(J+
i j − J−

i j )

)
, (A3)

where flow variables J±
i j ∈ N represent currents flowing along

positive (negative) directions, and we specify positive di-
rection for each bond 〈i j〉 reflected by sgn(i → j) = ±1.
δ[

∑
j sgn(i → j)(J+

i j − J−
i j )] requires two currents to be con-

served on each site i.
For worm-type simulations, the G space can be expressed

in this flow representation as well:

G =
∫ ∏

i

dθi

2π
cos(θI − θM)

∏
〈i j〉

eK cos(θi−θ j )

=
∑

{J+,J−}

∏
〈i j〉

(
(K/2)J+

i j +J−
i j

J+
i j !J−

i j !

)∏
i

δ

(∑
j

sgn(i→ j)(J+
i j −J−

i j )

+ δ(i − I ) − δ(i − M)

)
. (A4)

In fact, the flow representation of Eq. (3) in the main text can
be obtained from the representation of Eq. (A4) by taking a
substitution Ji j = J+

i j − J−
i j , J̄i j = min{J+

i j , J−
i j } and then sum-

ming over J̄i j . This flow representation is shown in Fig. 7(a).
Same as the process in the main text, we construct geo-

metric clusters as sets of sites connected via nonzero flow
variables J± in the flow representation of Eq. (A4). We study

TABLE V. Fits of the wrapping probability R and the critical polynomial PB.

Lmin χ 2/DF Kperc yt Oc q1 q2 b1

64 23.5/21 1.888 678(17) 0.749(5) 0.690 1(4) −0.402(9) −0.108(10) −0.7(12)
Re 128 10/13 1.888 71(4) 0.752(7) 0.691 3(12) −0.394(14) −0.103(12) −14(12)

64 23.9/22 1.888 671(12) 0.749(5) 0.689 91(14) −0.401(9) −0.108(10) —
128 11.6/14 1.888 675(15) 0.753(7) 0.690 0(3) −0.394(14) −0.104(12) —
64 23/21 1.888 693(17) 0.749(5) −0.000 2(8) −0.801(17) −0.005(19) 2.5(23)

PB 128 12.4/13 1.888 72(4) 0.752(7) 0.0018(23) −0.79(3) −0.007(20) −19(23)
64 28/23 1.888 687(7) 0.750(5) 0 −0.799(17) −0.006(18) —

128 13.1/15 1.888 697(8) 0.752(7) 0 −0.79(3) 0.006(19) —
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the bond percolation model constructed by geometric clusters
and its percolation transition. Here, we measure another wrap-
ping probability Re, namely, the probability that at least one
geometric cluster wraps in any (x, y, or diagonal) direction.
We find that the percolation transition exists, and the percola-
tion threshold K ′

perc is clearly smaller than the BKT transition
point KBKT and the percolation threshold Kperc determined in
the flow representation of Eq. (3).

We estimate the percolation threshold Kperc by Re and
the critical polynomial PB(K, L) = R + Re − 1. As shown in
Fig. 8, the Re and PB curves for different systems have ap-
proximately common intersections, indicating the location of
K ′

perc. As L increases over 256, the intersections of Re quickly
approach to K ′

perc. Around K ′
perc, we perform fits of MC data

for Re by the FSS ansatz of Eq. (16), and estimate K ′
perc =

1.062 8(2) and yt = 0.90(3).
Assuming the precision of Kperc is reliable, we find that

K ′
perc = 1.062 8(2) is significantly smaller than the BKT tran-

sition point KBKT = 1.119 96(6) and the percolation threshold
Kperc = 1.105 3(4) determined in the original flow represen-
tation. According to our scenario, in the intermediate region
KBKT > K > Kperc, the giant cluster wrapping around the lat-
tice can be built up by a set of local flow loops. Compared with
the original representation, the local flow loops are easier to
form, as shown in Fig. 7(a), so is the giant cluster. Therefore,
the result for K ′

perc < Kperc seems reasonable.

APPENDIX B: O(4) SPIN MODEL IN
THE FLOW REPRESENTATION

The classical O(4) spin model is formulated in terms of
four-dimensional unit-length vectors �s, residing on sites of a
lattice. Its Hamiltonian reads as

H = −K
∑
〈i j〉

�si · �s j . (B1)

Due to Polyakov’s conjecture that the O(n) spin model with
n � 3 should exhibit exponential decay of correlations in two
dimensions at any positive temperature, there is no phase
transition of the second-order or BKT type in the 2D O(4) spin
model. However, we find that the percolation transition in the
flow configurations of the 2D O(4) spin model still exists, and
belongs to the 2D percolation universality.

