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Abstract
Multiple inheritance is a valuable feature for Object-Oriented Programming. However, it is also
tricky to get right, as illustrated by the extensive literature on the topic. A key issue is the am-
biguity arising from inheriting multiple parents, which can have conflicting methods. Numerous
existing work provides solutions for conflicts which arise from diamond inheritance: i.e. conflicts
that arise from implementations sharing a common ancestor. However, most mechanisms are
inadequate to deal with unintentional method conflicts: conflicts which arise from two unrelated
methods that happen to share the same name and signature.

This paper presents a new model called Featherweight Hierarchical Java (FHJ) that deals
with unintentional method conflicts. In our new model, which is partly inspired by C++, con-
flicting methods arising from unrelated methods can coexist in the same class, and hierarchical
dispatching supports unambiguous lookups in the presence of such conflicting methods. To avoid
ambiguity, hierarchical information is employed in method dispatching, which uses a combination
of static and dynamic type information to choose the implementation of a method at run-time.
Furthermore, unlike all existing inheritance models, our model supports hierarchical method
overriding: that is, methods can be independently overridden along the multiple inheritance hi-
erarchy. We give illustrative examples of our language and features and formalize FHJ as a
minimal Featherweight-Java style calculus.
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1 Introduction

Inheritance in Object-Oriented Programming (OOP) offers a mechanism for code reuse.
However many OOP languages are restricted to single inheritance, which is less expressive
and flexible than multiple inheritance. Nevertheless, different flavours of multiple inheritance
have been adopted in some popular OOP languages. C++ has had multiple inheritance from
the start. Scala adapts the ideas from traits [28, 9, 16] and mixins [5, 11, 32, 2, 13] to offer a
disciplined form of multiple inheritance. Java 8 offers a simple variant of traits, disguised as
interfaces with default methods [12].

A reason why programming languages have resisted to multiple inheritance in the past
is that, as Cook [7] puts it, “multiple inheritance is good but there is no good way to do it”.
One of the most sensitive and critical issues is perhaps the ambiguity introduced by multiple
inheritance. One case is the famous diamond problem [27, 29] (also known as the fork-join
inheritance [27]). In the diamond problem, inheritance allows one feature to be inherited
from multiple parent classes that share a common ancestor. Hence conflicts arise. The variety
of strategies for resolving such conflicts urges the occurrence of different multiple inheritance
models, including traits, mixins, CZ [17], and many others. Existing languages and research
have addressed the issue of diamond inheritance extensively. Other issues including how
multiple inheritance deals with state, have also been discussed quite extensively [33, 17, 31].

In contrast to diamond inheritance, the second case of ambiguity is unintentional method
conflicts [28]. In this case, conflicting methods do not actually refer to the same feature. In
a nominal system, methods can be designed for different functionality but happen to have
the same names (and signatures). A simple example of this situation is two draw methods
that are inherited from a deck of cards and a drawable widget, respectively. In such context,
the two draw methods have very different meanings, but they happen to share the same
name. When inheritance is used to compose these classes, a compilation error happens
due to conflicts. However, unlike the diamond problem, the conflicting methods have very
different meanings and do not share a common parent. We call such a case fork inheritance,
in analogy to diamond inheritance.

When unintentional method conflicts happen, they can have severe effects in practice if
no appropriate mechanisms to deal with them are available. In practice, existing languages
only provide limited support for the issue. In most languages, the mechanisms available
to deal with this problem are the same as the diamond inheritance. However, this is often
inadequate and can lead to tricky problems in practice. This is especially the case when it
is necessary to combine two large modules and their features, but the inheritance is simply
prohibited by a small conflict. As a workaround from the diamond inheritance side, it is
possible to define a new method in the child class to override those conflicting methods.
However, using one method to fuse two unrelated features is clearly unsatisfactory. Therefore
we need a better solution to keep both features separately during inheritance, so as not to
break independent extensibility [36].

C++ and C# do allow for two unintentionally conflicting methods to coexist in a class.
C# allows this by interface multiple inheritance and explicit method implementations. But
since C# is a single inheritance language, it is only possible to implement multiple interfaces
(but not multiple classes). C++ accepts fork inheritance and resolves the ambiguity by
specifying the expected path by upcasts. However, neither the C# nor C++ approaches allow
such conflicting methods to be further overridden. Some other workarounds or approaches
include delegation and renaming/exclusion in the trait model. However, renaming/exclusion
can break the subtyping relation between a subclass and its parent. This is not adequate for
the class model commonly used in mainstream OOP languages, where the subclass is always
expected to be a subtype of the parent class.
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Figure 1 DrawableSafeDeck: an illustration of hierarchical overriding.

This paper proposes two mechanisms to deal with unintentional method conflicts: hi-
erarchical dispatching and hierarchical overriding. Hierarchical dispatching is inspired by
the mechanisms in C++ and provides an approach to method dispatching, which combines
static and dynamic information. Using hierarchical dispatching, the method binder will
look at both the static type and the dynamic type of the receiver during runtime. When
there are multiple branches that cause unintentional conflicts, the static type can specify one
branch among them for unambiguity, and the dynamic type helps to find the most specific
implementation. In that case, both unambiguity and extensibility are preserved. The main
novelty over existing work is the formalization of the essence of a hierarchical dispatching
algorithm, which (as far as we know) has not been formalized before.

Hierarchical overriding is a novel language mechanism that allows method overriding to
be applied only to one branch of the class hierarchy. Hierarchical overriding adds expressive
power that is not available in languages such as C++ or C#. In particular, it allows overriding
to work for classes with multiple (conflicting) methods sharing the same names and signatures.
An example is presented in Figure 1. In this example, there are 4 classes/interfaces. Two
classes Deck and Drawable model a deck of cards and a drawable widget, respectively. The
class SafeDeck adds functionality to check whether the deck is empty so as to prevent drawing
a card from an empty deck. The interesting class is DrawableSafeDeck, which inherits from
both SafeDeck and Drawable. Hierarchical overriding is used in DrawableSafeDeck to keep
two separate draw methods for each parent, but override only the draw method coming from
Drawable, in order to draw a widget with a deck of cards. Note that hierarchical overriding
is denoted in the UML diagram with the notation draw()↑Drawable, expressing that the draw
method from Drawable is overridden. Although in this example only one of the draw methods
is overridden (and the other is simply inherited), hierarchical overriding supports multiple
conflicting methods to be independently overridden as well.

To present hierarchical overriding and dispatching, we introduce a formalized model FHJ
in Section 3 based on Featherweight Java [14], together with theorems and proofs for type
soundness. We also have a prototype implementation of an FHJ interpreter written in Scala.
The implementation validates all the examples presented in the paper. One nice feature of
the implementation is that it can show the detailed step-by-step evaluation of the program,
which is convenient for understanding and debugging programs & semantics.

In summary, our contributions are:
A formalization of the hierarchical dispatching algorithm that integrates both
the static type and dynamic type for method dispatch, and ensures unambiguity as well
as extensibility in the presence of unintentional method conflicts.
Hierarchical overriding: a novel notion that allows methods to override individual
branches of the class hierarchy.

ECOOP 2018
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FHJ: a formalized model based on Featherweight Java, supporting the above features.
We provide the static and dynamic semantics and prove the type soundness of the model.
Prototype implementation2: a simple implementation of FHJ interpreter in Scala.
The implementation can type-check and run variants of all the examples shown in this
paper.

2 A Running Example: Drawable Deck

This section illustrates the problem of unintentional method conflicts, together with the
features of our model for addressing this issue, by a simple running example. In the
following text, we will introduce three problems one by one and have a discussion on possible
workarounds and our solutions. Problems 1 and 2 are related to hierarchical dispatching, and
in C++ it is possible to have similar solutions to both problems. Hence it is important to
emphasize that, with respect to hierarchical dispatching, our model is not a novel mechanism.
Instead, inspired by the C++ solutions, our contribution is formalizing a minimal calculus of
this feature together with a proof of type soundness. However, for the final problem, there
is no satisfactory approach in existing languages, thus what we propose is a novel feature
(hierarchical overriding) with the corresponding formalization of that feature.

In the rest of the paper, we use a Java-like syntax for programs. All types are defined
with the keyword interface ; the concept is closely related to Java 8 interfaces with default
methods [4] and traits. In short, an interface in our model has the following characteristics:

It allows multiple inheritance.
Every method is either abstract or implemented with a body (like Java 8 default methods).
The new keyword is used to instantiate an interface.
It cannot have state.

