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ABSTRACT
Existing studies proposed different models to capture day-to-day evolution of trav-
elers’ choices and traffic dynamics. However, explicitly incorporating public transit
service unreliability/reliability into day-to-day traffic modeling received very little
attention. This study develops day-to-day models to explore how the unreliability
of public transit service affects the day-to-day evolution of travel choices made by
transit users in the Greater Sydney area. In particular, we consider two dynami-
cal processes that incorporate transit service unreliability, i.e., travelers’ learning
and perception updating process (LPUP) and proportional-switch adjustment pro-
cess (PSAP). The conditions for the existence, uniqueness and stability of the fixed
point of each model are analytically derived. These conditions are then examined
using real-world public transit data from the Greater Sydney area. We find that
with some aggregations and approximations, the system stability conditions at the
fixed point are satisfied in both models. The observed weighted average flow change
between two successive days is around 6.5% over the observation period, which may
reflect the system stochasticity rather than instability. Among a series of empirical
findings, it is noteworthy that in the Sydney case, the value of service schedule delay
(late for schedule) is worth around 3.27 times of the in-vehicle time. Moreover, we
find that the LPUP model more closely approximates real day-to-day travel choices
than PSAP model, which reflects its stronger capability to capture the non-linear
effects between cost perception and travel choices.
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1. Introduction

The day-to-day evolution of travel choices (e.g., departure time choice and mode
choice) are impacted by various factors. Reliability of transport services is one of
these factors, which significantly affects their attractiveness and further influences the
travel demand. Many studies investigated how the variability of travel time and punc-
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tuality of service could affect mode choice (Prashker, 1979; Van Loon et al., 2011).
Some studies focused on the impact of travel time reliability on route choice in road
or rail networks (Jackson and Jucker, 1982; Levinson and Zhu, 2013; Small et al.,
2005; Xu et al., 2018) and departure time choice (Li et al., 2009a; Tu et al., 2012). In
particular, for public transit systems, the discrepancy between planned transit sched-
ule and realized schedule yields uncertain waiting times and trip times (Bates et al.,
2001). To accommodate this uncertainty and avoid being late, travelers may depart
earlier for a certain length of time. This additional time can be regarded as a safety
margin, which depends on individual’s risk-taking behavior and trip purpose. A series
of studies proposed the “effective travel time” when considering reliability-based travel
choice, which consists of the expected travel time and the safety margin (Lo et al.,
2006; Shao et al., 2008; Siu and Lo, 2008). Szeto et al. (2011) further generalized the
concept of effective travel time by defining the effective travel cost, which includes the
in-vehicle travel time cost and waiting time cost. It is based on the consideration that
there is a difference between monetary values of travel time and that of waiting time,
where waiting time is worth around 2.5 to 3.5 times of in-vehicle time (Wardman,
2001).

Apart from considering the service reliability from the transit user’s perspective,
there is also a branch of studies focusing on the reliability of public transit networks
from a system perspective. Carey (1994) developed several metrics of unreliability, with
the consideration of costs due to early or late departure/arrival services. Later, Rietveld
et al. (2001) expanded the valuation of unreliability costs to a multi-modal perspective
by addressing delays due to missing connections in public transport chains. Recent
empirical studies suggested that transit services are more likely to be perceived as
unreliable by passengers if scheduling delays, service headway and route length are
larger (Carrel et al., 2013; Chen et al., 2009; Habib et al., 2011). To capture the effect
of transit service uncertainties on users’ travel choice behavior, a number of studies
establish stochastic models within the framework of reliability-based stochastic user
equilibrium (Jiang and Szeto, 2016; Li et al., 2009b; Szeto et al., 2013,1; Yang and
Lam, 2006; Zhang et al., 2010). Due to the day-to-day variability of travel demand
and traffic condition, users’ perception of unreliability in public transit services also
varies. However, to the best of our knowledge, there are very limited studies examining
how transit service reliability/unreliability could affect users’ day-to-day travel choices.
This paper explores the day-to-day time-dependent travel choice evolution with the
consideration of the reliability of public transit system in the Greater Sydney area.

Day-to-day traffic dynamics have been characterized as the system variations be-
tween successive periods, where the period can be either the entire day or a part of
the day. The day-to-day models have two major categories, i.e., deterministic-process
models and stochastic-process models. Specifically, Smith (1984) and Horowitz (1984)
formulated the day-to-day dynamics of route choice in the context of deterministic pro-
cess. The deterministic models can capture various kinds of User Equilibrium (UE),
including Wardrop’s UE, stochastic user equilibrium (Cantarella and Cascetta, 1995;
Smith and Watling, 2016) and boundedly rational UE (Guo and Liu, 2011; Mahmas-
sani and Chang, 1987; Ye and Yang, 2017; Yu et al., 2020; Zhu et al., 2019). Yang
and Zhang (2009) summarized that in the context of Wardrop’s UE, there are five
major types of day-to-day adjustment processes: the simplex gravity flow dynamics,
the proportional-switch adjustment process, the projected dynamical system, the net-
work tatonnement process, and the evolutionary traffic dynamics. Unlike deterministic-
process models, the steady state of a stochastic-process model refers to the equilib-
rium probability distribution (Cascetta, 1989; Cascetta and Cantarella, 1991; Davis
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and Nihan, 1993; Watling and Cantarella, 2015). Moreover, applications of day-to-day
dynamical systems are not restricted to modeling travelers’ route choices. It has also
been extended to modeling departure time choices (e.g., Ben-Akiva et al., 1984; Xiao
and Lo, 2016) and mode choices (e.g., Li et al., 2018; Zhang and Liu, 2020).

