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Abstract 

This paper investigates the fracture characteristics of a Yoffe conductive crack moving along 

the interface of piezoelectric (PE)/piezomagnetic (PM) bimaterials. By assuming that the 

tangential electric- and magnetic- fields along the crack surface is zero and that the speed of the 

moving crack is less than the minimum shear wave speed of the bimaterial system, the 

considered problem can be transformed into a Riemann-Hilbert boundary value problem of 

vector form. Then the singularity parameters are exactly solved for different speed regions. In 

contrast to the anti-plane moving crack model including impermeable and permeable crack-

face assumptions along the interface of magnetoelectroelastic (MEE) bimaterials studied before, 

which shows inverse square-root singularity, three novel kinds of singularities are found as the 

speed of the moving crack is varied for the present PE/PM interface model, which can be 

defined as δ1,2 = -1/2±iε (Case 1), δ1,2 = -1±iε (Case 2) and δ1,2 = -1/2±κ (Case 3), and the third 

parameter δ3 = -1/2 always holds true for all three cases. Two bimaterial combinations, i.e., 

BaTiO3/CoFe2O4 and BaTiO3/Terfenol-D, are numerically examined. Different from the 

piezoelectric case, Case 3 does not appear for BaTiO3/CoFe2O4 bimaterial combination. Above 
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all, the singularity parameters significantly depend on the speed of the moving crack and the 

material properties of bimaterial systems.  

Keywords: Moving conductive crack; Interface crack; Piezoelectric/piezomagnetic bimaterial; 

Oscillating singularity; Speed region 

1. Introduction 

Piezoelectric (PE)/piezomagnetic (PM) layered materials, have attracted increasingly more 

attention as they are technologically simple to manufacture and high ME (magnetoelectrical) 

coefficients can be obtained [1]. However, cracks usually develop at the interface of the PE/PM 

layered materials during their servicing and thus their fracture analyses have received much 

attention recently [2-6].  

In practical engineering, dynamic interface cracks and their propagation are more problematic. 

An important topic of dynamic fracture mechanics is moving cracks [7], where a crack with 

fixed length to move inside a material. This crack model does not exist in reality, however, 

under the assumption of a moving crack with fixed length, the analytical solution is available 

and this is critical to help us cognize the singularity of the generalized stresses in the vicinity 

of crack tip and obtain some dynamic information around the crack tip, for example crack 

deflection [8]. And the moving crack model has also been extended to analyzing the fracture 

behaviors of magnetoelectroelastic (MEE) bimaterials [9-12]. Among them, Zhong and Li [9] 

studied a moving anti-plane Yoffe crack on the interface of MEE bimaterial based on magneto-

electrically limited permeable crack-face conditions, in which the extended stresses possessed 

inverse square-root singularity. Hu et al. [11] investigated a magneto-electrically permeable 

moving Dugdale crack at the interface of an MEE bimaterial under anti-plane deformation, 

where the extended stresses are no longer singular. Ma et al. [12] examined the plane-strain 

problem of a moving crack with a contact zone at the interface of two dissimilar MEE materials 
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and evaluated the influence of the speed of the moving crack, poling direction and material 

volume fraction on the fracture parameters, where the extended stresses at crack tip also 

exhibited inverse square-root singularity owing to the presence of contact zone. 

On the other hand, conductive cracks are very likely to form due to an extremely high local 

electric field through the crack, as well as due to electrode stratification or electrode-matrix 

debonding [13, 14]. For MEE materials, Tian and Rajapakse [15] investigated the static fracture 

behavior of conductive crack model in a homogeneous MEE material, and the extended stresses 

at crack tip had inverse square-root singularity as well. It is noted that although Ma et al. [16] 

considered the static behaviors of conductive interface crack in an MEE bimaterial, in their 

model only electrically conductive (i.e., magnetically permeable) assumption was adopted. In 

fact, for PE/PM layered materials, both electrically and magnetically conductive cracks may 

easily be developed at material interface due to complicated dynamic loading environment. 

Wang and Zhong [17] investigated the problem of a Yoffe-type conducting crack moving with 

a constant velocity at the interface of two dissimilar piezoelectric half planes. However, to the 

best of our knowledge, the fracture problem of a moving conductive crack at the interface of a 

PE/PM bimaterial, which is actually a common layered material, has not been investigated yet. 