2.1 Problem 1: Basic Unintentional Method Conflicts
Suppose that two components Deck and Drawable have been developed in a system. Deck
represents a deck of cards and defines a method draw for drawing a card from the deck.
Drawable is an interface for graphics that can be drawn and also includes a method called
draw for visual display. For simple illustration, the default implementation of the draw in
Drawable only creates a blank canvas on the screen, while the draw method in Deck simply
prints out a message "Draw a card.".
interface Deck {
void draw() { // draws a card from the Deck

println("Draw a card.");
}

}
interface Drawable {
void draw() { // create a blank canvas

JFrame frame = new JFrame();
frame.setVisible(true);

}
}

In Deck, draw uses println, which is a library function. The two draw methods can have
different return types, but for simplicity, the return types are both void here. Note that,

2 The implementation is available at https://github.com/YanlinWang/MIM/tree/master/Calculus

https://github.com/YanlinWang/MIM/tree/master/Calculus
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similarly to Featherweight Java [14], void is unsupported in our formalization. We could have
also defined an interface called Void and return an object of that type instead. To be concise,
however, we use void in our examples. In interface Drawable, the draw method creates a blank
canvas.

Now, suppose that a programmer is designing a card game with a GUI. He may want to
draw a deck on the screen, so he first defines a drawable deck using multiple inheritance:

interface DrawableDeck extends Drawable, Deck {}

The point of using multiple inheritance is to compose the features from various components
and to achieve code reuse, as supported by many mainstream OO languages. Nevertheless,
at this point, languages like Java simply treat the two draw methods as the same, hence the
compiler fails to compile the program and reports an error.

This case is an example of a so-called unintentional method conflict. It arises when two
inherited methods happen to have the same name and parameter types, but they are designed
for different functionalities with different semantics. Now one may quickly come up with a
workaround, which is to manually merge the two methods by creating a new draw method in
DrawableDeck to override the old ones. However, merging two methods with totally different
functionalities does not make any sense. This non-solution would hide the old methods and
break independent extensibility.

2.1.1 Problem and Possible Workarounds
The essential problem is how to resolve unintentional method conflicts and invoke the
conflicting methods separately without ambiguity. To tackle this problem, there are several
other workarounds that come to our mind. We briefly discuss those potential fixes and
workarounds next:

I. Delegation. As an alternative to multiple inheritance, delegation can be used by
introducing two fields (or field methods) with the Drawable type and Deck type, respectively.
Although it avoids method conflicts, it is known that using delegation makes it hard to
correctly maintain self-references in an extensible system and also introduces a lot of
boilerplate code.
II. Refactor Drawable and/or Deck to rename the methods. If the source code for Drawable
or Deck is available then it may be possible to rename one of the draw methods. How-
ever, this approach is non-modular, as it requires modifying existing code and becomes
impossible if the code is unavailable.
III. Method exclusion/renaming. Eiffel [18] and some trait models support method
exclusion/renaming. Those features can eliminate conflicts, although most programming
languages do not support them. In a traditional OO system, they can break the subtyping
relationship. Moreover, in contrast with exclusion, renaming can indeed preserve both
conflicting behaviours. However, it is cumbersome in practice, as introducing new names
can affect other code blocks.

2.1.2 FHJ’s solution
To solve this problem it is important to preserve both conflicting methods during inheritance
instead of merging them into a single method. Therefore FHJ accepts the definition of
DrawableDeck. To disambiguate method calls, we can use upcasts in FHJ to specify the
“branch” in the inheritance hierarchy that should be called. The following code illustrates
the use of upcasts for disambiguation:

ECOOP 2018
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interface Deck { void draw() {...} }
interface Drawable { void draw() {...} }
interface DrawableDeck extends Drawable, Deck {}
// main program
((Deck) new DrawableDeck()).draw() // calls Deck.draw
// new DrawableDeck().draw() // this call is ambiguous and rejected

In our language, a program consists of interfaces declarations and a main an expression which
produces the final result. In the above main expression ((Deck)new DrawableDeck()).draw(),
the cast indicates that we expect to invoke the draw method from the branch Deck. Similarly,
we could have used an upcast to Drawable to call the draw method from Drawable. Without
the cast, the call would be ambiguous and FHJ’s type system would reject it.

This example illustrates the basic form of fork inheritance, where two unintentionally
conflicting methods are accepted by multiple inheritance. Note that C++ supports this
feature and also addresses the ambiguity by upcasts. The code for the above example in
C++ is similar.

2.2 Problem 2: Dynamic Dispatching
Using explicit upcasts for disambiguation helps when making calls to classes with conflicting
methods, but things become more complicated with dynamic dispatching. Dynamic dispatch-
ing is very common in OO programming for code reuse. Let us expand the previous example
a bit, by redefining those interfaces with more features:
interface Deck {
void draw() {...}
void shuffle() {...}
void shuffleAndDraw() { this.shuffle(); this.draw(); }

}

Here shuffleAndDraw invokes draw from its own enclosing type. In FHJ, this invocation is
dynamically dispatched. This is important, because a programmer may define a subtype of
Deck and override the method draw:
interface SafeDeck extends Deck {
boolean isEmpty() {...}
void draw() { // overriding

if (isEmpty()) println("The deck is empty.");
else println("Draw a card");

}
}

Without dynamic dispatching, we may have to copy the shuffleAndDraw code into SafeDeck
, so that shuffleAndDraw calls the new draw defined in SafeDeck. Dynamic dispatching
immediately saves us from the duplication work, since the method becomes automatically
dispatched to the most specific one. Nevertheless, as seen before, dynamic dispatch would
potentially introduce ambiguity. For instance, when we have the class hierarchy structure
shown in Figure 2(left) with the following code:
interface DrawableSafeDeck extends Drawable, SafeDeck {}
new DrawableSafeDeck().shuffleAndDraw()

Indeed, using reduction steps following the reduction rules in FJ [14]-like languages, where
no static types are tracked, the reduction steps would roughly be:
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Figure 2 UML diagrams for 3 variants of DrawableSafeDeck.

new DrawableSafeDeck().shuffleAndDraw()
-> new DrawableSafeDeck().shuffle(); new DrawableSafeDeck().draw()
-> ...
-> new DrawableSafeDeck().draw()
-> <<error: ambiguous call!!!>>

When the DrawableSafeDeck object calls shuffleAndDraw, the implementation in Deck is
dispatched. But then shuffleAndDraw invokes “ this.draw()”, and at this point, the receiver is
replaced by the object new DrawableSafeDeck(). From the perspective of DrawableSafeDeck,
the draw method seems to be ambiguous since DrawableSafeDeck inherits two draw methods
from both SafeDeck and Drawable. But ideally we would like shuffleAndDraw to invoke
SafeDeck.draw because they belong to the same class hierarchy branch.

2.2.1 FHJ’s solution
The essential problem is how to ensure that the correct method is invoked. To solve this
problem, FHJ uses a variant of method dispatching that we call hierarchical dispatching. In
hierarchical dispatching, both the static and dynamic type information are used to select
the right method implementation. During runtime, a method call makes use of both the
static type and the dynamic type of the receiver, so it is a combination of static and dynamic
dispatching. Intuitively, the static type specifies one branch to avoid ambiguity, and the
dynamic type finds the most specific implementation on that branch. To be specific, the
following code is accepted by FHJ:
interface Deck {
void draw() {...}
void shuffle() {...}
void shuffleAndDraw() { this.shuffle(); this.draw(); }

}
interface Drawable {...}
interface SafeDeck extends Deck {...}
interface DrawableSafeDeck extends Drawable, SafeDeck {}
new DrawableSafeDeck().shuffleAndDraw() // SafeDeck.draw is called

The computation performed in FHJ is as follows:
new DrawableSafeDeck().shuffleAndDraw()

-> ((DrawableSafeDeck) new DrawableSafeDeck()).shuffleAndDraw()
-> ((Deck) new

DrawableSafeDeck()).shuffle(); ((Deck) new DrawableSafeDeck()).draw()
-> ...
-> ((Deck) new DrawableSafeDeck()).draw()
-> ... // SafeDeck.draw

ECOOP 2018
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Notably, we track the static types by adding upcasts during reduction. In contrast
to FJ, where new C() is a value, in FHJ such an expression is not a value. Instead,
an expression of the form new C() is reduced to (C) new C(), which is a value in FHJ
and the cast denotes the static type of the expression. This rule is applied in the first
reduction step. In the second reduction step, when shuffleAndDraw is dispatched, the receiver
(DrawableSafeDeck)new DrawableSafeDeck() replaces the special variable this by (Deck)new

DrawableSafeDeck(). Here, the static type used in the cast (Deck) denotes the origin of the
shuffleAndDraw method, which is discovered during method lookup. Later, in the fourth step,
((Deck)new DrawableSafeDeck()).draw() is an instance of hierarchical invocation, which can
be read as “finding the most specific draw above DrawableSafeDeck and along path Deck”.
The meaning of “above DrawableSafeDeck” implies its supertypes, and “along path Deck”
specifies the branch. Finally, in the last reduction step, we find the most specific version
of draw in SafeDeck. In this sequence of reduction steps, the cast that tracks the origin of
shuffleAndDraw is crucial to unambiguously find the correct implementation of draw. The
formal procedure will be introduced in Section 3 and Section 4.