For the departure-time-independent problems with deterministic day-to-day pro-
cess, the system stability is well studied in the context of Wardrop’s UE (e.g., Friesz
et al., 1994; He et al., 2010; Smith, 1984; Zhang and Nagurney, 1996) and stochastic
UE (e.g., Cantarella, 1993; Cantarella and Cascetta, 1995; Horowitz, 1984). Regarding
the departure-time-dependent problems or dynamic user equilibrium, there is a large
body of literature without looking at the day-to-day traffic variation (Friesz et al., 2013;
Wang et al., 2018). However, Iryo (2008) found that, in the single Origin-Destination
(OD) pair system with one bottleneck, the day-to-day dynamical system is unstable.
Later, Guo et al. (2018) also demonstrated that the dynamic user equilibrium may not
be reachable via a day-to-day evolution process in the context of bottleneck models.
Taking the assumption that travelers are boundedly rational when choosing depar-
ture times, stable stationary points of such day-to-day evolution system exist and are
identical to the boundedly rational UE points (Guo et al., 2017; Zhu et al., 2019).
Recent studies further showed that additional information to travelers may help the
system to converge to fixed points (Jin, 2020; Liu and Geroliminis, 2017; Liu et al.,
2017). These findings on stationary points in day-to-day dynamical systems inspire us
to explore the existence and other properties of such points in the real-world public
transit system.

In particular, this study aims to investigate the impacts of unreliability/reliability
of public transit service on the day-to-day evolution of travel choices made by Syd-
ney public transit users. We carry out our exploration with two classic day-to-day
dynamical systems, i.e., the learning and perception updating process (LPUP) and
the proportional-switch adjustment process (PSAP). To account for the impacts of
public transit service unreliability/reliability, we embed the effective travel cost (Szeto
et al., 2011) into the day-to-day dynamical systems. We then analyze the existence,
uniqueness, and stability of fixed points of the two systems, respectively. Moreover,
the proposed day-to-day dynamical models are calibrated using the smart transit card
(Opal card) data from the Greater Sydney area. This study is among the very few that
test and evaluate the day-to-day models with real-world evidence (e.g., Cheng et al.,
2019; Guo and Liu, 2011; He and Liu, 2012), while several other studies relied on exper-
imental data (Xiao and Lo, 2016; Ye et al., 2018; Zhang et al., 2018). The dataset used
in this study contains anonymous historical records of public transit journeys made by
passengers in the Greater Sydney area over a three-month period (from 1 April 2017 to
30 June 2017). In order to compute the transit service schedule delays, transit schedule
information based on General Transit Feed Specification data is also used (https://
opendata.transport.nsw.gov.au/dataset/timetables-complete-gtfs).

The main contributions of this paper are summarized in the following. Firstly, with
an emphasis on service reliability/unreliability, we propose two dynamical systems to
model the day-to-day evolution of Sydney transit users’ departure time choice, i.e.,
PSAP model and LPUP model mentioned earlier. The properties of the proposed
two systems are analytically examined. It is noteworthy that the fixed points of these
two models are different from traditional UE- or SUE-based fixed points due to the
incorporation of service reliability/unreliability. Secondly, we calibrate the developed
models with a large-scale real-world dataset from the Greater Sydney area and generate
a series of empirical insights, including quantifying the value of the service schedule
delay in transit services relative to the in-vehicle time, measuring the magnitude of
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transit commuters’ safety margins. We also found that the LPUP model with stochastic
choices is more capable of capturing the day-to-day evolution of departure time choice
in public transit systems. Thirdly, we empirically evaluate and compare the stability
conditions of both models for the Sydney Greater area under some aggregations and
approximations.

The rest of the paper is organized as follows. Section 2 describes the datasets utilized
in this work. Section 3 details the formulation of effective travel cost, proposes two
dynamical models, and analyzes the analytical properties of the models. Section 4
presents the case study and a series of sensitivity analyses. Data processing and model
calibration are also introduced. Finally, Section 5 concludes the paper.

2. Data Description

We start with the data description. Smart transit card data can be used to explore
the day-to-day regularity and variability of transit commuters’ mobility patterns, e.g.,
Li et al. (2019) and Li et al. (2021). Many studies developed tools for understanding
spatial and/or temporal characteristics of human travel behavior using public trans-
port data (Ma et al., 2017; Morency et al., 2007; Sun and Axhausen, 2016). Such
massive spatial-temporal mobility data brings opportunities to quantify day-to-day
travel choices. In this context, this study develops and calibrates day-to-day travel
choice evolution models with real-world evidence, and explores the capability of these
day-to-day models to capture and reproduce reality.

This section briefly describes the transit smart card data used in this study and
the General Transit Feed Specification (GTFS) data (for obtaining transit schedule
information), along with the data output.