Therefore, in present study, this kind of crack model is put forward. Of importance, the crack-

tip singularity characteristics of the novel model are detailed analyzed and discussed. The 

modeled crack singularities in this study completely differ from those of either an anti-plane 

impermeable or permeable crack moving along the interface of MEE bimaterials. The findings 

presented here should contribute to advancing current understanding of the failure behavior of 

PE/PM bimaterials. Moreover, the methodology employed in this paper can also be applied to 

the problems related to Maxwell stress and/or imperfect interface in the dissimilar piezoelectric 

and piezoelectric/piezomagnetic solids [18-21]. 

2. Basic relations for PE/PM bimaterial based on moving coordinate system 
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Consider a crack with a fixed length of 2a moving at a constant velocity V along the interface 

between the upper and lower half planes, which are PE and PM solids, respectively, as shown 

in Fig. 1. Both solids are transversely isotropic with the poling direction parallel to the x3-axis. 

The bimaterial is loaded by the anti-plane shear stress 
0  as well as in-plane electric field 

0E  

and magnetic field 0H  parallel to crack line at infinity. For the complexity of mathematics and 

physics involved, the speed of the moving crack is assumed to be less than the minimum shear 

wave speed of the bimaterial system. The constitutive equations (i.e., Eq. (1)) and the governing 

field equations (i.e., Eq. (2)) of the present model can be, respectively, written as follows, 

for PE materials, 
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and for PM materials, 
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Fig. 1. Crack moving along interface between PE/PM materials 
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Correspondingly, the gradient equations are: 

, ,,i i i iE H = − = −  (3) 

where ij , iD , and iB  are the components of the stresses, electric displacements and magnetic 

inductions, respectively; w ,  , and   are the mechanical displacement, electric and magnetic 

potentials, respectively; and iE  and iH  are the electric and magnetic fields, respectively. 44c , 

15e , 15h , and 11d  are the elastic, PE, PM, and electromagnetic constants, respectively; 11 and 

11  are the dielectric permittivity and magnetic permeability, respectively, and   is the 

material density. 

For convenience of the following calculations, two functions   and   defined in terms of the 

electric displacements and magnetic inductions, respectively, are introduced as 

2 ,1 1 ,2 2 ,1 1 ,2, , ,D D B B=  = − =  = −  (4) 

Using Eq. (4) and rearranging Eq. (1) results in: 
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and for PE materials, 
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for PM materials, 
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2

15 15
11 44 22 33 12 13

11 11 11 11

1 1
, , , 0,

h h
E c E E F F

   
= + = = = = −  (7b) 

It should be pointed out that the magnetic quantities associated with PE materials and the 

electrical quantities associated with PM materials are still considered because of dielectric 

permittivity 11  and magnetic permeability 11  being nonzero. 

Substituting Eq. (5) into Eq. (2) and using the relations 2,1 1,2E E=  and 2,1 1,2H H=  results in: 

2
2 2 2

2 2

1
, 0, 0

s

w
w

c t


 =   =   =


 (8) 

where ,i jE  and ,i jH
 
denote the partial differentiation of ,i jE  and ,i jH

 
with respect to the 

corresponding coordinate variables jx , respectively; 
2 2 2 2 2

1 2x x =   +    is a two-

dimensional Laplace operator, and 
sc  is the speed of the stiffened bulk shear wave in the PE 

and/or PM materials given as 

11
s

E
c


=  (9) 

Since the problem is in a steady state, the Galilean transformation can be introduced, i.e., 

1x x Vt= − , 2y x= , 3z x= , where V  is the speed of the crack tip, and then Eq. (8) can  be 

rewritten as 

2 2 2 2 2 2
2

2 2 2 2 2 2
0, 0, 0

w w

x y x y x y


         
+ = + = + =

     
 (10) 

where 
2 21 sV c = − . 