2.3 Problem 3: Overriding on Individual Branches
Method overriding is common in Object-Oriented Programming. With diamond inheritance,
where conflicting methods are intended to have the same semantics, method overriding is
not a problem. If conflicting methods arise from multiple parents, we can override all those
methods in a single unified (or merged) method in the subclass. Therefore further overriding
is simple, because there is only one method that can be overridden.

With unintentional method conflicts, however, the situation is more complicated because
different, separate, conflicting methods can coexist in one class. Ideally, we would like to
support overriding for those methods too, in exactly the same way that overriding is available
for other (non-conflicting) methods. However, we need to be able to override the individual
conflicting methods, rather than overriding all conflicting methods into a single merged one.

We illustrate the problem and the need for a more refined overriding mechanism with
an example. Suppose that the programmer defines a new interface DrawableSafeDeck (based
on the code in Section 2.2 without the old DrawableSafeDeck), but he needs to override
Drawable.draw and give a new implementation of drawing so that the deck can indeed be
visualized on the canvas.

2.3.1 Potential solutions/workarounds in existing languages
Unfortunately in all languages we know of (including C++), the existing approaches are
unsatisfactory. One direction is to simply avoid this issue, by putting overriding before
inheritance. For example, as shown in Figure 2(middle), we define a new component
DrawableRect that extends Drawable, which simply draws the deck as a rectangle, and
modifies the hierarchy:
interface DrawableRect extends Drawable {
void draw() {

JFrame frame = new JFrame("Canvas");
frame.setSize(600, 600);
frame.getContentPane().setBackground(Color.red);
frame.getContentPane().add(new Square(10,10,100,100)); ...

}
}
interface DrawableSafeDeck extends DrawableRect, SafeDeck {}
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This workaround seems to work, but there are severe issues:
It changes the hierarchy and existing code, hence breaks the modularity.
Separate overriding is required to come after the fork inheritance, especially when the
implementation needs functionality from both parents. In the above code, we have
assumed that the overriding is unrelated to Deck. But when the drawing relies on some
information of the Deck object, we have to either introduce field methods for delegation
or change the signature of draw to take a parameter. Either way introduces unnecessary
complexity and affects extensibility.

There are more involved workarounds in C++ using templates and complex patterns,
but such patterns are complex to use and there are still issues. A more detailed discussion of
such an approach is presented in Section 6.2.

2.3.2 FHJ’s solution

An additional feature of our model is hierarchical overriding. It allows conflicting methods
to be overridden on individual branches, hence offers independent extensibility. The above
example can be easily realized by:
interface DrawableSafeDeck extends Drawable, SafeDeck {
void draw() override Drawable {

JFrame frame = new JFrame("Canvas");
frame.setSize(600, 600);
frame.getContentPane().setBackground(Color.red);
frame.getContentPane().add(new Square(10,10,100,100)); ...

}
}
((Drawable)new DrawableSafeDeck()).draw(); //calls the draw in DrawableSafeDeck

The UML graph is shown in Figure 2(right), where the up-arrow ↑ is short for “override”.
Here the idea is that only Drawable.draw is overridden. This is accomplished by specifying,
in the method definition, that the method only overrides the draw from Drawable. The
individual overriding allows us to make use of the methods from SafeDeck as well. In the
formalization, the hierarchical overriding feature is an important feature, involved in the
algorithm of hierarchical dispatch.

Note that, although the example here only shows one conflicting method being overridden,
hierarchical overriding allows (as expected) multiple conflicting methods to be overridden in
the same class.

2.3.3 Terminology

In Drawable, Deck, and SafeDeck, the draw methods are called original methods in this paper,
because they are originally defined by the interfaces. In contrast, DrawableSafeDeck defines a
hierarchical overriding method. The difference is that traditional method overriding overrides
all branches by defining another original method, whereas hierarchical overriding only refines
one branch.

A special rule for hierarchical overriding is: it can only refine original methods, and cannot
jump over original methods with the same signature. For instance, writing "void draw()
override Deck {...}" is disallowed in DrawableSafeDeck, because the existing two branches
are Drawable.draw and SafeDeck.draw, while Deck.draw is already covered. It does not really
make sense to refine the old branch Deck.

ECOOP 2018



20:10 FHJ: A Formal Model for Hierarchical Dispatching and Overriding

(a) mbody(m,C,A) = (A, ...) (b) mbody(m,C,A) = (C, ...) (c) mbody(m,C,A) = (C, ...)

mbody(m,C,B) = (B, ...) mbody(m,C,B) = (C, ...) mbody(m,C,B) = (B, ...)

mbody(m,C,C) = undefined mbody(m,C,C) = (C, ...) mbody(m,C,C) = undefined

(d) mbody(m, T, T) = (T, ...) (e) mbody(m, T, T) = (T, ...) (f) mbody(m,C, T) = (C, ...)

mbody(m,C, T) = undefined mbody(m,C, T) = undefined mbody(m,C,A) = (C, ...)

C rejected by type-check C rejected by type-check mbody(m,C,B) = (C, ...)

mbody(m,C,C) = (C, ...)

Figure 3 Examples in FHJ. “m ↑ A” stands for hierarchical overriding “m override A”.

2.3.4 A peek at the hierarchical dispatching algorithm
In FHJ, fork inheritance allows several original methods (branches) to coexist, and hierar-
chical dispatch first finds the most specific original method (branch), then it finds the most
specific hierarchical overriding on that branch.

Before the formalized algorithm, Figure 3 gives a peek at the behavior using a few examples.
The UML diagrams present the hierarchy. In (d) and (e), a cross mark indicates that the
interface fails to type-check. Generally, FHJ rejects the definition of an interface during
compilation if it reaches a diamond with ambiguity. mbody is the method lookup function for
hierarchical dispatch, formally defined in Section 4.1. In general, mbody(m,X, Y) = (Z, ...)

reflects that the source code ((Y) new X()).m() calls Z.m at runtime. It is undefined when
method dispatch is ambiguous.

In Figure 3, (a) is the base case for unintentional conflicts, namely the fork inheritance.
(b) uses overriding to explicitly merge the conflicting methods. (c) represents hierarchical
overriding.

Furthermore, our model supports diamond inheritance and can deal with diamond
problems. For example, (d) and (e) are two base cases of diamond inheritance in FHJ and
the definition of each C is rejected because T is an ambiguous parent to C. One solution for
diamond inheritance is to merge methods coming from different parents. (f) gives a common
solution to the diamond as in Java or traits, which is to explicitly override A.m and B.m
in C. And our calculus supports this kind of merging methods. In the last three examples,
conflicting methods A.m and B.m should be viewed as intentional conflicts, as they come
from the same source T .

3 Formalization

In this section, we present a formal model called FHJ (Featherweight Hierarchical Java),
following a similar style as Featherweight Java [14]. FHJ is a minimal core calculus that
formalizes the core concept of hierarchical dispatching and overriding. The syntax, typing
rules and small-step semantics are presented.
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3.1 Syntax

The abstract syntax of FHJ interface declarations, method declarations, and expressions is
given in Figure 4. The multiple inheritance feature of FHJ is inspired by Java 8 interfaces,
which supports method implementations via default methods. This feature is closely related
to traits. To demonstrate how unintentional method conflicts are untangled in FHJ, we only
focus on a small subset of the interface model. For example, all methods declared in an
interface are either default methods or abstract methods. Default methods provide default
implementations for methods. Abstract methods do not have a method body. Abstract
methods can be overridden with future implementations.

3.1.1 Notations

The metavariables I, J, K range over interface names; x ranges over variables; m ranges over
method names; e ranges over expressions; andM ranges over method declarations. Following
Featherweight Java, we assume that the set of variables includes the special variable this,
which cannot be used as the name of an argument to a method. We use the same conventions
as FJ; we write I as shorthand for a possibly empty sequence I1, ..., In, which may be indexed
by Ii; and write M as shorthand for M1...Mn (with no commas). We also abbreviate
operations on pairs of sequences in an obvious way, writing I x for I1 x1, ..., In xn, where n
is the length of I and x.

