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Abstract—Accurate and sensitive taxonomic profiling is es-
sential for any metagenomic analysis for revealing microbial
community structure and for potential functional prediction.
Antimicrobial resistance (AMR) detection is also a critical task in
the clinical diagnosis of infection and antimicrobial therapy. By
incorporating Oxford Nanopore Technologies (ONT) sequencing,
users benefit from the high-confidence alignment of long reads
for taxonomic classification, even among bacteria with similar
genomes. Portable ONT devices, such as VolTRAX with MinION,
allow short turnaround time for detection and can be used
in a lightweight laboratory setting. However, error-prone ONT
sequencing reads are still challenging for existing software for
accurate taxonomic classification of microbes and detection of
AMR down to the drug level.

In this paper, we present MegaPath-Nano, the successor to
NGS-based MegaPath. It is a high-precision compositional anal-
ysis software with drug-level AMR detection for ONT metage-
nomic sequencing data. MegaPath-Nano performs 1) thorough
multi-level filtering against decoy and human reads, while remov-
ing noisy alignments, 2) alignment-based taxonomic classification
with RefSeq down to strain-level, with an alignment-reassignment
algorithm to tackle the challenge of non-unique alignments,
based on global alignment distribution, and 3) comprehensive
downstream drug-level AMR detection, integrating five AMR
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databases. In our benchmarks using the Zymo metagenomic
datasets, MegaPath-Nano performed better than other existing
software for taxonomic classification. We also sequenced five real
patient isolates using MinION to benchmark the performance
of AMR detection. MegaPath-Nano was the most accurate and
provided the most comprehensive output at both the drug and
class level of AMR prediction against other state-of-the-art
software.

MegaPath-Nano is open-source and available at
https://github.com/HKU-BAL/MegaPath-Nano.

Index Terms—pathogen detection, antimicrobial resistance
prediction, MinION long reads, metagenomics, compositional
analysis

I. INTRODUCTION

The progressive development of short-read Next-Generation
Sequencing (NGS) technologies with fewer sequencing errors
and more affordable sequencing cost [1] has supported the
rapid growth of metagenomic studies. Medical applications of
NGS-based metagenomic sequencing for pathogen detection
have become more standardized in the past ten years [2, 3,
4]. Accurate and sensitive metagenomic profiling allows 1)
taxonomic classification [5], 2) abundance estimation [6], and
subsequently, 3) AMR prediction [7].

Since NGS-based metagenomic sequencing is limited by the
short length of NGS reads, its resolution for taxonomic classi-
fication between microbes at finer levels is low, especially in



conservative sequence regions [8]. The use of third-generation
sequencing Oxford Nanopore Technology (ONT), which gen-
erates long reads with an average length of over 10kbp, is
a good alternative solution for more sensitive and accurate
pathogen detection. With ONT real-time sequencing and base-
calling [9], the user also benefits from shorter turnaround time
compared to using NGS-based detection. Despite all these
advantages, the raw read sequencing error rate of ONT is
still high, at about 10% [10]. While most of the existing
taxonomic classification or AMR detection software, such as
MegaPath [11], Centrifuge [12], Kraken 2 [13], AMR++ [14],
and ARGs-OAP [15], were designed for short reads, to the
best of our knowledge, there is no software or workflow
optimized for ONT metagenomic data that incorporates lower-
level taxonomic profiling with comprehensive drug-level AMR
detection.

The existing taxonomic classification and pathogen de-
tection software applicable to ONT metagenomic reads can
be divided into three main categories: 1) kmer-based read
classifier, 2) alignment-based classifier, and 3) Bayesian/EM-
based estimator. Kraken 2 with Bracken, is a kmer-based
read taxonomic classifier and a Bayesian-based composition
estimator. Kraken 2 is memory-efficient and is ultra-fast, but
at the expense of giving up useful read-level information.
Centrifuge directly applies the Burrows-Wheeler transform
[16]. It also runs fast, but it assigns multi-mapped reads
to their Lowest Common Ancestor (LCA), which causes a
less taxonomy-specific read assignment. Noteworthy, WIMP,
which is the proprietary workflow developed by ONT for
taxonomic classification, uses Centrifuge as its backend. A
recently developed software MetaMaps [17] uses an EM-based
approach to estimate microbial compositions with approximate
composition-dependent mapping results. The EM algorithm
can be resource-thirsty and run much slower than the other
methods [18].