To obtain the flow representation for the O(4) spin model,
we first divide the unit spin vector �s into two XY -type compo-
nents:

�s = A(1)s(1) + A(2)s(2)

= (cos φ cos θ (1), cos φ sin θ (1), sin φ cos θ (2), sin φ sin θ (2) ),

(B2)

where nonnegative coefficients A(1) = cos φ and A(2) = sin φ

(φ ∈ [0, π/2)), and s(α)(α = 1, 2) is a unit-length vector on
two-dimensional subspace. In this way, three degrees of free-
dom of the O(4) spin model are rearranged: two XY variables
θ (1) and θ (2), and another φ to determine the weight differ-
ence between two XY vectors. The uniform measure for �s is
expressed as∫

d�s =
∫ π/2

0
dφ sin φ cos φ

2∏
α=1

∫ 2π

0
dθ (α). (B3)

In addition, the Boltzmann statistical factor can be written as

eK�si ·�s j =
2∏

α=1

eK (α)
i j cos(θ (α)

i −θ
(α)
j ), (B4)

where we define K (α)
i j = KA(α)

i A(α)
j . Following the Taylor ex-

pansion in Eq. (A3), we can reformulate the partition function
[48] as

Z =
∑

{J±(1)}

∑
{J±(2)}

∏
〈i j〉

⎛⎝ 2∏
α=1

(
K (α)

i j /2
)J+(α)

i j +J−(α)
i j

J+(α)
i j !J−(α)

i j !

⎞⎠ ∏
i

⎛⎝∏
α �

(J (α)
i +2

2

)
�

(∑
α J

(α)
i +4

2

) 2∏
α=1

δ

(∑
j

sgn(i → j)
(
J+(α)

i j − J−(α)
i j

))⎞⎠, (B5)

indicating that a graph of the 2D O(4) spin model can be regarded as a superposition of two copies of XY -type graphs. The G
space constructed by the configurations with two defects can be expressed as

G =
∑
I �=M

�sI · �sMexp(−H) =
2∑

α=1

G(α)(I,M),

G(α)(I,M) =
∑

{J±(1)}

∑
{J±(2)}

∏
〈i j〉

⎛⎝ 2∏
β=1

(
K (β )

i j /2
)J+(β )

i j +J−(β )
i j

J+(β )
i j !J−(β )

i j !

⎞⎠∏
i

⎛⎝∏
β �

(J (β )
i +2

2

)
�

(∑
β J (β )

i +4
2

) 2∏
β=1

δ

(∑
j

sgn(i → j)
(
J+(β )

i j − J−(β )
i j

) + �
(α,β )
i

)⎞⎠,

(B6)

where �
(α,β )
i = δ(α − β )(δ(i − I ) − δ(i − M)) and J (β )

i =∑
j (J

+(β )
i j + J−(β )

i j ) + δ(α − β )(δ(i − I ) + δ(i − M)). Since

�
(α,β )
i is nonzero when α = β, two defects I,M are

only connected via an open path of one of the XY -
type copies. The weight related to site i introduces the
coupling of weights among two copies. The flow rep-

resentation of the 2D O(4) spin model is shown in
Fig. 7(b).

Given the flow configuration of O(4) spin model, we
construct a bond percolation model by connecting nonzero
flow variables J±(β )(β = 1, 2). For studying its perco-
lation transition, we measure the wrapping probabilities
R, Re, and the mean size of the largest cluster per site
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FIG. 10. Plots of c1L5/48 vs K (a) and c1L5/48 vs εL3/4 (b) for different systems size L for the percolation model in the flow representation
of the O(4) spin model. The solid lines connecting data points are added for clarity.

c1. We find that this percolation transition indeed exists
and should belong to the 2D percolation universality. Be-
sides, critical polynomial PB(K, L) = R + Re − 1 is found
to be equal to zero at K = Kperc and L → ∞, which is
the same as the standard percolation model on the square
lattice.

We estimate the percolation threshold Kperc by R and PB.
As shown in Fig. 9, R(0) and PB curves for different system
sizes have an intersection that quickly approaches to Kperc as
L � 64. Around Kperc, we perform fits of the MC data for R(0)

and PB by the FSS ansatz

O(ε, L) = Oc +
3∑

k=1

qkε
kLkyt + b1Lyi , (B7)

where ε = K − Kperc. We cannot obtain a stable estimate of
yi, so we fix yi = −2, which is supported by wrapping prob-
abilities of 2D percolation. In fact, the data for Re and PB

can be well fitted with fixed b1 = 0. The fitting results are
summarized in Table V. We find that PB at K = Kperc is con-
sistent with zero, and the estimate of Re = 0.690 1(6) agrees
with the exact universal value Re = 0.690 473 725 [29,31]. We
estimate Kperc = 1.888 70(6) and yt = 0.751(8).

Further, we study the mean size of the largest cluster per
site for c1 for different K and L. In Fig. 10(b), we plot
c1L5/48 versus εL3/4, in which the collapse of curves confirms
the scaling behavior c1 = Lyh−2c̃1(εLyt ). It demonstrate that
both the thermal exponent yt and magnetic exponent yh is
consistent with the yt = 3/4 and yh = 91/48 for the standard
percolation universality in two dimensions.
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