3.1.2 Interfaces

In order to achieve multiple inheritance, an interface can have a set of parent interfaces, where
such a set can be empty. Moreover, as usual in class-based languages, the extension relation
over interfaces is acyclic. The interface declaration interface I extends I {M} introduces
an interface named I with parent interfaces I and a suite of methods M. The methods of I
may either override methods that are already defined in I or add new functionality special to
I, we will illustrate this in more detail later.

3.1.3 Methods

Original methods and hierarchically overriding methods share the same syntax in our model
for simplicity. The concrete method declaration I m(Ix x) override J {return e; } introduces
a method named m with result type I, parameters x of type Ix and the overriding target
J. The body of the method simply includes the returned expression e. Notably, we have
introduced the override keyword for two cases. Firstly, if the overridden interface is exactly
the enclosing interface itself, then such a method is seen as originally defined. Note that the
case of merging methods from different branches, also counts as originally defined. Secondly,
for all other cases the method is considered a hierarchical overriding method. Note that in
an interface J, I m(Ix x) {return e; } is syntactic sugar for I m(Ix x) override J {return e; },
which is the standard way to define methods in Java-like languages. The definition of abstract
methods is written as I m(Ix x) override J ;, which is similar to a concrete method but
without the method body. For simplicity, overloading is not modelled for methods, which
implies that we can uniquely identify a method by its name.
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Interfaces IL ::= interface I extends I {M}

Methods M ::= I m(Ix x) override J {return e; } | I m(Ix x) override J ;
Expressions e ::= x | e.m(e) | new I() | (I)e

Context Γ ::= x : I

Values v ::= (I)new J()

Figure 4 Syntax of FHJ.

3.1.4 Expressions & Values
Expressions can be standard constructs such as variables, method invocation, object creation,
together with cast expressions. Object creation is represented by new I()3. Fields and
primitive types are not modelled in FHJ. The casts are merely safe upcasts, and in fact,
they can be viewed as annotated expressions, where the annotation indicates its static type.
The coexistence of static and dynamic types is the key to hierarchical dispatch. A value
“(I)new J()” is the final result of multiple reduction steps for evaluating an expression.

For simplicity, FHJ does not formalize statements like assignments and so on because
they are orthogonal features to the hierarchical dispatching and overriding feature. A program
in FHJ consists of a list of interface declarations, plus a single expression.

3.2 Subtyping and Typing Rules

3.2.1 Subtyping
The subtyping of FHJ consists of only a few rules shown at the top of Figure 5. In short,
subtyping relations are built from the inheritance in interface declarations. Subtyping is
both reflexive and transitive.

3.2.2 Type-checking
Details of type-checking rules are displayed at the bottom of Figure 5, including expression
typing, well-formedness of methods and interfaces. As a convention, an environment Γ is
maintained to store the types of variables, together with the self-reference this.

(T-Invk) is the typing rule for method invocation. Naturally, the receiver and the
arguments are required to be well-typed. mbody is our key function for method lookup that
implements the hierarchical dispatching algorithm. The formal definition will be introduced
in Section 4. Here mbody(m, I0, I0) finds the most specific m above I0. “Above I0” specifies
the search space, namely the supertypes of I0 including itself. For the general case, however,
the hierarchical invocation mbody(m, I, J) finds “the most specific m above I and along
path/branch J”. “Along path J” additionally requires the result to relate to J, that is to say,
the most specific interface that has a subtyping relationship with J.

In (T-Invk), as the compilation should not be aware of the dynamic type, it only requires
that invoking m is valid for the static type of the receiver. The result of mbody contains
the interface that provides the most specific implementation, the parameters and the return
type. We use underscore for the return expression, matching both implemented and abstract
methods.

3 In Java the corresponding syntax is new I(){}.
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I <: J I <: I

I <: J J <: K

I <: K

interface I extends I1, I2, ..., In {M}

I <: I1, I <: I2, ..., I <: In

Γ ` e : I (T-Var) Γ ` x : Γ(x)

(T-Invk)
Γ ` e0 : I0 mbody(m, I0, I0) = (K, J x, I _) Γ ` e : I I <: J

Γ ` e0.m(e) : I

(T-New)
interface I extends I {M} canInstantiate(I)

Γ ` new I() : I

(T-Anno)
Γ ` e : I I <: J

Γ ` (J)e : J

(T-Method)

I <: J findOrigin(m, I, J) = {J}

mbody(m, J, J) = (K, Ix x, Ie _) x : Ix, this : I ` e0 : I0 I0 <: Ie

Ie m(Ix x) override J {return e0; } OK IN I

(T-AbsMethod)
I <: J findOrigin(m, I, J) = {J} mbody(m, J, J) = (K, Ix x, Ie _)

Ie m(Ix x) override J ; OK IN I

(T-Intf)

M OK IN I ∀J :> I and m, mbody(m, J, J) is defined⇒ mbody(m, I, J) is defined
∀J :> I and m, I[m override I] and J[m override J] defined⇒ canOverride(m, I, J)

interface I extends I {M} OK

Figure 5 Subtyping and Typing Rules of FHJ.

(T-New) is the typing rule for object creation new I(). The auxiliary function
canInstantiate(I) (see definition in Section 4.4) checks whether an interface I can be
instantiated or not. Since fork inheritance accepts conflicting branches to coexist, the check
requires that the most specific method is concrete for each method on each branch.

(T-Method) is more interesting since a method can either be an original method
or a hierarchical overriding, though they share the same syntax and method typing rule.
findOrigin(m, I, J) is a fundamental function, used to find “the most specific interfaces that
are above I and along path J, and originally defines m” (see Section 4 for full definition).
By “most specific interfaces”, it implies that the inherited supertypes are excluded. Thus
the condition findOrigin(m, I, J) = {J} indicates a characteristic of a hierarchical overriding:
it must override an original method; the overriding is direct and there does not exist any
other original method m in between. Then mbody(m, J, J) provides the type of the original
method, so hierarchical overriding has to preserve the type. Finally the return expression is
type-checked to be a subtype of the declared return type. For the definition of an original
method, I equals J and the rule is straightforward. (T-AbsMethod) is a similar rule but
works on abstract method declarations.

(T-Intf) defines the typing rule on interfaces. The first condition is obvious, namely, its
methods need to be well checked. The third condition checks whether the overriding between
original methods preserves typing. In this condition we again use some helper functions defined
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in Section 4. I[m override I] is defined if I originally defines m, and canOverride(m, I, J)
checks whether I.m has the same type as J.m. Generally the preservation of method type is
required for any supertype J and any method m.

The second condition of (T-Intf) is more complex and is the key to type soundness.
Unlike C++ which rejects on ambiguous calls, FHJ rejects on the definition of interfaces when
they form a diamond. Consider the case when the second condition is broken: mbody(m, J, J)
is defined but mbody(m, I, J) is undefined for some J and m. This indicates that m is available
and unambiguous from the perspective of J, but is ambiguous to I on branch J. It means
that there are multiple overriding paths of m from J to I, which form a diamond. Hence
rejecting that case meets our expectation. Below is an example (Figure 3 (e)) that illustrates
the reason why this condition is needed:
interface T { T m() override T { return new T(); } }
interface A extends T { T m() override T { return new A(); } }
interface B extends T { T m() override T { return new B(); } }
interface C extends A, B {}
((T) new C()).m()

This program does not compile on interface C, because of the second condition in (T-Intf),
where I equals C and J equals T . By the algorithm, mbody(m, T, T) will refer to T.m, but
mbody(m,C, T) is undefined, since both A.m and B.m are most specific to C along path
T , which forms a diamond. The expression ((T) new C()).m() is one example of triggering
ambiguity, but FHJ simply rejects the definition of C. To resolve the issue, the programmer
needs to have an overriding method in C, to explicitly merge the conflicting ones.

Finally, rule (T-Anno) is the typing rule for a cast expression. By the rule, only upcasts
are valid.

3.3 Small-step Semantics and Propagation
Figure 6 defines the small-step semantics and propagation rules of FHJ. When evaluating
an expression, they are invoked and produce a single value in the end.

3.3.1 Semantic Rules
(S-Invk) is the only computation rule we need for method invocation. As a small-step
rule and by congruence, it assumes that the receiver and the arguments are already values.
Specifically, the receiver (J)new I() indicates the dynamic type I together with the static
type J. Therefore mbody(m, I, J) carries out hierarchical dispatching, acquires the types, the
return expression e0 and the interface I0 which provides the most specific method. Here we
use e0 to imply that the return expression is forced to be non-empty because it requires a
concrete implementation. Now the rule reduces method invocation to e0 with substitution.
Parameters are substituted with arguments, and the this reference is substituted with the
receiver, and in the meanwhile the static types are recorded via annotations. Finally, the
return type Ie is put in the front as an annotation.