2.1. Transit smart card data

Automated fare collection (AFC) systems are built into the public transit system in
Sydney, including trains, metros, buses, ferries and light rail. Due to the distance-based
fare scheme, passengers in Sydney need to not only tap on but also tap off in order
to pay the correct transit fares for each journey. As a result, the spatial information
(stop/station ID) and temporal information (boarding/alighting timestamp) of trips
are stored in the transit card data. The data adopted in the study records anonymous
transit trips made from 1 April to 30 June 2017. We summarize relevant attributes in
the dataset in Table 1.

Table 1. Smart transit card data attributes

Attribute Definition

Journey segment start date Date of the journey

Journey segment start time
The commencement time of the journey reflecting passengers’ exact
boarding time

Journey segment end time
The termination time of the journey reflecting passengers’ exact

alighting time

Transit stop ID The ID of a transit stop where the journey segment started or
ended

Geographic coordinate of transit stop
The latitude and longitude coordinates revealing the geographic
location of a transit stop

Route ID The name of the transit route the passenger took

Transfer indicator The binary attribute indicating whether the journey is referred as
a transfer
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2.2. GTFS data

Besides the in-vehicle time, the service schedule delay (due to transit arriving late at
the transit stops) is a key parameter in this paper to reflect the unreliability/reliability
of transit services. To compute the service schedule delay, we measure the discrep-
ancy between the scheduled arrival time of transit services and the actual board-
ing/alighting time (we use travelers’ boarding/alighting time to approximate the tran-
sit arrival time at the bus stops).1 The General Transit Feed Specification (GTFS)
data provides public transit timetables (https://opendata.transport.nsw.gov.au/
dataset/timetables-complete-gtfs). In particular, we use the static version of the
Sydney GTFS data to identify planned transit service schedules. Table 2 summarizes
the key attributes we use for delay computation.

Table 2. GTFS data attributes

Attribute Definition

Transit stop ID The ID of a transit stop. Each transit stop has its own service timetable

Route ID The name of a scheduled transit route in public transportation timetables
Scheduled service arrival time The scheduled service arrival time at a specific stop for a specific trip on

a route

2.3. Data output

Transit smart card data and GTFS data are processed and fused to output the data
for model calibration and validation. The output data is a time series including the
following features: (i) geographical information of selected Origin-Destination (OD)
pairs, (ii) duration of peak-demand hours with respect to each OD pair, (iii) travelers’
experienced in-vehicle time and service schedule delay on each observed day, and (iv)
demand between OD pairs at each departure time interval (time horizon is discretized
into multiple intervals).2 We adopt the piecewise regression (McZgee and Carleton,
1970) to define the peak-demand duration for each OD pair. Overall, 171 OD pairs
are generated and used in our case study, while additional OD pairs are also examined
in the sensitivity analysis. Details about data processing methods and the associated
techniques are summarized in Section 4.

3. Model Formulation

This study aims to quantify the day-to-day evolution of time-dependent travel choices
made by transit users in the Greater Sydney area with the consideration of the reli-
ability of public transit services. In the Greater Sydney area, the main performance
metrics of public transit services (bus services) are the travel time and its distribu-
tion/uncertainty, while the transit fare is OD pair specific. This indeed motivates us

1Due to the absence of datasets describing the actual transit arrival time, we apply travelers’ board-
ing/alighting time (recorded in the smart transit card data) to approximate the transit arrival time. We expect

that the difference between the transit arrival time at the transit stop stand/platform and the time when the
first traveler got on or alighted from that transit service is small and negligible.
2This study considers departure-time-interval-based travel demand. The OD demand (or observed passenger

flow) at a specific time interval is the total number of travelers departing from the origin (the departure stop)

within the time interval in concern (based on smart transit card tap-on records). We do not differentiate the

arrival time of travelers when calculating the demand. Note that the arrival time is reflected in the travel time,
which is a part of the travel cost.

5

https://opendata.transport.nsw.gov.au/dataset/timetables-complete-gtfs
https://opendata.transport.nsw.gov.au/dataset/timetables-complete-gtfs


to incorporate reliability-related attributes in relation to in-vehicle time and service
schedule delay (i.e., waiting time due to late arrival transit service at the departure
stop for passengers) into the day-to-day dynamical models.

In particular, we investigate and compare the applicability of two day-to-day mod-
els (i.e., travelers’ learning and perception updating process, and proportional-switch
adjustment process) that are originally built upon the stochastic user equilibrium
and the deterministic user equilibrium. In the following, we first describe the transit
users’ day-to-day time-dependent travel choice problem with reliability consideration,
followed by the formulation of the effective travel cost and the previous day’s experi-
enced travel cost. Then, the formulation of travelers’ learning and perception updating
process (LPUP model) and proportional-switch adjustment process (PSAP model) are
introduced, respectively. Finally, the existence, uniqueness and stability conditions in
relation to these two dynamical systems are discussed. Table 3 summarizes the main
notations used for the model formulations. It should be noted that the model formu-
lation is OD pair specific. We omit the index for the OD pair to ease the notation.