Taxonomic profiling allows the detection of potential
pathogens in clinical samples. Nevertheless, commonly used
AMR detection software does not integrate taxonomic classi-
fication results with resistance prediction. Most of these AMR
detection tools are either not designed for long-read or cannot
detect down to drug level. The NGS-based metagenomics soft-
ware AMR++ was published together with the accompanying
AMR database MEGARes for characterization and quantifica-
tion of resistance genes. MEGARes comprises representative
sequences of AMR genes, reflecting its higher reliability and
non-redundant integration of related AMR databases [14].
ONT developed the Antimicrobial Resistance Mapping Ap-
plication (ARMA) [19] workflow, which aligns ONT reads
to CARD (Comprehensive Antibiotic Resistance Database)
databases [20] after taxonomic classification by WIMP [21].
CARD, which is the most commonly used database in the field,
has well-structured AMR ontologies and constant updates. In
addition to AMR gene homolog detection, CARD provides
other types of functional annotations for use with other de-
tection methods. The workflow, however, provides users only
with the alignment results against CARD for downstream ho-

molog detection and AMR prediction. Another ONT-specific
software, ARGpore, utilizes a custom environmental AMR
gene database, SARG, which detects AMR only up to the
more general class level [22]. Other tools that are not specific
to sequencing types, such as ResFinder, identify only a subset
of AMR genes contributing to the acquired resistance [23].
AMRfinder [24] uses an NCBI-curated database with HMM
and applies a species-specific cut-off for BLAST searches.
However, the tool does not provide a taxonomic classification
result and therefore is difficult to use it for metagenomic sam-
ples. HMM-based software can identify protein sequences with
related functions, but with lower sequence identity, so they
are useful for remote homologs or novel resistance sequence
discovery [25]. There are also databases available for specific
types of AMR genes, such as the CBMAR [26] database for
beta-lactamase families. Nonetheless, the search function in
these databases is rather limited. Depending on their detection
methods, there are trade-offs in the 1) availability of genomic
contexts, 2) dependency on reference databases, and 3) speed
of different tools [25]. In addition, all of these AMR detection
tools apply one or two independent AMR gene databases as
a reference, which results in different levels of classification
resolution and available resistance information. Using a single
software or database therefore risks causing incomprehensive
prediction output.

Here, we present MegaPath-Nano, comprehensive and ac-
curate software designed and optimized for both metagenomic
analysis and AMR detection using ONT long reads. With the
ONT-specific optimizations, MegaPath-Nano is the successor
to the NGS-based MegaPath, inheriting some of its key
features with new functions for AMR detection. It performs
1) data cleansing, 2) taxonomic profiling, and 3) drug-level
AMR detection within a single workflow. As a key feature
for taxonomic profiling, MegaPath-Nano performs a global-
optimization on multiple alignments and reassigns predictably
misplaced reads to a single most likely species. As to per-
form a consistent and comprehensive AMR detection analysis,
MegaPath-Nano uses a novel consensus-based approach to
detect AMR, incorporating a collection of AMR software and
databases. This strategy consolidates the strength of both read-
and assembly-based approaches, with (1) high computational
efficiency; and (2) utilizes read-level genomic contexts and
alignment qualities.

We benchmarked MegaPath-Nano for taxonomic classifica-
tion using real ONT sequencing data of the ZymoBIOMICS
Microbial Community Standard dataset, both with or with-
out human reads. Our results show that MegaPath-Nano has
achieved the best performance on all datasets against WIMP,
Kraken 2, and MetaMaps. We also sequenced five real pa-
tient isolates with known phenotypic AMR screening results.
Our results show MegaPath-Nano outperformed ARMA and
ARGpore on correct AMR detection in all five isolate datasets.
MegaPath-Nano is as well the first publicly available software
for both taxonomic classification and drug-level AMR detec-
tion using ONT long reads.