The general solution to Eq. (10) can be given as 

  ( )
T

, , Imw z=   =   U f  (11) 
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where ( ) ( ) ( ) ( )
T

1 1 2 3, ,z f z f z f z=   f  and 1 iz x y= + , iz x y= +  and i is the imaginary 

number √−1.  The generalized stresses can be presented as:  

( )
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i i
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Cf C  (12) 

( )
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i i
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i 0
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f  (13) 

For conductive cracks loaded by an electrical and/or magnetic field parallel to the crack, electric 

charges in the conductive crack surfaces will rearrange themselves to develop an opposite field 

with the same magnitude, therefore, the electric field and/or magnetic inside the conductive 

crack remains zero [15, 16]. As previously mentioned, the bimaterial is loaded by the anti-plane 

shear stress 
0  as well as in-plane electric field 

0E  and magnetic field 0H  parallel to crack line 

at infinity. According to the superposition principle, the problem here can be regarded as the 

sum of a uniform MEE field in PE/PM bimaterials with no cracking, and a disturbed MEE field 

caused by the moving conductive crack. The boundary and continuity conditions for the 

disturbed MEE field can be determined with 

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

+

32 32 0 1 1 0

1 2+

1 1 0

,0 ,0 , ,0 ,0 ,
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 (15) 

31 32 1 2 1 20, 0, 0,D D B B z = = = = = = →   (16) 

where superscripts ‘‘+’’ and ‘‘-’’ denote the physical quantities that pertain to the upper and the 

lower material interfaces, respectively.  
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3. MEE solution to the disturbed field 

The continuity conditions of tractions, and the tangential electric and magnetic fields across the 

total real axis can be expressed as 

( ) ( ) ( ) ( )1 1 1 1 2 2 2 2 ,x x x x x+ − − +   + = + −    C f C f C f C f  (17) 

where subscripts 1 and 2 stands for the upper and lower materials, respectively; the prime ( )'  

denotes differentiation with respect to the argument, the overbar stands for the complex 

conjugate; and  

( ) ( ) ( ) ( )1 1

2 2 1 1 1 1 2 2,z z z z− −   = =f C C f f C C f  (18) 

can be further obtained. 

According to the continuity conditions of the out-of-plane displacement, normal electric 

displacement and magnetic induction on the bonded part of the material interface, we have 

( ) ( ) ( ) ( )1 1 2 2 ,x x x x x a+ − − +   − = − f f f f  (19) 

Substituting Eq. (18) into (19) yields: 

( ) ( ) ( ) ( )1 1 1 1

1 2 1 1 1 2 2 2 ,x x x a− − + − − − + = + C C C f C C C f  (20) 

Introducing an auxiliary function vector ( )zh  as in [17]: 

( )
( )

( )

1 1

2 2

, 0

, 0

z y
z

z y

 
= 

 

MC f
h

MC f
 (21) 

where 

11 12 13

1 1

1 2 12 22

13 33

i i

i 0

i 0

M M M

M M

M M

− −

 
 

= + = −
 
 − 

M C C  (22) 

with ijM  in (22) being real numbers. Using Eqs. (20) and (21), one gets 

( ) ( ) ,x x x a+ −− = h h 0  (23) 
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( ) ,x x= → h 0  (24) 

Using the introduced function vector, the traction and tangential electric and magnetic fields on 

the crack surface in Eq. (14) can be expressed as 

( ) ( )1 1 2 ,x x x a− + − −+ = M h M h T  (25) 

where  
T

0 0 0, ,E H= −T . Eqs. (23)-(25) comprise a Riemann-Hilbert boundary value 

problem [22]. 

The aforementioned Riemann-Hilbert boundary value problem leads to the following 

eigenvalue problem and the details of the derivation can be found in Refs. [22-25]: 

( )2 0ie  −+ =H H v  (26) 

where v is the eigenvector of the matrix ( )2 ie  −+H H , and 1−=H M . With reference to [4], 

and by expressing H  as i= +H D W , Eq. (26) further leads to 

( )i 0+ =Ψ I v  (27) 

where 

12 13 2 i
1

21 2 i

31

0
1

0 0 ,
1

0 0

e

e

 

 


−
−

−

  
+ 

= =  =
  −
  

Ψ D W  (28) 

and ij  are real. Then   can be determined from i 0+ =Ψ I  as 

1,2 12 21 13 31 3, 0 =  −  −   =  (29) 

and   can be further obtained by using the second equation of Eq. (28). According to Eqs. (12), 

(22), (28), and (29),   is very dependent on the speed of the moving crack. With variations in 

the speed of the moving crack, the transitions of singularities will occur at the Rayleigh wave 

speeds of the upper and lower materials, as well as other speeds iV  that lie in between the 
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Rayleigh wave and the minimum shear wave speeds of the bimaterial system [17]. Therefore, 

the singularity parameters may take the three following forms for specific values of V . 