Table 3. List of main notations for the model framework

V The set of time intervals (m ∈ V )
M The number of time intervals with respect to a single OD pair i.e., M = |V |
ϕ The length of time interval

wH
m The mean service schedule delay at the departure stop with respect to departing at time interval

m over the period H

sw,H
m The standard deviation of service schedule delay with respect to departing at time interval m

over the period H

tHm The mean in-vehicle time with respect to departing at time interval m over the period H

st,Hm The standard deviation of in-vehicle time with respect to departing at time interval m over the
period H

wq
m The experienced service schedule delay at the departure stop with respect to departing at time

interval m on day q
tqm The experienced in-vehicle time with respect to departing at time interval m on day q

d The demand between the OD pair

D = dI is the demand matrix of the OD pair, where I is the identity matrix with a rank of M
xq Column vector of time-interval-based passenger flow on day q, xq ∈ RM

+

c(xq) = {c(xq
m),m ∈ V }T ∈ RM

+ is the column vector of the experienced travel cost on day q

c̃q = {c̃qm,m ∈ V }T ∈ RM
+ is the column vector of perceived travel cost on day q

E = {Em,m ∈ V }T ∈ RM
+ is the column vector of effective travel cost

Ce,q
m The observed experienced cost of departing at time interval m on day q

3.1. Problem description: travelers’ day-to-day travel choices

Consider an OD pair with public transit service. On each day, those travelers choosing
transit also have to choose a departure time, which is between the earliest time Tb
and the latest time Te. We discretize the departure time horizon into multiple time
intervals. The travelers choose a departure time interval. In particular, we evenly
discretize the peak demand duration into M intervals, with an interval length of ϕ.
The public transit service headway is expected to be smaller than the length of time
intervals.

Since we focus on the unreliability of public transit services, the travel cost of users is
formulated by in-vehicle time cost and service schedule delay cost. The service schedule
delay here indeed reflects the level of punctuality or reliability of the public transit
services. The transit fare is distance-based (this is the case in many cities including
Sydney), which is constant for the same OD pair. Therefore, we did not include the
fare in the cost formulations in the following subsections.
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3.2. Effective travel cost

We consider that travelers have information regarding the in-vehicle time distribution
and service schedule delay distribution, which may come from information services and
their long term experience. The concept of effective travel cost in the literature can
then be used to capture reliability-based choices (see, e.g., Lam et al., 2008; Lo et al.,
2006 and Shao et al., 2008). Following the effective travel cost proposed by Jiang and
Szeto (2016), we propose the effective travel cost Em with respect to departure time
interval m as follows:

Em = wHm + η1s
w,H
m + tHm + η2s

t,H
m (1)

where wHm is the mean service schedule delay, sw,Hm is the standard deviation of service

schedule delay, tHm is the mean in-vehicle time, st,Hm is the standard deviation of in-
vehicle time, and η1 and η2 are two parameters used to capture the size of the safety
margin, which reflects how risk-averse the travelers are. We should have η1 ≥ 0 and
η2 ≥ 0, which means that uncertainties or delays are unfavourable. The effective travel
cost Em is a linear combination of the mean perceptions of the level of transit service
and safety margins for the unforeseen service unreliability.

The effective travel cost reflects transit travelers’ general understanding of the level
of service of the public transit system based on their long-term user experience or
information provision. For each period of time e.g., a few months, the average level
of transit services at time interval m can be valued as the mean delay wHm and the
mean in-vehicle time tHm experienced by travelers over the period H. By integrating the
effective travel cost into day-to-day evolution models and calibrating the associated
parameter in Em with the Sydney transit smart card data, we can estimate the size of
transit users’ safety margin, thereby providing sensible metrics and managerial insights
for public transit service planning and operation.

Since the effective travel cost is based on long-term historical knowledge, we as-
sume that within a certain period H, the effective travel cost does not vary from day
to day, which means that Em is constant (based on information provision or long-
term experience). It also serves as a reference point for travelers considering service
uncertainty/unreliability. Generally, the effective travel time Em is modeled as the
historical average of the level of transit service plus travelers’ safety margins. In the
following section, the day-to-day evolution of choice patterns will be formulated with
the consideration of the effective travel cost.

3.3. Experienced travel cost

The experienced travel costs are dependent on the flow (e.g., Cascetta and Cantarella,
1993; Horowitz, 1984; Watling, 1999). This paper assumes that the cost of travelers
with respect to a departure time interval m is a function of the passenger flow within
the time interval m, which are summarized in Assumption 1.

Assumption 1. The travel cost of departing at time interval m on day q is a function
of the travel demand within this time interval xqm i.e., cqm = c(xqm), where q is the day
index and c(·) is a strictly increasing function.

Assumption 1 means that we model the dependence between passengers’ experi-
enced cost of using transit and public transit passenger flows. However, we ignore the
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dependence of transit cost on other traffic (e.g., car flow may affect speed of buses).
Incorporating the impact of other traffic to capture multi-modal cost-flow relation-
ships in the day-to-day dynamical system is left for future research, which will rely on
an integrated analysis of multi-modal datasets.