II. METHODS

The complete workflow of MegaPath-Nano is shown in
Fig. 1.

Fig. 1. Complete workflow of MegaPath-Nano

Prior to read alignment, the preprocessing procedure of
MegaPath-Nano removes low-quality reads with an average
base quality lower than 7, in addition to adapter trimming
and read length filtering. The aligner minimap2 [27] is then
used in the ONT-read mode to align the reads to the 1)
human reference genome database, and 2) a customizable
decoy database, including selected plasmid sequences, for
further alignment-based data cleansing. The filtering criteria
include an alignment score (i.e., BAM auxiliary tag ‘AS’)
over a default threshold value set at 1,000. To specifically
exclude certain taxa from the downstream analyses, users
can customize the decoy database by adding the reference
sequence of the unwanted taxa to the default database. The
high confidence reads are then aligned to the >54,000 com-
plete genome assemblies available in the RefSeq [28] database
(release 99).

The following sections describe the two main modules
of MegaPath-Nano: (A) taxonomic analysis and (B) AMR
detection. Note that the AMR detection module has a stand-
alone function, so in addition to the default workflow, users
can specify any BAM file as input for AMR detection.

A. Taxonomic analysis module

1) Masking alignments in ambiguous regions: Genomic
regions that are difficult to align properly even with long
ONT reads, including (1) spike-depth regions [11], (2) human-
repetitive regions, and (3) microbe-repetitive regions, are
masked to reduce potential alignment errors in the initial three
steps. Spike-depth regions are defined as large regions with
aligned reads from putative homologs, which are not useful
for taxonomic classification. When computing depth for spike
filtering, only the alignment with the best alignment score is
counted. The spike-depth regions are identified and masked

if their depth is greater than the expected maximum depth,
µ + α · sd, where µ is the mean depth, sd is the standard
variation, and α is the default at 6 (determined empirically). 2)
The human-repetitive region masker masks all regions within
the RefSeq references with similarity over 80% in the human
genome reference. 3) The microbe-repetitive regions are highly
similar regions in high-abundance species that can be aligned
to low-abundance species. The similarity cut-off is set to
100% − 1/8 × r, where r is the abundance ratio of a high-
abundance species to a low-abundance species. For example,
a region in a high-abundance species is masked if it is aligned
with a species with eight times lower abundance and over
99% (100− 8× 1/8) similarity. These operations ensure that
only informative regions in the reference genomes are retained,
based on the initial alignments.

2) Taxonomic binning by alignment reassignment algo-
rithm: This rationale of the reassignment algorithm was
explained in MegaPath. It effectively improves the taxonomic
binning specificity and abundance estimation accuracy using
Illumina short reads [11]. In MegaPath-Nano, we improved
the reassignment algorithm to adapt to the ONT long-read
specific properties, such as the variable read length. For reads
that are mapped to the repeat-masked reference sequences of
multiple species with a high alignment score (AS), if species
s1 explains [11] species s2, then the reads common to s1
and s2 are reassigned to s1 from s2. It is defined that s1
explains s2 if s1 weakly explains s2, and no species weakly
explains s2. The following conditions determine if s1 weakly
explains s2: (1) Count(s1) − MCount(s1, s2) >= r(s1)
and (2) UCount(s2) < e · UCount(s1), where Count(s)
counts all reads assigned to a species, s, MCount(s) is the
read count aligned to multiple species in s, UCount(s) is
the read count aligned uniquely only to s, r is an arbitrary
ratio of dissimilarity between species, and e is the error rate
of sequencing or alignment (default set at 5%). The first
condition indicates that s1 has a large proportion of reads
that are not samples and that are shared with s2. The second
condition signifies that the unique reads of s2 could be caused
by a sequencing error or misalignment. This reassignment
algorithm is implemented recursively for each species pair that
shares reads of multiple high-quality alignments. For those
that are uniquely mapped or not reassigned, alignment with
the highest AS alignment is selected for further analysis.