 (1) Case 1: 1,2 3 12 21 13 31

1 1
i , , for 0 1

2 2
  = −  = −  −  −   

 

and 

( )1

1 i
arccoth

2
 


= +  (30) 

This case usually occurs in regions of low speed. In this case, vector functions ( )i zf  and ( )i zf  

can be obtained by using the following derivation. 

The transformation matrices are introduced: 

( ) ( ) T,z z= =h Ph T ΔP T  (31) 

where 

 1 2 3=P v v v , ( ) ( )diag 1 tanh 1 tanh 1 = − +  Δ  (32) 

and iv  is the eigenvector associated with eigenvalue i  in Eq. (26), 2 1=v v . Then Eq. (25) can 

be decoupled as: 

( ) ( ) ,x x x a+ −+ = h Λh T  (33) 

where 
2 2diag 1e e − =  Λ . 

Consequently, the expression for ( )zh  can be written as 

( ) ( ) ( )
1

z z
−

= − +  h P I X L I Λ T  (34) 

where 

( ) ( ) ( ) ( ) ( ) ( ) ( )
1 1 1 1 1 1

i i i i
2 2 2 2 2 2diagz z a z a z a z a z a z a

   − − − + − + − − − − 
= + − + − + − 

 
X  (35) 

 diag 2i 2iz a z a z = + −L  (36) 
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Using Eq. (21), the explicit expressions for ( )1 zf  and ( )2 zf  are 

( ) ( ) ( )
11 1

1 1z z
−− − = − +  f C M P I X L I Λ T  (37a) 

( ) ( ) ( )
11 1

2 2z z
−− − = − +  f C M P I X L I Λ T (37b) 

Integrating Eq. (37) gives 

( ) ( ) ( ) ( )
11 1 2 2

1 1z z z a z
−− −  = − − +

 
f C M P I X I Λ T  (38a) 

( ) ( ) ( ) ( )
11 1 2 2

2 2z z z a z
−− −  = − − +

 
f C M P I X I Λ T  (38b) 

(2) Case 2: 1,2 3 12 21 13 31

1
1 i , , for 1

2
  = −  = − −   −   

 

and 

( )1

1
arccoth 


=  (39) 

This case probably occurs with a moderate speed of the moving crack. In this case, Δ  in Eq. 

(32) and Λ  in Eq. (33) will, respectively, become 

( ) ( ) 2 2diag 1 coth 1 coth 1 , diag 1e e   − = − + − − = − −    Δ Λ  (40) 

and 

( ) ( ) ( )
1

z z
−

= − +  h P I X L I Λ T  (41) 

where 

( ) ( ) ( ) ( ) ( ) ( ) ( )2

1 1
i 1 i i 1 i

2 2diagz z a z a z a z a z a z a
   − − + − − − − 

= + − + − + − 
 

X  (42) 

( ) ( )diag 2i 1 2i 1z a z a z = + − − +  L  (43) 

Also, ( )i zf  and ( )i zf  which are associated with this scenario are formally analogous to Eqs. 