Note that the c(·) is formulated as a mean travel cost function. The analytical
relationship between the experienced travel cost and flow should be calibrated with
real-world data. With the transit smart card data and the GTFS data, the experienced
cost consisting of service schedule delay and in-vehicle time can be calculated directly.
We define the observed experienced cost of departing at time interval m as follows:

Ce,q
m = ωwqm + tqm (2)

where wqm is the experienced service schedule delay at the departure stop on day q,
tqm is the experienced in-vehicle time on day q, and the parameter ω (> 0) represents
the relative value of service schedule delay to the in-vehicle time. Note that we incor-
porate the relative coefficient ω rather than two specific coefficients. This is to reduce
the number of parameters to be estimated in the case study. Also, as mentioned ear-
lier, transit fare is constant for a given OD pair, which is not included in the cost
formulation.

In summary, we have two distinguished expressions of the experienced travel cost,
i.e., c(xqm) and Ce,q

m . The analytical experienced cost formulation c(xqm) defines the cost-
flow relationship. The derivation of the existence, uniqueness and stability conditions
at the fixed point in the proposed dynamical systems is built upon the cost-flow func-
tion. Ce,q

m is the “observed” experienced cost (wqm and tqm can be observed), which will
be utilized later to calibrate the proposed model and cost formulations. The calibrated
parameter ω provides us the relative value of the service schedule delay against the in-
vehicle time. Section 4.2 gives more details about calculating the observed experienced
cost using the real-world dataset.

In the following subsections, we further formulate day-to-day dynamical systems,
with an emphasis on service reliability, which is reflected by the variations in in-vehicle
time and the service schedule delay.

3.4. Learning and perception updating process (LPUP)

Travelers’ learning and perception updating process (termed as LPUP model) in the
context of stochastic user equilibrium has been proposed and examined by Davis and
Nihan (1993). Following that, Cantarella and Cascetta (1995) derived the stability
conditions for both link-based and route-based, discrete-time, deterministic day-to-day
process. In this study, we follow a similar structure of LPUP model but incorporate
the effective travel cost.

3.4.1. Formulations

On a typical day q, travelers update their mean perceived travel cost of departing at
time interval m as follows:

c̃q = c̃q−1 + κ
(
c(xq−1)−E

)
(3)

where κ > 0 is a dimensionless coefficient associated with the difference between
previous day’s experienced travel cost and the effective travel cost, i.e., c(xq−1) and
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E. The term c(xq−1) − E reflects that travelers will compare their previous day’s
experience with the effective travel cost based on information provision or a certain
period of travel experience (this period should not be too short in order to form an
understanding of the system, e.g., several months). We take the time interval m ∈ V
as an example for explanation. c(xq−1

m ) − Em > 0 indicates that the travel cost of
departing in time interval m ∈ V experienced by travelers on day (q − 1) is higher
than the effective travel cost that contains a safety margin or buffer time. Travelers’

perceived cost for time intervalm ∈ V on day q will then increase by κ
(

c(xq−1
m )− Em

)
.

The value of κ reflects travelers’ sensitivity to the new experience or how fast travelers
are learning from new experience. A very large κ means that a small change in the
experienced travel cost can cause a considerable change of their perception.

Eq. (3) is a variation of the widely-used exponential smoothing approach to model
travelers’ learning behavior in the literature (see for example, Cantarella and Cascetta,
1995), where the perceived cost on day q is updated based on the combination of
weighted perceived travel cost on day q − 1 and weighted experienced travel cost on
day q−1. The effective travel cost E is integrated in travelers’ learning and forecasting
behavior, reflecting the impact of the transit travelers’ general understanding of the
level of service of the public transit system (which is regarded as a source of prior
information) on their day-to-day “learning trajectory”. We will discuss how this setting
influences the existence, uniqueness and system stability conditions in Section 3.4.2.

We now move to the travelers’ choice updating. On a typical day q, travelers have
to choose a departure time interval. The proportion of travelers choosing departure
time interval m is

Pqm(c̃q) =
exp(−θc̃qm)∑M
j=1 exp(−θc̃qj)

(4)

The above Logit-model choice formulation means that one can define the user utility
for departing at time interval m as follows: ũqm = −θc̃qm + εm, m ∈ V , where θ > 0,
and εm for different m are error terms following identical and independent Gumbel
distribution.3 Travelers maximize their expected utility when making departure time
choices. To ease the presentation, we define the choice probability vector in the fol-
lowing form:

P(c̃q) =
{

Pq1, ...,P
q
m, ...,P

q
M

}T
(5)

3The assumption that the error terms εm are identically and independently distributed (i.e., the IID as-

sumption) is a limitation of the proposed Logit-based day-to-day departure time choice model (i.e., the LPUP
model). For two arbitrary time intervals that are close to each other, the IID assumption is more likely violated

(as system traffic conditions for these two time intervals can be relatively correlated), while for two time inter-
vals that are far from each other, IID assumption is less likely violated (system traffic conditions for the two

time intervals are relatively independent). Besides, if the trip time (in-vehicle time) is relatively small when

compared to the time difference between two time intervals, the cost correlation between the two time intervals
can be relatively insignificant. In this study, the time interval length used to model day-to-day travel demand

for different time intervals is 10 minutes (more details in Section 4), meaning that the (on average) difference

between two consecutive time intervals is 10 minutes, and the difference between farther away time intervals
is no less than 20 minutes. At the same time, regarding the 171 selected OD pairs used in the case study,

the percentage of OD pairs with an in-vehicle travel time less than 20 minutes (30 minutes) is 62.0% (80.7%).