3.3.2 Propagation Rules
(C-Receiver), (C-Args) and (C-FReduce) are natural propagation rules on receivers,
arguments, and cast-expressions, respectively. (C-StaticType) automatically adds an
annotation I to the new object new I(). (C-AnnoReduce) merges nested upcasts into a
single upcast with the outermost type.



Y. Wang, H. Zhang, B. C. d. S. Oliveira, and M. Servetto 20:15

4 Key Algorithms and Type-Soundness

In this section, we present the fundamental algorithms and auxiliary definitions used in our
formalization and show that the resulting calculus is type sound. The functions presented in
this section are the key components that implement our algorithm for method lookup.

4.1 The Method Lookup Algorithm in mbody
mbody(m, Id, Is) denotes the method body lookup function. We use Id, Is, since mbody is
usually invoked by a receiver of a method m, with its dynamic type Id and static type
Is. Such a function returns the most specific method implementation. More accurately,
mbody returns (J, Ix x, Ie e0) where J is the found interface that contains the desired method;
Ix x are the parameters and its types, e0 is the returned expression (empty for abstract
methods). It considers both originally-defined methods and hierarchical overriding methods,
so findOrigin and findOverride (see the definition in Section 4.2 and Section 4.3) are
both invoked. The formal definition gives the expected results for the earlier examples in
Figure 3.

BDefinition of mbody(m, Id, Is) :

• mbody(m, Id, Is) = (J, Ix x, Ie e0)

with: findOrigin(m, Id, Is) = {I}

findOverride(m, Id, I) = {J}

J[m override I] = Ie m(Ix x) override I {return e0; }
• mbody(m, Id, Is) = (J, Ix x, Ie ø)

with: findOrigin(m, Id, Is) = {I}

findOverride(m, Id, I) = {J}

J[m override I] = Ie m(Ix x) override I ;

To calculate mbody(m, Id, Is), the invocation of findOrigin looks for the most specific
original methods and their interfaces, and expects a singleton set, so as to achieve unambiguity.
Furthermore, the invocation of findOverride also expects a unique and most specific
hierarchical override. And finally the target method is returned.

4.2 Finding the Most Specific Origin: findOrigin
We proceed to give the definitions of two core functions that support method lookup, namely,
findOrigin and findOverride. Generally, findOrigin(m, I, J) finds the set of most specific
interfaces where m is originally defined. Interfaces in this set should be above interface I
and along path J. Finally with prune (defined in Section 4.4) the overridden interfaces will
be filtered out.

BDefinition of findOrigin(m, I, J) :

• findOrigin(m, I, J) = prune(origins)

with: origins = {K | I <: K, and K <: J ∨ J <: K,

and K[m override K] is defined}

By the definition, an interface belongs to findOrigin(m, I, J) if and only if:
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(S-Invk)
mbody(m, I, J) = (I0, Ix x, Ie e0)

((J)new I()) .m(v)→ (Ie)[(Ix)v/x, (I0)new I()/this]e0

(C-Receiver)
e0 → e ′0

e0.m(e)→ e ′0.m(e)
(C-Args)

e→ e ′

e0.m(. . . , e, . . .)→ e0.m(. . . , e ′, . . .)

(C-StaticType)
new I()→ (I)new I()

(C-FReduce)
e→ e ′ e 6= new J()

(I)e→ (I)e ′

(C-AnnoReduce) (I)((J)new K())→ (I)new K()

Figure 6 Small-step semantics.

It originally defines m;

It is a supertype of I (including I);

It is either a supertype or a subtype of J (including J);

Any subtype of it does not belong to the same result set because of prune.

4.3 Finding the Most Specific Overriding: findOverride

The findOrigin function only focuses on original method implementations, where all
the hierarchical overriding methods are omitted during that step. On the other hand,
findOverride(m, I, J) has the assumption that J defines an original m, and this function
tries to find the interfaces with the most specific implementations that hierarchically overrides
such an m. Formally,

BDefinition of findOverride(m, I, J) :

• findOverride(m, I, J) = prune(overrides)

with: overrides = {K | I <: K, K <: J and K[m override J] is defined

By the definition, an interface belongs to findOverride(m, I, J) if and only if:

it is between I and J (including I, J);

it hierarchically overrides J.m;

any subtype of it does not belong to the same set.
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4.4 Other Auxiliaries
Below we give other minor definitions of the auxiliary functions that are used in previous
sections.

BDefinition of I[m override J] :

• I[m override J] = Ie m(Ix x) override J {return e0; }
with: interface I extends I {Ie m(Ix x) override J {return e0; } . . .}

• I[m override J] = Ie m(Ix x) override J ;
with: interface I extends I {Ie m(Ix x) override J ; . . .}

Here I[m override J] is basically a direct lookup for method m in the body of I, where
such a method overrides J (like static dispatch). The method can be either concrete or
abstract, and the body of definition is returned. Notice that by our syntax, I[m override I]
is looking for the originally-defined method m in I.

BDefinition of prune(set) :

• prune(set) = {I ∈ set | @J ∈ set \ I, J <: I}

The prune function takes a set of types, and filters out those that have subtypes in the
same set. In the returned set, none of them has subtyping relation to one another, since all
supertypes have been removed.

BDefinition of canOverride(m, I, J) :

• canOverride(m, I, J) holds
iff: I[m override I] = Ie m(Ix x) override I . . .

J[m override J] = Ie m(Ix y) override J . . .

canOverride just checks that two original m in I and J have the same type.

BDefinition of canInstantiate(I) :

• canInstantiate(I) holds
iff: ∀m, ∀J ∈ findOrigin(m, I, I), findOverride(m, I, J) = {K},

and K[m override J] = Ie m(Ix x) override J {return e0; }

canInstantiate(I) checks whether interface I can be instantiated by the keyword new.
findOrigin(m, I, I) represents the set of branches that I inherits on method m. I can be
instantiated if and only if for every branch, the most specific implementation is non-abstract.

4.5 Properties
We present the type soundness of the model by a few theorems below, following the standard
technique of subject reduction and progress proposed by Wright and Felleisen [35]. The
proof, together with some lemmas, is presented in Appendix. Type soundness states that if
an expression is well-typed, then after many reduction steps it must reduce to a value, and
its annotation is the same as the static type of the original expression.

I Theorem 1 (Subject Reduction). If Γ ` e : I and e→ e ′, then Γ ` e ′ : I.

Proof. See Appendix A.1. J
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I Theorem 2 (Progress). Suppose e is a well-typed expression, if e includes ((J)new I()) .m(v)

as a sub-expression, then mbody(m, I, J) = (I0, Ix x, Ie e0) and #(x) = #(v) for some I0, Ix,
x, Ie and e0.

Proof. See Appendix A.1. J

I Theorem 3 (Type Soundness). If ø ` e : I and e→∗ e ′ with e ′ a normal form, then e ′ is
a value v with ø ` v : I.

Proof. Immediate from Theorem 1 and Theorem 2. J

Note that in Theorem 2, “#(x)” denotes the length of x.
Our theorems are stricter than those of Featherweight Java [14]. In FJ, the subject

reduction theorem states that after a step of reduction, the type of an expression may change
to a subtype due to subtyping. However, in FHJ, the type remains unchanged because we
keep track of the static types and use them for casting during reduction.

Finally we show that one-step evaluation is deterministic. This theorem is helpful to
show that our model of multiple inheritance is not ambiguous (or non-deterministic).

I Theorem 4 (Determinacy of One-Step Evaluation). If t→ t ′ and t→ t ′′, then t ′ = t ′′.

Proof. See Appendix A.1. J

5 Discussion

In this section, we will discuss the design space and reflect about some of the design decisions
of our work. We relate our language to traits, Java interfaces as well as other languages.
Furthermore, we discuss ways to improve our work.

5.1 Abstract Methods
Abstract methods are one of the key features in most general OO languages. For example,
Java interfaces (prior to Java 8) were designed to include only method declarations, and
those abstract methods can be implemented in a class body. The formal Featherweight
Java model [14] does not include abstract methods because of the orthogonality to the core
calculus. In traits, a similar idea is to use keywords like “require” for abstract method
declarations [28]. Abstract methods provide a way to delay the implementations to future
subtypes. Using overriding, they also help to “exclude” existing implementations.

In our formalized calculus, however, abstract methods are not a completely orthogonal
feature. The canInstantiate function has to check whether an interface can be instantiated
by looking at all the inherited branches and checking if each most specific method is concrete
or not.