B. AMR detection module

1) Query sequence error correction with variant calling
and consensus generation: The filtered ONT reads are aligned
to the RefSeq database by default for AMR detection in the
downstream. In order to tackle the per-read sequencing error
in ONT reads, consensus sequences of the aligned reads are
generated using the variant calling results. Variant calling with
metagenomic data is performed using the bcftools [29] with
multi-allelic variant calling mode enabled. While the size of
RefSeq is huge, and a typical sample usually covers only a
few sequences in RefSeq, it is reasonable to call variants in
the covered sequences only. However, that requires a summary



of depth at all sequence positions in RefSeq, which is com-
putationally expensive. Instead, we rely on bedops [30] that
can calculate the uncovered regions efficiently. The uncovered
regions are masked with ‘N’ when using the bcftools for
consensus. The resulting consensus sequences will be used
for downstream AMR detection using three software and five
databases.

2) AMR software and database integration for comprehen-
sive detection and output: MegaPath-Nano comprehensively
integrates major AMR databases and the respective assembly-
based AMR detection software, including CARD, ResFinder,
AMRfinder, MEGARes, and CBMAR. The consensus se-
quences generated are aligned to the AMR databases with
NCBI BLAST. To search against the protein databases, such
as CARD and CBMAR, open reading frame prediction and
translation into protein sequences are performed with Prodi-
gal [31]. To avoid miscalling AMR genes or misattributing
resistance to non-AMR genes because of an arbitrary BLAST
cut-off, a collection of cut-off settings is employed for all tools
to reduce variance. The default threshold of identity score
ranges from 0.9 to 0.95. The two major models for AMR
detection are the homolog model and the variant model [20]. In
the homolog model, AMR is detected if consensus sequences
match the AMR gene reference sequences with high similarity,
using BLAST. In the variant model, AMR is detected with
the presence of one or more specific resistance variants. For
concatenation of output matrix, only high-confident AMR
results with identity score and coverage over 0.9 and 0.6 are
retained. The associated AMR genes, identity scores, accession
ID, and the number of supports from various databases are
reported in a single tabular output for users to evaluate the
confidence of each detection result.

3) Sequencing of five patient isolates with known pathogens
and AMR for benchmarking: Regarding the library preparation
for sequencing five phenotypically tested clinical isolates in
the AMR detection experiment, approximately 475 ng high
molecular weight DNA per sample was used for library
preparation using ONT automatic library preparation device
VolTRAX V2 following the VSK-VSK002 protocol. The
samples were sequenced using ONT MinION sequencer with
R9.4.1 flowcells. Depending on the target genome size, each
sample was sequenced for 1-2 hr to obtain at least 100X
data. The data were basecalled using Guppy v3.3.0 with
dna r9.4.1 450bps hac configuration.

III. EXPERIMENTS AND RESULTS

A. ZymoBIOMICS Microbial Community Standards

The GridION sequencing run on ZymoBIOMICS Microbial
Community Standards (Zymo) DNA set 2 [32] with even dis-
tribution (8 bacteria, each with 12% genomic DNA; along with
two yeasts, each 2%) and log distribution (10 bacterial species
with exponentially decreasing genomic DNA proportion) were
subsampled into two datasets for benchmarking: (1) 1.2GiB
100% Zymo data, and (2) 10GiB 5% Zymo data, mixed
with 95% human NA12878 data obtained from public dataset

rel6 [33] to mimic the composition of clinical metagenomic
samples.

MegaPath-Nano was benchmarked against What’s In My
Pot (WIMP), Kraken 2, Bracken and MetaMaps for taxonomic
classification. In this experiment, Kraken 2 was benchmarked
for taxonomic classification since it provides the assignment
information of individual reads, while Bracken was bench-
marked for the abundance ranking with the results of Kraken
2. It was reported that the input limit of WIMP was around
1GB, so the data were split into 1GB batches if they exceeded
the constraint.