The above means that a significant number of OD pairs involve a relatively small in-vehicle time, while the
time difference between two non-consecutive time intervals is no less than 20 minutes. Note that while the

Logit-model has limitations, it allows analytical tractability when analyzing the day-to-day dynamical system,

which has been adopted in day-to-day departure time models and also other day-to-day traffic assignment
models (see for example, Ben-Akiva et al., 1984; Bie and Lo, 2010; Xiao and Lo, 2016).
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Additionally, we consider that a proportion of travelers may simply repeat their
previous travel choices and do not consider changing their travel choices (due to user
inertia or other factors), while others will re-consider their choices. Thus, the choice
updating can be formulated as follows (Cantarella and Cascetta, 1995):

xq = D(1− ρ)P(c̃q) + ρxq−1 (6)

where ρ ∈ [0, 1) is the ratio of travelers who repeat their travel choices and do not re-
consider their travel choices from day to day, which is assumed to be time-invariant; D
is the matrix regarding travel demand, which is assumed to be fixed to allow analytical
derivation for the LPUP model. Note that Eq. (6) is formulated at an aggregate level
rather than specifying which travelers will be those repeating their choices.

In summary, the LPUP system state on each day q is described by the perceived
travel cost of day q (i.e., c̃q) and flow pattern of day q (i.e., xq). In particular, c̃q is up-
dated based on the previous day’s perceived cost c̃q−1, the previous day’s experienced
cost c(xq−1) and the long-term travel experience (or historical information) E. Then,
the revised c̃q shapes the flow pattern xq on day q. Previous studies defined that in de-
terministic process models, the day-to-day dynamical system reaches the fixed-points
when xq = xq−1 = x∗, where x∗ is the traffic flow at the fixed point (Cantarella and
Watling, 2016; Cascetta and Cantarella, 1993; Li et al., 2018). In order to empirically
examine the state of the Sydney public transit system, we firstly derive the analyt-
ical conditions for the existence, uniqueness of the traffic flow at the fixed point in
Section 3.4.2.

3.4.2. Existence and uniqueness of the fixed point

Assumption 2. The effective travel cost is bounded, i.e., 0 < Em < c (d) , ∀m ∈ V ,
where d is the total demand.

Assumption 2 says that under an extreme (and unlikely) scenario where if all trav-
elers of an OD pair jammed at a single time interval m i.e., xm = d, the experienced
travel cost would be larger than the effective travel cost, which is based on travelers’
general understanding of the level of service of the public transit system with respect
to the time interval m. Also, Em is expected to be larger than 0.

Eqs. (3) and (6) form a deterministic dynamical system. At the fixed-point of the
dynamical system, we should have c̃q = c̃q−1 and xq−1 = xq. Additionally, the flow
and the perceived travel cost at the fixed point (x∗, c̃∗) should satisfy the following
conditions:

c(x∗) = E (7)

x∗ = DP(c̃∗) (8)

As can be seen, the experienced cost c(x∗) at the fixed point is equal to the effec-
tive travel cost E. However, the flow x∗ is based on the mean perceived travel cost c̃∗,
where c̃∗ is generally different from the experienced cost c(x∗). This means that the
fixed point defined by Eqs. (7)-(8) does not correspond to the traditional Logit-based
stochastic user equilibrium, due to service reliability consideration and the incorpo-
ration of effective travel cost E in the learning and choice updating mechanism. It is
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noteworthy that existing studies have discussed similar observations (i.e., fixed points
of the dynamical system are different from traditional UE- or SUE-based points) due
to information provision (Bifulco et al., 2016).

The proof for the existence and uniqueness and the stability of the fixed point adopts
a similar approach as those from, e.g., Cantarella and Cascetta (1995) and Li et al.
(2018).

Lemma 1. Let Jac(P(c̃∗)) denote the Jacobian matrix of the choice probability vector
P(c̃∗), then Jp = Jac(P(c̃∗)) is negative semidefinite.

Proof. The proof is given in Appendix A.1.

Lemma 1 is in line with those in the literature (see for instance, Cantarella and
Watling, 2016), which provides the basis for proving the uniqueness of the fixed point.
Let Jc = Jac(c(x∗)) denote the Jacobian matrix of travel cost at the fixed point c(x∗).
Based on Assumption 1, Jc is a diagonal matrix with positive diagonal elements and
is positive definite.

Proposition 1. There exists a unique travel flow and perceived cost at the fixed point
(x∗, c̃∗) for the dynamical system defined in Eqs. (3) and (6).

Proof. The proof is given in Appendix A.2.

From the proof of Proposition 1, the sufficient condition for the existence and
uniqueness of the fixed point is that Jp is negative semidefinite (Cantarella and
Watling, 2016). The adopted multi-nomial Logit choice model is a specific example
that satisfies this condition. The above results and the following propositions will still
be valid as long as the Jacobian matrix of the choice filter Jp is negative semidefinite
even if it is not in the form of multi-nomial Logit.