Our formalization has a simple form of abstract methods, which behave similarly to
conventional methods with respect to conflicts. Other languages may behave differently.
For instance, in Java 8 when putting two identical abstract methods together by multiple
inheritance, there is no conflict error. In Figure 7, we use italic m to denote abstract methods.
In both cases, the Java compiler accepts the definition of C and automatically merges the
two inherited methods m into a single one. FHJ behaves differently from Java in both cases.
In the fork inheritance case (left), C will have two distinct abstract methods corresponding
to A.m and B.m. In the diamond inheritance case, the definition of C is rejected. There are
two reasons for this difference in behaviour. Firstly, our formalization just treats abstract
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Figure 7 Fork inheritance (left) and diamond inheritance (right) on abstract methods.

methods as concrete methods with an empty body, and that simplifies the rules and proofs a
lot. Secondly, and more importantly, we distinguish and treat differently conflicting methods,
since they may represent different operations, even if they are abstract. Thus our model
adopts a very conservative behavior rather than automatically merging methods by default
(as done in many languages). Arguably, the diamond case it is actually an intentional conflict
due to the same source T . Therefore our model conservatively rejects this case. It is possible
to change our model to account for other behaviors for abstract methods, but we view this
as a mostly orthogonal change to our work, and should not affect the essence of the model
presented here.

5.2 Orthogonal & Non-Orthogonal Extensions
Our model is designed as a minimal calculus that focuses on resolving unintentional conflicts.
Therefore, we have omitted a number of common orthogonal features including primitive
types, assignments, method overloading, covariant method return types, static dispatch, and
so on. Those features can, in principle, be modularly added to the model without breaking
type soundness. For example, we present the additional syntax, typing and semantic rules of
static invocation below as an extension:

Expressions e ::= . . . | e.J0@J1 :: m(e)

(T-StaticInvk)

J0[m override J1] = I m(J x) override J1 {return e; }
Γ ` e0 : I0 I0 <: J0 Γ ` e : I I <: J

Γ ` e0.J0@J1 :: m(e) : I

(S-StaticInvk)
J0[m override J1] = Ie m(Ix x) override J1 {return e0; }

((J)new I()) .J0@J1 :: m(v)→ (Ie)[(Ix)v/x, (J0)new I()/this]e0

A static invocation e.J0@J1 :: m(e) aims at finding the method m in J0 that hierarchically
overrides J1, thus J0[m override J1] is invoked. As shown in (S-StaticInvk), static dispatch
needs a receiver for the substitution of the “this” reference, so as to provide the latest
implementations. In fact, static dispatch is common in OO programming, as it provides
a shortcut to the reuse of old implementation easily, and super calls can also rely on this
feature. For convenience we just make it simple above, whereas in languages like C++ or
Java, the static or super invocations are more flexible, as they can climb the class hierarchy.

One non-orthogonal extension to FHJ could be to generalize the model to allow multiple
hierarchical method overriding, meaning that, we allow overriding methods to update multiple
branches instead of only one branch. This feature offers a more fine-grained mechanism for
merging and can be helpful to easily understand the structure of the hierarchy. Multiple
overriding would be useful in the following situation, for example:
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interface A { void m() {...} }
interface B { void m() {...} }
interface C { void m() {...} }
interface D extends A, B, C {
void m() override A,B {...} // overrides branches A and B only
void m() override C {...} // overrides branch C

}

Here D inherits from three interfaces A, B, C with conflicting methods m, but only merges
two of those methods. While we can simulate D without multiple overriding in our calculus
(by introducing an intermediate class), a better approach would be to support multiple
overriding natively.

We present the modification of syntax, typing and semantic rules below (abstract methods
omitted):

Methods M ::= . . . | I m(Ix x) override J {return e; }

(T-MoMethod)

∀Ji ∈ J, I <: Ji findOrigin(m, I, Ji) = {Ji}

mbody(m, Ji, Ji) = (K, Ix x, Ie _) x : Ix, this : I ` e0 : I0 I0 <: Ie

Ie m(Ix x) override J {return e0; } OK IN I

Semantic rules themselves remain unchanged, however, we need to change slightly the
definition of findOverride in mbody:

BDefinition of findOverride(m, I, J) :

• findOverride(m, I, J) = prune(overrides)

with: overrides = {K | I <: K, K <: J and K[m override J] where J ∈ J

With this approach, branches A and B are merged in the sense that they share the same
code, which can be separately updated in future interfaces. Another approach would be to
deeply merge the branches, with similar effect as introducing an intermediate interface AB to
explicitly merge the two branches. However, this approach is problematic because there is
no clear mechanism for identifying and further updating the merged branches. This could be
an interesting future work to explore.

Other typical non-orthogonal extensions to FHJ could be to have fields. The design of
FHJ can be viewed as a variant of Java 8 with default methods which allows for unintentional
method conflicts. Like Java interfaces and traits, state is forbidden in FHJ. There are some
inheritance models that also account for fields, such as C++ that uses virtual inheritance [10].
In our model, however, we can perhaps borrow the idea of interface-based programming [33],
which models state with abstract state operations. This can be realized by extending our
current model with static methods and anonymous classes from Java. However such an
extension requires more thought, so we leave it to future work.

5.3 Loosening the Model: Reject Early or Reject Later?
FHJ rejects the following case of diamond inheritance:
interface A { void m() {...} }
interface B extends A { void m() {...} }
interface C extends A { void m() {...} }
interface D extends B, C {}
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Here both B.m and C.m override A.m, and D inherits both conflicting methods without an
explicit override. In this case, automatically merging the two methods (to achieve diamond
inheritance) is not possible, which is why many models (like traits and Java 8) reject such
programs. Moreover, keeping the two method implementations in D is problematic. In essence,
hierarchical information is not helpful to disambiguate later method calls, since the two
methods share the same origin (A.m). Our calculus rejects such conflicts by the (T-Intf)
rule, where D is considered to be ill-formed. We believe that rejecting D follows the principle
of models like traits and Java 8 interfaces, where the language/type-system is meant to alert
the programmer for a possible conflict early.

Nonetheless, C++ accepts the definition of D, but forbids later upcasts from D to A because
of ambiguity. Our language is more conservative on definitions of interfaces compared to
C++, but on the upside, upcasts are not rejected. We could also loosen the model to accept
definitions such as D, and perform ambiguity check on upcasts and other expressions. Then,
we would need to handle more cases than C++ because of the complication caused by the
hierarchical overriding feature.

6 Related Work

We describe related work in four parts. We first discuss mainstream popular multiple
inheritance models and then some specific models (e.g., C++ and C#) which are closest
to our work. Then we discuss related techniques used in SELF. Finally, we discuss the
foundation and related work of our formalization.

6.1 Mainstream Multiple Inheritance Models
Multiple inheritance is a useful feature in object-oriented programming, although it is difficult
to model and can cause various problems (e.g. the diamond problem [27, 29]). There are many
existing languages/models that support multiple inheritance [10, 22, 5, 28, 17, 19, 20, 11, 2].
The mixin models [5, 11, 32, 2, 13] allow naming components that can be applied to various
classes as reusable functionality units. However, the linearization (total ordering) of mixin
inheritance cannot provide a satisfactory resolution in some cases and restricts the flexibility
of mixin composition. Scala traits [22] are in fact linearized mixins and hence have the same
problem as mixins.

Simplifying the mixins approach, traits [28, 9] draw a strong line between units of reuse
and object factories. Traits act as units of reuse, containing functionality code. Classes, on the
other hand, are assembled from traits and act as object factories. Java 8 interfaces are closely
related to traits: concrete method implementations are allowed (via the default keyword)
inside interfaces, thus allowing for a restricted form of multiple inheritance. There are also
proposals such as FeatherTrait Java [16] for extending Java with traits. Extensions [25, 26]
to the original trait model exists with various advanced features, such as renaming. As
discussed in Section 2, the renaming feature gives a workaround to the unintentional method
conflicts problem. However, it breaks structural subtyping.

Malayeri and Aldrich proposed a model CZ [17] which aims to do multiple inheritance
without the diamond problem. Inheritance is divided into two concepts: inheritance depen-
dency and implementation inheritance. Using a combination of requires and extends, a
program with diamond inheritance is transformed to one without diamonds. Moreover, fields
and multiple inheritance can coexist. However untangling inheritance also untangles the
class structure. In CZ, not only the number of classes but also the class hierarchy complexity
increases.
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The above-mentioned models/languages support multiple inheritance, focusing on dia-
mond inheritance. They handle method conflicts in the same way, by simply disallowing two
methods with the same signature from two different units to coexist. In contrast, our work
provides mechanisms that allow methods with the same signatures, but different parents
to coexist in a class. Disambiguation is possible in many cases by using both static and
dynamic type information during method dispatching. In the cases where real ambiguity
exists, FHJ’s type system can reject interface definitions and/or method calls statically.