Table I shows that MegaPath-Nano consistently outper-
formed all other software in precision and sensitivity at
the species level on the 10GiB Zymo and human DNA
mixture dataset. Overall, MegaPath-Nano showed a 3.9%
improvement in recall, on average. While all the software
performed relatively well in terms of precision, MegaPath-
Nano had the highest precision; one reason for this is the
implementation of the reassignment algorithm. The difficulty
of taxonomic analysis increases with the size of databases
because of the larger number of similar or near-identical
regions in metagenomes, such as most of the species (Listeria
monocytogenes, Pseudomonas aeruginosa, Bacillus subtilis,
etc.) in the Zymo dataset. In metagenomic data, a read having
ambiguous alignments to multiple species is common even for
long read data and is often misplaced. Furthermore, bacterial
strains that are phylogenetically distant can potentially share
conserved sequences in their genomes, e.g., ribosomal RNA
sequences and conserved single-copy genes [34]. The presence
of the high similarity in these conserved regions can cause
the error-prone ONT reads to detect or overestimate the
abundance of low-abundance microbes in the sample since
the ONT reads are derived from high-abundance microbes and
assigned to low-abundance or nonexisted microbes. Of note,
our reassignment algorithm is unique to MegaPath (for NGS)
and MegaPath-Nano (for ONT) for reassigning the reads with
multiple alignments to a better-explained species in terms of
global read distribution. The effectiveness of the reassignment
algorithm can be better illustrated in the log distribution
dataset. In the log distribution dataset, L. monocytogenes
constituted the majority of abundance. However, 0.001% of
its reads had primary alignments assigned to the orthologues
region of Enterococcus faecalis. With the reassignment algo-
rithm, these reads were assigned to L. monocytogenes instead,
since L. monocytogenes explains E. faecalis, with the condition
that a large number of reads in L. monocytogenes are divergent
to that in E. faecalis and the unique reads supporting E.
faecalis could stem from a sequencing error or misalignment.
Additionally, no species weakly explains L. monocytogenes
(see Method for more details) The reassignment was also
well supported by a reasonably high alignment score to L.
monocytogenes.

Having a comprehensive database to reference is always
critical for classification tasks. MegaPath-Nano utilizes the
complete RefSeq database and covers all the reference
genomes for the known microbiome. An example was that



TABLE I
BASE-LEVEL PRECISION, SENSITIVITY AND F1-SCORE OF TAXONOMIC

ASSIGNMENT TOOLS AT SPECIES LEVEL ON 10GIB MIXTURE (5% ZYMO
AND 95% HUMAN METAGENOMIC DATASET)

MegaPath-Nano WIMP Kraken 2 MetaMaps
TP 230M 227M 199M 221M
FP 9.64K 131K 264K 16.9K

Even FN 154M 187M 461M 242M
F1 0.96758 0.96006 0.89577 0.94817

Sensitivity 0.93724 0.92367 0.81208 0.90152
Precision 0.99996 0.99942 0.99868 0.99992

TP 231M 228M 224M 227M
FP 9.64K 131K 264K 10.7K

Log FN 134M 162M 207M 176M
F1 0.97182 0.96553 0.95520 0.96265

Sensitivity 0.94523 0.93386 0.91523 0.92802
Precision 0.99996 0.99943 0.99882 0.99995

True positive (TP) is defined to be the number of Zymo reads assigned to
any true species. False positive (FP) is the number of human reads assigned
to any of the species. False negative (FN) is the number of Zymo reads that
failed to be assigned to the targets, e.g., those filtered, not classified or
assigned to human or nonexisting species. True negative (TN) is human
reads correctly not assigned to the targets.

in benchmarking the Zymo dataset, the standard ’miniSeq+H’
database for MetaMaps does not comprise Cryptococcus ne-
oformans, while the standard Kraken 2 database does not
contain C. neoformans or Saccharomyces cerevisiae, although
they are common metagenomic species.

Note that MetaMaps by default does not process reads less
than 1,000 bp long, so a significant number of Zymo reads
are expected to be indiscriminately filtered due to short read
length, resulting in a lower number of TP. To preserve the
largest number of reads for classification of low abundance
taxa, MegaPath-Nano does not enable a read-length filter
by default. The value, however, can be updated by user
specification. Such advanced settings might require parameter
tuning depending on the dataset.