3.4.3. Stability condition of the fixed point

The Jacobian matrix of the transition function at point (xq−1, c̃q−1) can be defined,
showing the structure formed by four M ×M blocks:

JLPUP = Jac
[
Ψ
(
xq−1, c̃q−1

)]
=

[
I κJc

(1− ρ)DJp ρI + κ(1− ρ)DJpJc

]
2M×2M

(9)

The relationship between the eigenvalues of matrix JLPUP and matrix DJpJc satisfy
the following Lemma 2.

Lemma 2. For each of the M eigenvalues γk of matrix DJpJc, two eigenvalues
λ
′

k = λk and λ
′′

k = λM+k of matrix JLPUP are the solutions to the quadratic function
in Eq. (10).

λ2 − λ [ρ+ κ (1− ρ) γk + 1] + ρ = 0 (10)

Proof. The proof is given in Appendix A.3.

Proposition 2. The dynamical system defined in Eqs. (3) and (6) is stable if and

only if |γk| < 2(1+ρ)
(1−ρ)κ .
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Proof. The proof is given in Appendix A.4.

Proposition 2 indicates that the learning factor κ and the fraction of travelers who
repeat their travel choices and do not re-consider their travel choices from day to day
ρ affect the stability of the dynamical system Eqs. (3) and (6). A smaller κ and/or a
larger ρ improve(s) the stability of the dynamical system. This implies that if travelers
are not likely to be affected by their travel experience on the previous day, they will
not change their perception significantly, thereby yielding a more stable system at the
fixed point. Similarly, if more travelers repeat their choices they made on the previous
day, fewer variations in flow patterns will occur, which also yields a higher level of
stability.

3.5. Proportional-switch adjustment process (PSAP)

The proportional-switch adjustment process (PSAP) is established by Smith (1984)
and is built upon the Wardrop’s user equilibrium which specifies that under the equi-
librium condition, more costly alternatives are not used. Later on, the PSAP model
has been extended to study the departure time choice problem (e.g., Guo et al., 2018).
We consider a discrete time PSAP model in this paper, which is similar to Section 3.4;
and again we apply the Jacobian-based approach to investigate the stability of the
PSAP system.

3.5.1. Formulations

Similar to the LPUP model, we consider that travelers tend to favour the time interval
m more on the next day (day q) if the previous day’s experienced cost c(xq−1

m ) is
less than the effective travel cost Em, and vice versa. The swapping demand rate rqm
associated with time interval m is

rqm = α
(
Em − c(xq−1

m )
)

(11)

where α > 0. Note that α converts costs into a flow change percentage, which is not
dimensionless. When Em− c(xq−1

m ) > 0, which means that the experienced cost is less
than the effective travel cost (which equals the mean cost plus the safety margin or

buffer), rqm > 0, i.e., more people will depart at time interval m. When Em−c(xq−1
m ) <

0, accordingly, rqm < 0. The formulation of the swapping demand rate in Eq. (11) is
compatible with the perception and choice updating process in Eqs. (3) and (6), where

Em − c(xq−1
m ) is also used. Later on, we will compare the two proposed models.

Again, we consider only a proportion of (1−ρ) travelers will re-consider their choices
each day, the flow associated with time interval m on day q can be updated as follows:

xqm = ρxq−1
m + (1− ρ) xq−1

m

(
1 + α

(
Em − c(xq−1

m )
))

(12)

The proposed PSAP-based model is able to incorporate the elasticity of demand.
In particular, the total demand for two consecutive days are not necessarily identi-
cal, i.e.,

∑
m xqm 6=

∑
m xq−1

m . This can be readily verified based on Eq. (12) since∑
m

(
Em − c(xq−1

m )
)

may not equal zero.

The PSAP system state on each day q can be simply described by the flow xq.
Specifically, xqm is updated based on the previous day’s experienced cost cq−1

m and the
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long-term travel experience (or historical information) Em with respect to time interval
m.

3.5.2. Existence and uniqueness of the fixed point

We still adopt Assumption 2 for the following analysis regarding the existence and
uniqueness of the fixed point defined by the PSAP-based dynamical system.

To ease the presentation, we define F(xq−1) as follows:

F(xq−1) =
{

xq−1
m

(
1 + α

(
Em − c(xq−1

m )
))
,m ∈ V

}T
(13)

Eq. (12) forms a deterministic dynamical system, which can be further re-written
in the following vector-matrix form:

xq = ρxq−1 + (1− ρ)F(xq−1) (14)

At the fixed-point of the dynamical system, we should have xq−1 = xq. Additionally,
the passenger flow and experienced travel cost at the fixed-point (x∗) should satisfy
the following conditions:

x∗ = F(x∗) (15)

c(x∗) = E (16)

The PSAP-based fixed point defined by Eqs. (15) and (16) is similar to that under
the LPUP model defined in Eqs. (7) and (8) in the sense that at the fixed point,
the experienced travel cost c(x∗) should be equal to the effective travel cost E. This
implies that the two dynamical models yield the same flow x∗ at the fixed point if the
flow solution x∗ to Eq. (16) is unique. However, the PSAP-based dynamical system
differs from the LPUP model in the sense that the day-to-day evolution processes are
different, which is reflected by Eqs. (8) and (15).