6.2 Resolving Unintentional Method Conflicts
A few language implementations have realized the problem of unintentional conflicts and
provide some support for it.

C++ model. C++ supports a very flexible inheritance model. C++ allows the existence of
unintentional conflicts and users may specify a hierarchical path via casts for disambiguation,
as discussed in Section 2. With virtual methods, dynamic dispatch is used and the method
lookup algorithm will find the most specific method definition. A contribution of our work is
to provide a minimal formal model of hierarchical dispatching, whereas C++ can be viewed
as a real-world implementation. There are several formalizations [34, 24, 23] in the literature
modeling various C++ features. However, as far as we know, there is no formal model that
captures this aspect of the C++ method dispatching model. Apart from this, as discussed in
Section 5.3, FHJ conservatively rejects some interface/class definitions that C++ accepts,
and upcasts are never rejected since the ambiguity is prevented beforehand.

Although C++ supports hierarchical dispatching, it does not support hierarchical over-
riding. However, there are some possible workarounds that can mimic hierarchical overriding,
including the MiddleMan approach4, the interface classes pattern as described in Section
25.6 of [31], the LotterySimulation discussion in [30]. Since these workarounds share the same
spirit, we will discuss in detail the MiddleMan approach, with the code shown in Figure 8.
In this example, classes A and B are two classes that both define a method with the same
name m unintentionally.

Class MiddleMan, as its name suggests, acts as a middleman between its class C and its
parents A, B. MiddleMan defines a virtual method m that overrides a parent method m and
delegates the implementation to another method m_impl that takes this as a parameter. C++
supports method overloading, so that multiple m_impl methods with different parameter
types can coexist. When defining class C, we specify the parents to be MiddleMan<A>,
MiddleMan<B> instead of A, B. In this way, programmers may define new versions of A.m
and B.m in class C by providing the corresponding m_impl methods. Then in the client
code, the method call ((A*)c)->m() will print out the string "MA2", as expected. Although
this workaround can help us defining partial method overrides to a certain extent, the
drawbacks are obvious. Firstly, the approach is complex and requires the programmer to fully
understand this approach. Moreover, the lack of direct syntax support makes MiddleMan
code cumbersome to write. Finally, the approach is ad-hoc, meaning that the class MiddleMan
shown in Figure 8 is not general enough to be used in other cases: more middlemen are
needed if partial method overrides happen in other classes; and it is even worse when return
types differ.

4 https://stackoverflow.com/questions/44632250/can-i-do-mimic-things-likes-this-partial
-override-in-c

https://stackoverflow.com/questions/44632250/can-i-do-mimic-things-likes-this-partial-override-in-c
https://stackoverflow.com/questions/44632250/can-i-do-mimic-things-likes-this-partial-override-in-c
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class A { public: virtual void m() {cout << "MA" << endl;}};
class B { public: virtual void m() {cout << "MB" << endl;}};
template<class C>
class MiddleMan : public C {

void m() override final { m_impl(this); }
protected:

virtual void m_impl(MiddleMan*) { return this->C::m(); }
};
class C : public MiddleMan<A>, public MiddleMan<B> {
private:

void m_impl (MiddleMan<A>*) override {cout << "MA2" << endl;}
void m_impl (MiddleMan<B>*) override {cout << "MB2" << endl;}

};
int main()
{

C* c = new C();
((A*)c)->m(); //print "MA2"
return 0;

}

Figure 8 The MiddleMan approach.

C# explicit method implementations. Explicit method implementations is a special fea-
ture supported by C#. As described in C# documentation [19], a class that implements an
interface can explicitly implement a member of that interface. When a member is explicitly
implemented, it can only be accessed through an instance of the interface. Explicit interface
implementations allow an interface to inherit multiple interfaces that share the same member
names and give each interface member a separate implementation.

Explicit interface member implementations have two advantages. Firstly, they allow
interface implementations to be excluded from the public interface of a class. This is
particularly useful when a class implements an internal interface that is of no interest
to a consumer of that class or struct. Secondly, they allow disambiguation of interface
members with the same signature. However, there are two critical differences to FHJ: (1)
default method implementations are not allowed in C# interfaces; (2) there is only one
level of conflicting method implementations at the class that implements the multiple parent
interfaces. Further overriding of those methods is not possible in subclasses.

Languages using hygienicity. In NextGen/MixGen [1], HygJava [15] and Magda [3], hy-
gienicity is proposed to deal with unintentional method conflicts. The idea is to give a method
a unique identifier by prefixing the name with an unambiguous path. As shown in Figure 9,
the prefix HelloWorld in the method call (new HelloWorld []).HelloWorld.MainMatter() is
mandatory. So writing programs in these languages is tedious if not supported by a specialized
IDE, that aids filling prefix/method information. The advantage of this approach, compared
to ours, is that it does not require any additional notion for method dispatching. Indeed the
compilation strategy is simple, just by generating conventional code (say in Java or C++)
with method names attached with prefixes. Unfortunately, the disadvantage is that some
expressive power is lost. In particular merging methods arising from diamond inheritance is
not possible because the methods have different prefixes. As shown in Figure 10, two methods
m from different branches A and B cannot be overridden by the method m in C because they are
regarded as unrelated methods, and m in C is just another new method that has nothing to
do with A.m or B.m. The reason is that in these hygienic approaches, path names are used to
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mixin HelloWorld of Object =
new Object MainMatter()
begin

"Hello world".String.print();
end;

end;
(new HelloWorld []).HelloWorld.MainMatter();

Figure 9 Full-qualified name of method calls in Magda.

mixin A of Object =
new String m()
begin
return "A";

end;
end;
mixin B of Object =
new String m()
begin
return "B";

end;
end;
mixin C of A, B =
new String m()
begin
return "C";

end;
end;

Figure 10 Code in Magda.

distinguish different methods. In contrast, our model can deal with unintentional conflicts, as
well as merged methods because our semantics is not simply based on prefixing. Instead, our
model keeps the names of methods unchanged, and our direct operational semantics takes
static and dynamic type information into account at runtime when doing method dispatching.
Finally, the multiple inheritance model in Magda is based on Mixins, whereas FHJ is based
on traits. Thus, Magda inherits all limitations of Mixins (such as the linearization problem,
etc).

6.3 Hierarchical Dispatch in SELF
As we have discussed before, although the mix of static and dynamic dispatch is particularly
useful under certain circumstances, it has received little research attention. In the prototype-
based language SELF [6], inheritance is a basic feature. SELF does not include classes but
instead allows individual objects to inherit from (or delegate to) other objects. Although it
is different from class-based languages, the multiple inheritance model is somewhat similar.
The SELF language supports multiple (object) inheritance in a clever way. It not only
develops the new inheritance relation with prioritized parents but also adopts sender path
tiebreaker rule for method lookup. In SELF “if two slots with the same name are defined in
equal-priority parents of the receiver, but only one of the parents is an ancestor or descendant
of the object containing the method that is sending the message, then that parent’s slot takes
precedence over the over parent’s slot”. Similarly to our model, this sender path tiebreaker
rule resolves ambiguities between unrelated slots. However, it is used in a prototype-based
language setting and it does not support method hierarchical overriding as FHJ does.
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6.4 Formalization Based on Featherweight Java
Featherweight Java (FJ) [14] is a minimal core calculus of the Java language, proposed by
Igarashi et. al. There are many models built on Featherweight Java, including Feather-
Trait [16], Featherweight defenders [12], Jx [21], Featherweight Scala [8], and so on. FJ
provides the standard model of formalizing Java-like object-oriented languages and is easily
extensible. In terms of formalization, the key novelty of our model is making use of various
types (such as parameter types, method return types, etc) to track the static types as well as
the dynamic types during reduction. As far as we know, this technique has not appeared in
the literature before. This notion is of vital importance in our hierarchical dispatch algorithm,
and it allows for a more precise subject-reduction theorem as discussed in Section 3.

7 Conclusion

This paper proposes FHJ as a formalized multiple inheritance model for unintentional method
conflicts. Previous approaches either do not support unintentional method conflicts, thus have
to compromise between code reuse and type safety, or do not fully support overriding in the
presence of unintentional conflicts. To deal with unintentional method conflicts we introduce
two key mechanisms: hierarchical dispatching and hierarchical overriding. Hierarchical
dispatching is inspired by the mechanisms in C++. We provide a minimal formal model
of hierarchical dispatching in FHJ. Such an algorithm makes use of both dynamic type
information and static information from either upcasts or parameters’ information. It not only
offers code reuse and dynamic dispatch, but also ensures unambiguity using our hierarchical
dispatching algorithm for method resolution. Additionally we introduce hierarchical overriding
to allow conflicting methods in different branches to be individually overridden.