Intensive human filtering is included before data processing
by any modules in MegaPath-Nano. It is carried out by
aligning query sequences to a human-specific database and
filtering out reads that are highly similar to human genome
references. It is therefore sensitive to removing most human
reads to speeds up the downstream analysis. With intensive
human filtering, MegaPath-Nano exhibited the least number
of misclassified human reads. Note that a small proportion of
human reads were misclassified as bacterial reads consistently
by all the software. This illustrates the limitation of filtering
in any classification method by default settings when contam-
inants are extremely similar to the targets. In these cases, we
suggest fine-tuning the software parameters if further precision
is needed at the expense of sensitivity. Since the same set of
human reads was added to the 10GiB mixture in both log and
even distributions, it was shown that MegaPath-Nano, WIMP,
and Kraken 2 individually have the same set of wrongly
assigned human reads in their assignment of both even and
log distribution. The set of FP reads of MetaMaps, however,
varied from the log and even distributions, which was caused

by its mapping algorithms with a composition-dependent prior
[17]. In particular, A more substantial abundance of most
species in the even distribution dataset might result in the
higher likelihood of ambiguous human reads misassigned
to the microbe genomes due to the composition-dependent
prior. Also, Kraken 2 yielded the highest number of FPs,
probably because the kmers of some human and Zymo reads,
generated using its default setting, share a higher similarity.
In comparison, the similarity between human and Zymo reads
is lower. Hence, the kmer-based classification led to a higher
number of human kmers misclassified as Zymo than read-
based classification.

Table. II illustrates the taxonomic ranking by abundance
estimation of the number of reads assigned by each software
in the 1.2GiB subset of the 100% Zymo dataset with the
log distribution. All the software accurately ranked the top
two species with theoretical abundance contributing 98% of
the sample. Since Staphylococcus aureus has an extremely
low theoretical abundance, its expected read count is lower
than one in our benchmarking dataset and therefore should
be unidentified. Regarding the accuracy of abundance estima-
tion, MegaPath-Nano had the lowest number of nonexisting
species in misclassifications due to its reassignment algorithm,
so the rankings are closest to the theoretical abundance in
all species. Dealing with the complication of multiple-read
mapping, Kraken 2 and WIMP employ the classical strategy of
assigning a read with multiple mapping to their LCA, although
it is linked to the less specific assignment of reads, resulting
in their much lower ranking or even missing low-abundance
species. Bracken post-processes the assignment from Kraken
2 and reassigns it based on probabilistic estimates of the
true composition. Likewise, MetaMaps models the mapping
algorithm with a composition-dependent prior. Nonetheless, in
our benchmarking result, the abundance ranking suggests that
both Bracken and MetaMaps’ assignment may be less sensi-
tive to low-abundance species, such as E. faecalis. Another
straightforward method is to use a read-aligner that can omit
reads with multiple alignments. However, this approach causes
information loss and therefore less precise alignment results.
On the abundance ranking of datasets with even distribution,
all the software performed well since its theoretical abundance
range is less extreme.

Comparing the overall performance in even and log dis-
tributions, it is showed that the log distribution demonstrates
higher precision and recall because the minority of species
constitutes the majority of genomic DNA, as shown in the
theoretical abundance in Table II, so it is more favorable to the
benchmarking calculation. The minority species classification
performance is not well reflected using an unweighted score.
However, precise classification in low-abundance species is
sometimes more critical for clinical diagnosis. In fact, with the
implementation of the reassignment algorithm in MegaPath-
Nano, confidence in the classification of these minority species
is guaranteed, even if the number of supporting reads per
species is extremely low. All in all, MegaPath-Nano performed
the best in taxonomic profiling and read alignment in both