(37) and (38), respectively. Unless otherwise stated, the quantities or symbols in this case as 

well as in the following cases will take the same form as those in Case 1. 
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(3) Case 3: 1,2 3 12 21 13 31

1 1
, , for 0

2 2
  = −  = − −   −   

 

and 

( )1

i 1
arccoth

2
 


= − +  (44) 

Correspondingly, Δ  and Λ  in Eqs. (32) and (33) will, respectively, take the following form: 

( )

( ) 2 i 2 i

0 0 1 i tan

0 1 i tan 0 , diag 1

1 0 0

e e   



 −

 − +   
 

 = − − =     
 
−  

Δ Λ  (45) 

and 

( ) ( ) ( )
1

z z
−

= − +  h P I X L I Λ T  (46) 

where 

( ) ( ) ( ) ( ) ( ) ( ) ( )
1 1 1 1 1 1

2 2 2 2 2 2diagz z a z a z a z a z a z a
   − − − + − + − − − − 

= + − + − + − 
 

X  (47) 

 diag 2 2z a z a z = + −L  (48) 

Likewise, ( )i zf  and ( )i zf   in relation to this scenario are analogous to Eqs. (37) and (38), 

respectively. 

The exact solutions derived in the previous section can be readily applied to determine the field 

variables at the material interface.  

5. Numerical results of singularity and discussion 

In this section, the effect of the speed of the moving crack on different singularity powers will 

be numerically examined and discussed. Two bimaterial combinations with PE and PM solids, 

i.e.,  BaTiO3/CoFe2O4 and BaTiO3/Terfenol-D, are considered. For convenience, their material 

properties are listed in Table 1 [26]. The explicit expression of Rayleigh wave speed of the PM 
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or PE material is not available and its calculation methodology can be found in Feng et al. [27]. 

Herein Rayleigh wave speeds for BaTiO3, CoFe2O4 and Terfenol-D are, respectively, 3031.72 

m/s, 2939.87 m/s, 1293.35 m/s, and their shear wave speeds are, respectively, 3106.71 m/s, 

2940.05m/s, 1305.79 m/s. Since 3  always equals to 1 2−  in all three cases in Section 3, only 

the results in relation to ( )1,2i i =  are provided herein. 

Table 1 Material properties of BaTiO3, CoFe2O4 and Terfenol-D [26] 

(cij in 109 N/m2, eij in C/m2, αij in 10-10C/Vm, hij in N/Am, μij in 10-6Ns2/ C2, dij in 10-12Ns/ VC,  in 

kg/m3) 

 c44 e15 h15 α11 μ11 d11  

BaTiO3 43 11.6 0 112 5 0 5700 

CoFe2O4 45.3 0 550 0.8 590 0 5300 

Terfenol-D 13.6 0 108.3 0.5 5.4 0 9250 

 

Figs. 2 and 3 describe the variations in the oscillating index   with respect to the speed of the 

moving crack for the bimaterial systems of BaTiO3/CoFe2O4 and BaTiO3/Terfenol-D, 

respectively. Note that in Fig.2, there is one transition point of the singularities at the Rayleigh 

wave speed of CoFe2O4, i.e., V=2939.87 m/s, for the BaTiO3/CoFe2O4 bimaterial system. When 

the speed of the moving crack V exceeds 2939.87 m/s, the singularity indexes change from 

1,2 1 2 i = −   (Case 1) to 1,2 1 i = −   (Case 2). Fig. 3 shows that there are two points of 

transition of the singularities for the bimaterial system of BaTiO3/Terfenol-D, in which one of 

the points is at the Rayleigh wave speed of Terfenol-D, namely V=1293.35 m/s, and the other 

point is at a speed of V1=1302.92 m/s, which lies in between the Rayleigh wave and shear wave 

speeds of Terfenol-D. The singularity parameters which are defined as 
1,2 1 2 i = −   (Case 1), 

1,2 1 i = −   (Case 2) and 
1,2 1 2 = −   (Case 3) for the bimaterial system of 
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BaTiO3/Terfenol-D, appear successively with increased speed of the moving crack. The results 

in Figs. 2a and 3a show that for the majority of the range  
( ) ( )( )1 2

R R0 min ,V c c  , where Rc  is 

Rayleigh wave speed, increasing the speed of the moving crack leads to an increase in the 

oscillating index. Moreover, when the speed of the moving crack is close to the minimum 

Rayleigh wave speed of the system, the oscillating index increases rapidly and approaches to 

infinity. These phenomena agree with the findings of the analysis on anti-plane fractures of 

moving conductive cracks in piezoelectric bimaterials [17] and plane fracture analysis of 

permeable moving interface cracks in MEE bimaterials [12]. Figs. 2b and 3b show that in the 

event that Case 2 occurs, namely 
1,2 1 i = −  , the magnitude of the oscillating index decreases 

as the speed of the moving crack increases. This is also consistent with the observations in [17]. 