FHJ is formalized following the style of Featherweight Java and proved to be sound.
A prototype interpreter is implemented in Scala. We believe that the formalization of
hierarchical dispatching features is general and can be safely embedded in other OO models,
so as to have support for the fork inheritance.

Our model can certainly be improved in some aspects. As discussed in Section 5, there
are orthogonal and non-orthogonal features that can potentially be added to the design space.
The future work relates to loosening the model without giving up its soundness, together
with more exploration on supporting fields in the multiple inheritance setting.
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A Appendix

A.1 Proofs
I Lemma 5. If mbody(m, Id, Is) = (J, Ix x, Ie e0), then x : Ix, this : J ` e0 : I0 for some
I0 <: Ie.

Proof. By the definition of mbody, the target method m is found in J. By the method typing
rule (T-Method), there exists some I0 <: Ie such that x : Ix, this : J ` e0 : I0. J

I Lemma 6 (Weakening). If Γ ` e : I, then Γ, x : J ` e : I.

Proof. Straightforward induction. J

I Lemma 7 (Method Type Preservation). If mbody(m, J, J) = (K, Ix _, Ie _), then for any
I <: J, mbody(m, I, J) = (K ′, Ix _, Ie _).

Proof. Since mbody(m, J, J) is defined, by (T-Intf) we derive that mbody(m, I, J) is also
defined. Suppose that

findOrigin(m, J, J) = {I0}

findOverride(m, J, I0) = {K}

findOrigin(m, I, J) = {I ′0}

findOverride(m, I, I ′0) = {K ′}

Below we use I[m ↑ J] to denote the type of method m defined in I that overrides J. We
have to prove that K ′[m ↑ I ′0] = K[m ↑ I0]. Two facts:

A. By (T-Intf), canOverride ensures that an override between any two original methods
preserves the method type. Formally,

I1 <: I2 ⇒ I1[m ↑ I1] = I2[m ↑ I2]

B. By (T-Method) and (T-AbsMethod), any partial override also preserves method
type. Formally,

I1 <: I2 ⇒ I1[m ↑ I2] = I2[m ↑ I2]
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By definition of findOverride, K <: I0, K ′ <: I ′0. By Fact B,

K[m ↑ I0] = I0[m ↑ I0] K ′[m ↑ I ′0] = I ′0[m ↑ I ′0]

Hence it suffices to prove that I ′0[m ↑ I ′0] = I0[m ↑ I0]. Actually when calculating
findOrigin(m, J, J), by the definition of findOrigin we know that I0 <: J and
I0[m override I0] is defined. So when calculating findOrigin(m, I, J) with I <: J, I0
should also appear in the set before pruned, since the conditions are again satisfied. But
after pruning, only I ′0 is obtained, by definition of prune it implies I ′0 <: I0. By Fact A, the
proof is done. J

I Lemma 8 (Term Substitution Preserves Typing). If Γ, x : Ix ` e : I, and Γ ` y : Ix, then
Γ ` [y/x]e : I.

Proof. We prove by induction. The expression e has the following cases:
Case Var. Let e = x. If x /∈ x, then the substitution does not change anything.

Otherwise, since y have the same types as x, it immediately finishes the case.
Case Invk. Let e = e0.m(e). By (T-Invk) we can suppose that

Γ, x : Ix ` e0 : I0 mbody(m, I0, I0) = (_, J _, I _)

Γ, x : Ix ` e : Ie Ie <: J Γ, x : Ix ` e : I

By induction hypothesis,

Γ ` [y/x]e0 : I0 Γ ` [y/x]e : Ie

Again by (T-Invk), Γ ` [y/x]e : I.
Case New. Straightforward.
Case Anno. Straightforward by induction hypothesis and (T-Anno). J

A.1.1 Proof for Theorem 1
Proof.

Case S-Invk. Let

e = ((J)new I()).m(v) Γ ` e : Ie

e ′ = (Ie0
)[(Ix)v/x, (I0)new I()/this]e0

mbody(m, I, J) = (I0, Ix x, Ie0
e0)

Since mbody(m, I, J) is defined, the definition of mbody ensures that I <: J. And since e is
well-typed, by (T-Invk),

Γ ` v : Iv Iv <: Ix

By the rules (T-Anno) and (T-New),

Γ ` (Ix)v : Ix Γ ` (I0)new I() : I0

On the other hand, by Lemma 5,

x : Ix, this : I0 ` e0 : I ′e0
I ′e0

<: Ie0
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By Lemma 6,

Γ, x : Ix, this : I0 ` e0 : I ′e0

Hence by Lemma 8, the substitution preserves typing, thus

Γ ` [(Ix)v/x, (I0)new I()/this]e0 : I ′e0

Since I ′e0
<: Ie0

, the conditions of (T-Anno) are satisfied, hence Γ ` e ′ : Ie0
. Now

we only need to prove that Ie0
= Ie. Since Ie0

is from mbody(m, I, J), whereas Ie is from
mbody(m, J, J), by the rule (T-Invk) on e. Since I <: J, by Lemma 7, Ie0

= Ie.
Case C-Receiver. Straightforward induction.
Case C-Args. Straightforward induction.
Case C-StaticType. Immediate by (T-Anno).
Case C-FReduce. Immediate by (T-Anno) and induction.
Case C-AnnoReduce. Immediate by (T-Anno) and transitivity of <:. J

A.1.2 Proof for Theorem 2
Proof. Since e is well-typed, by (T-Invk) and (T-Anno) we know that

I <: J, and mbody(m, J, J) is defined

By (T-Intf), mbody(m, I, J) is also defined, and the type checker ensures the expected
number of arguments.

On the other hand, since I <: J, by the definition of findOrigin,

findOrigin(m, I, J) ⊆ findOrigin(m, I, I)

By (T-New), canInstantiate(I) = True. By the definition of canInstantiate, any
J0 ∈ findOrigin(m, I, I) satisfies that findOverride(m, I, J0) contains only one interface,
in which the m that overrides J0 is a concrete method. Therefore mbody(m, I, J) also provides
a concrete method, which finishes the proof. J

A.1.3 Proof for Theorem 4
Proof. The Proof is done by induction on a derivation of t→ t ′, following the book TAPL.

If the last rule used in the derivation of t→ t ′ is (S-Invk), then we know that t has the
form ((J)new I()) .m(v) with I, J,m determined. Now it is obvious that the last rule in the
derivation of t→ t ′′ should also be (S-Invk) with the same I, J,m. Since mbody(m, I, J)
is a function that given the same input will calculate the same result, we know the two
induction results are the same, thus t ′ = t ′′ is immediately proved.
If the last rule used in the derivation of t→ t ′ is (C-Receiver), then t has the form
e0.m(e) and e0 → e ′0. Since e0 is not a value, the last rule used in t → t ′′ has to be
(C-Receiver) (other rules do not match) too. Assume in the reduction t→ t ′′, e0 → e ′′0 ,
thus e ′0.m(e) = e ′′0 .m(e). Thus, t ′ = t ′′ proved.
If the last rule used in the derivation of t → t ′ is (C-StaticType), then t is fixed to
be new I(). The last rule used in t → t ′′ has to be (C-StaticType), and obviously,
t ′ = t ′′ = (I)new I().
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If the last rule used in the derivation of t → t ′ is (C-FReduce), then t has the form
(I)e and e → e ′. The last rule used in t → t ′′ cannot be (C-StaticType) because it
requires t to be new I(); it can neither be (C-AnnoReduce) because it requires t to
be (I)((J)new K()) where (J)new K() is already a value. So the last rule used in t → t ′′

can only be (C-FReduce) (other rules do not match). Assume in the reduction t→ t ′′,
e→ e ′′, and (I)e→ (I)e ′′. By induction hypothesis, e ′ = e ′′, thus t ′ = t ′′ proved.
If the last rule used in the derivation of t → t ′ is (C-AnnoReduce), then the form
of t is fixed to be (I)((J)new K()). Since (I)((J)new K()) is not reducible, the rule (C-
FReduce) does not apply. The only rule applies in t→ t ′′ is (C-AnnoReduce). Thus
t ′ = t ′′ = (I)new K() proved.
If the last rule used in the derivation of t → t ′ is (C-Args), then t has the form
v.m(..., e, ...) and e → e ′. The last rule used in t → t ′′ cannot be (S-Invk) because it
requires all arguments to be values. Thus only (C-Args) applies to t→ t ′′. Assume in
the reduction t→ t ′′, e→ e ′′. By induction hypothesis, e ′ = e ′′, thus v.m(..., e ′, ...) =

v.m(..., e ′′, ...), thus t ′ = t ′′ proved. J
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