TABLE II
ABUNDANCE RANKING OF EXISTING SPECIES BY TAXONOMIC

ASSIGNMENT TOOLS ON 1.2GIB 100% ZYMO METAGENOMIC DATASET
WITH THE LOG DISTRIBUTION

Species Abundance MegaPath-Nano WIMP Bracken MetaMaps
1) L. monocytogenes 8.91×10-1 1 1 1 1
2) P. aeruginosa 8.9×10-2 2 2 2 2
3) B. subtilis 8.9×10-3 3 3 4 3
4) S. cerevisiae 8.9×10-3 4 4 NA 4
5) S. enterica 8.9×10-4 6 7 6 6
6) E. coli 8.9×10-4 7 8 7 7
7) L. fermentum 8.9×10-5 10 18 NA 12
8) E. faecalis 8.9×10-6 8 27 5 NA
9) C. neoformans 8.9×10-6 15 27 NA NA
10) S. aureus1 8.9×10-7 NA 20 NA NA
1Expected number of reads assigned is lower than 1.

NA is defined when the species is undetected in the output with the default
database. In each species, the ranking result closest to the theoretical
abundance ranking is in bold.

tested reference datasets.

B. AMR detection with real patient isolates

Five real patient samples, including clinical isolates of
(1) Klebsiella pneumoniae, (2,3) Escherichia coli (two sets),
(4) Proteus mirabilis, and (5) Proteus spp. were phenotyp-
ically tested against a wide variety of antimicrobial agents
by antimicrobial susceptibility testing [35]. MegaPath-Nano
provides a list of antimicrobial drugs to which a patient might
potentially be resistant, which also include those that might
cause moderate resistance, conforming to the conservative
practice of drug use. To evaluate AMR detection performance,
MegaPath-Nano was compared against ARGpore and ARMA,
which are the only software developed for AMR prediction
with ONT long reads.

One of the existing software ARGpore delivers results
only at the higher class level, whereas MegaPath-Nano can
detect a more defined drug level AMR. In order to evaluate
our performance against the other software, MegaPath-Nano
was therefore benchmarked against ARMA and ARGpore at
class level, then further evaluated against the more refined
drug-level detection by ARMA. AMR genes detected in any
assigned taxon might be caused by AMR by carriage on
MGEs, which can lead to the horizontal transfer of AMR
genes [25], and therefore not only taxa specific AMR was
considered. In the case of a conflicting class derived from
phenotypically tested drug resistance, that class is excluded in
the benchmarking of class-level AMR detection. For instance,
in samples 1, 2, 4, and 5, one of the target class betalactameses
included resistance against the drug ceftazidime or ceftriaxone.
Since the isolate is resistant to ceftazidime but susceptible
to ceftriaxone, benchmarking on the betalactameses class was
excluded. Since ARMA provides the read alignment only to
AMR genes as the final output, for benchmarking, we further
processed the output of AMRA using Bcftools and checked
various AMR models based on the CARD database, as ARMA
recommended to perform variant calling and consensus gen-
eration for confirmation.

Fig. 2 shows that MegaPath-Nano outperformed ARMA by
an average of 28% in the number of drug-level correct classi-
fications in all isolates. MegaPath-Nano adopts a conservative
approach to aggregate the AMR detection results of similar-
ity search and assembly-based tools with various regularly
updated databases. Specifically, the prediction of MegaPath-
Nano for drugs in the betalactam class was outstanding, since
CBMAR provides supplementary AMR information to drugs
in the beta-lactam class, such as Ceftazidime, Ceftriaxone,
Cefuroxime, which are not covered by CARD. Moreover,
strain-level assemblies are employed as the reference for
variant calling and to generate consensus of the covered posi-
tions. As mentioned in the methodology, the query sequences
are aligned to references of species, which enables species-
specific, whole-genome alignment to conserve genomic con-
texts, e.g., positional information, regulatory sequences, and
MGEs for potentially reducing FPs in AMR detection in future
development. In contrast, ARMA aligns input sequences to
the CARD database with minimap2 to directly estimate AMR
genes in the sequences. This approach is useful for detecting
AMR in reads that share high similarity to references of AMR
genes but lack homology to any species’ references. However,
the experimental validation results show that the probability
of detecting FPs is also increased accordingly.