However, for the bimaterial system of BaTiO3/CoFe2O4 , only Cases 1 and 2 appear, and Case 

3, namely the real singularity parameter, vanishes. This is not consistent with the observation 

in [17], which is probably owing to the material properties of bimaterial system of 

BaTiO3/CoFe2O4 . 

In Fig. 3b, as the speed of the moving crack is greater than V1=1302.92 m/s, all of the singularity 

parameters become real, which means that the oscillation vanishes. In short, the numerical 

results shown in Figs. 2 and 3 indicate that the speed of the moving crack significantly 

influences the singularity parameters of the piezoelectric/piezomagnetic bimaterials in this 

study. The anti-plane moving interface crack model including impermeable and permeable 

crack-face assumptions leads to the inverse square root singularity [28], while the current model 

leads to 3 kinds of singularities as the speed of the moving crack changes. This is probably 

owing to the crack-face boundary conditions used in this study where the electric field and/or 

magnetic inside the conductive crack remains zero. This could result in a quite different 

distribution of magnetoelectroelastic field especially for a relative high the speed of the moving 

crack. 
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Fig. 2. Variations in oscillation  index   with respect to speed of moving crack for bimaterial 

system of BaTiO3/CoFe2O4 which range from  (a) 
( ) ( )( )1 2

R R0 min ,V c c  , to (b) 

( ) ( )( ) ( ) ( )( )1 2 1 2

R R s smin , min ,c c V c c   
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Fig. 3. Variations in   and   with respect to speed of moving crack for bimaterial system of 

BaTiO3/Terfenol-D which range from (a) 
( ) ( )( )1 2

R R0 min ,V c c  , to (b) 

( ) ( )( ) ( ) ( )( )1 2 1 2

R R s smin , min ,c c V c c   
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Fig. 4. Distribution of the stress ahead of the moving crack-tip for different speeds of moving 

cracks.  Bimaterial system of (a) BaTiO3/CoFe2O4, and (b) BaTiO3/Terfenol-D 

 

The distribution of the stress ahead of the moving crack-tip for different speeds of moving 

cracks is presented in Fig. 4. Herein, the applied external loading is expressed as 

 
T

0, 0, 0= −T . It should be noted that the stress oscillation becomes more obvious when the 

speed of the moving crack is close to the Rayleigh wave speed of CoFe2O4 and Terfenol-D, 

respectively. As expected, stress is rapidly reduced beyond the oscillation interval and finally 
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tends to a constant value with increases in x a , which is consistent with the observation in [17]. 

However, for BaTiO3/Terfenol-D material combination, the stress ahead of the moving crack-

tip is negative for a very high speed of moving crack. This is different from the phenomena in 

[17] for piezoelectric bimaterial, which is probably owing to the special material properties of 

BaTiO3/Terfenol-D material combination. 

6. Conclusions 

A Yoffe conductive crack moving along the interface of PE/PM bimaterials is analyzed by 

using the complex variable method. By assuming the moving speed is less than the minimum 

shear wave speed of the bimaterial system, the problem can be reduced to solving a Riemann-

Hilbert boundary value problem in vector form, the solution to which is given in closed form. 

The singularity parameters for the crack model are obtained for different speed regions. It is 

found that as the moving speed increases, three different kinds of singularities may emerge in 

this study, namely 1,2 1 2 i = −  (Case 1), 1,2 1 i = −   (Case 2) and  1,2 1 2 = −   (Case 3), 

and that 3 1 2 = −   always holds true for all cases. Moreover, the transitions of singularities 

usually occur at the minimum Rayleigh wave speed of the two constituents or at certain speeds 

that fall in between the minimum Rayleigh wave and shear wave speeds. Different from the 

piezoelectric case, Case 3 does not appear for BaTiO3/CoFe2O4 bimaterial combination. As for 

BaTiO3/Terfenol-D bimaterial combination, all three cases occur. Additionally, the singularity 

parameters significantly depend on the speed of the moving crack and the material properties 

of bimaterial systems.  
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