Fig. 2. Drug-level AMR detection accuracy on the five isolates, represented
by the percentage of correct classification over the total number of classes
or drugs. The absence of AMR indicates that the tool does not output that
class or drug. If a database does not contain the information for that class or
drug, it is considered misclassified. Note that any AMR detected beyond the
susceptibility tested drugs was beyond the scope of this test since they could
not be verified. Samples 1, 2, and 4 have 14 drugs each, while samples 3 and
5 have 18 and 12

Regarding class-level AMR detection in Fig. 3, MegaPath-
Nano shows a modest improvement in accuracy than ARMA
and ARGpore. In particular, its accuracy in sample 3 is
higher than that of ARGpore and ARMA by 25% and 13%,
respectively. Sample 3 is an E. coli isolate, tested with the
largest number and variety of drugs1. In a homology search
of a high-quality consensus ONT query to various databases,
MegaPath-Nano ensured the lowest number of false-positives
during AMR detection. In our benchmarking results, class-
level polymyxin, nitrofuran and vancomycin resistance were
often wrongly detected by other tools, which appeared to be

1All 18 drugs are listed in the supplementary materials on the GitHub page



over-sensitive. On average, MegaPath-Nano had 28% higher
accuracy than ARGpore. Additionally, some of ARGpore’s
results were misclassified because of the lower level of com-
pleteness of its database. The benchmarking results indicate
that the more general class-level AMR detection has a consid-
erable discrepancy in accuracy across isolates because the total
number of classes differs remarkably among isolates, ranging
from only two (sample 5) to eight (sample 3). In our bench-
marking experiment, particular classes, such as betalactam,
broadly cover a large number of drugs. Some of these classes
contain antibiotics of types that are not consistently resistant or
susceptible, so the classes are excluded. Although not all of the
software could provide AMR prediction results at the refined
drug-level, it is suggested that drug-level prediction definitely
provides more specific and reliable results than class-level
AMR detection.

Fig. 3. Class-level AMR detection accuracy on the five isolates. For the
results of ARGpore, gene types with any reads aligned are interpreted as
resistance to them. The five samples have four, five, eight, four, and three
classes, respectively.

C. Runtime and memory usage

MegaPath-Nano was designed to make use of all available
resources in a server to maximize its performance. In our
experiments using a server with 512GB of memory, MegaPath-
Nano used 24 threads and all RAM, and ran about two hours
on a 1.2GiB dataset and four hours on a 10GiB dataset for
taxonomic profiling. AMR detection on both datasets took
100GB RAM and one hour. MegaPath-Nano also works in
resource-constrained environments by partitioning the whole
index into smaller chunks, working on them separately, and
aggregating the results at the end. The memory footprint can
be reduced to below 64GB, trading off a one-time slowdown.
The flexibility of MegaPath-Nano makes it capable of on-
site metagenomic analysis and fieldwork using a portable Ox-
ford Nanopore MinION sequencer and limited computational
power.

IV. CONCLUSIONS

The ultra-long ONT sequencing technology benefits
metagenomic profiling with high alignment specificity. How-
ever, its high sequencing error per read remains a hurdle
for distinguishing among closely related pathogens in lower

taxonomic ranks and for refined drug-level antimicrobial re-
sistance prediction. In this study, we presented MegaPath-
Nano, the first publicly available software designed for ONT
long reads to carry out 1) accurate alignment-based compo-
sitional analysis down to strain-level, and 2) drug-level AMR
detection using comprehensively integrated AMR software
and databases. We benchmarked against other state-of-the-
art software using real sequencing data, and we achieved
the best performance in both tasks. In future development,
an extended version will be made available with additional
optimization for ONT amplicon data. There are also plans to
develop a lightweight version of MegaPath-Nano that requires
the computational resources of only a laptop, which will be
suitable for portable laboratory settings. MegaPath-Nano is,
therefore, a well-rounded ONT metagenomic tool for clinical
use in practice.

As a contribution to the community for further development,
our in-house demo data of five patient isolates are available at
http://www.bio8.cs.hku.hk/dataset/MegaPath-Nano/.
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