We now turn to derive the analytical conditions for the existence, uniqueness of the
traffic flow at the fixed point x∗. Let 0 = {0, ...0, ..., 0︸ ︷︷ ︸

M

}T and let d = {d, ...d, ..., d︸ ︷︷ ︸
M

}T.

Proposition 3. Suppose when x→ 0, c(x) < E and when x→ d, c(x) > E. Then,
there exists a unique travel flow at the fixed point x∗ for the dynamical system defined
by Eq. (12).

Proof. The proof is given in Appendix A.5.

3.5.3. Stability condition of the fixed point

At the fixed-point of the dynamical system defined by Eq. (12), c(x∗m) = Em,∀m ∈ V ,
the Jacobian matrix of the transition function at the fixed point (x∗), is a M ×M
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matrix:

JPSAP = I + α(1− ρ)


−x∗1c′(x∗1) ... 0 ... 0

...
. . .

...
...

0 ... −x∗mc′(x∗m) ... 0
...

...
. . .

...
0 ... 0 ... −x∗Mc′(x∗M )


M×M

(17)

Proposition 4. The dynamical system defined by Eq. (12) is stable if and only if
− 2
α(1−ρ) < −x∗mc′(x∗m) < 0 (∀m ∈ V ), or equivalently, |λf| < 1, where λf is the

eigenvalue of the matrix JPSAP.

Proof. The proof is given in Appendix A.6.

If α is smaller and/or ρ is larger, − 2
α(1−ρ) is smaller, and then − 2

α(1−ρ) < −x∗mc′(x∗m)

is more likely to hold and the dynamical system defined by Eq. (12) is more likely
stable based on Proposition 4. This also means that, a smaller α, which indicates that
travelers are not sensitive to the new travel experience, improves the overall system
stability. The implication of Proposition 4 is in line with that of Proposition 2.

4. Case Study

We now discuss how to calibrate the two proposed dynamical systems with real-world
transit data from the Greater Sydney area and GTFS data. As discussed in Section 2,
the study period is from 1 April to 30 June 2017, and we have 171 OD pairs in total.
By excluding all weekends and public holidays, the length of the study period is 59
days. We focus on the morning trips associated with bus services only. Let K denote
the set of the selected OD pairs (i ∈ K), where |K| = 171. Let Q denote the set of
observed days (q ∈ Q), where |Q| = 59. It should be noted that we let q = 0 represent
the initial day in our dataset.

This section starts with describing the overall level of bus services in Sydney, and
then describes the aggregation approach to fit the real-world trip records into the
dynamical models. We then introduce more detailed techniques regarding the selection
of OD pairs and identification of peak-demand hours for each OD pair. In the end of
this section, we present the model calibration results and conduct a series of sensitivity
analyses to investigate how the model settings and the variation in the data can impact
the results.

4.1. Bus services in Sydney

We start by exploring the spatial and temporal characteristics of bus trips in the
morning. Fig. 1 visualizes the spatial patterns of bus commuters based on trip origins
and destinations. As can be seen, demand patterns differ for inner-ring, middle-ring
and outer-ring areas that are categorized by their distance to Sydney Central, where
inner-ring area is within 10 km from Sydney Central, middle-ring is in between 10
to 20 km, and outer-ring area is from 20 to 50 km from Sydney Central (Fig. 1). In
Fig. 1a and Fig. 1b, a darker colour (from light green to dark red) indicates a higher
demand density. Regarding trip origins, the majority of bus trips were generated from

14



the inner Sydney; and few regions scattering around the boundary of the middle ring
also produced a considerable number of trips. Most commuters’ trip destinations fell
in the core of the inner-ring area i.e., Sydney Central Business District (CBD). A large
number of trips were also attracted to several industrial suburbs in middle-ring and
outer-ring regions.

Fig. 2 further displays the changes of average daily demand with respect to each
departure zone over the study period (i.e., from 1 April to 30 June 2017), where all
the public holidays are labeled accordingly. It is evident that there exist substantial
decreases in average daily demand around weekends and public holidays. Unlike other
holidays marked on Fig. 2 (Anzac Day and Queen’s Birthday), the days just before
and after the Easter long weekend also show noticeable drops in demand. We therefore
exclude those days (i.e., 13 and 18 April 2017) along with weekends and other public
holidays, which yields the 59-day study period. For the 59-day study period, we do not
differentiate different weekdays and do not consider the day-of-the-week effect in the
benchmark case. We will further examine the day-of-the-week effect in Section 4.6.5.

(a) (b)

Fig. 1. Spatial distribution of Sydney bus commuters in the morning peak hour (from April
to June 2017): (a) trip origin and (b) destination

Approximately 4.8 million trip records generated from 374 suburbs over the three-
month period were initially sampled from the transit data in order to provide a general
understanding of the level of bus services in Sydney. Fig. 3a and Fig. 3b plot the
distributions of the in-vehicle time and the schedule delay of bus services, respectively.
From Fig. 3a, it can be seen that most travelers experienced an in-vehicle time of
10 to 20 minutes. Fig. 3b indicates that most bus service schedule delays are within
10 minutes. However, there are some services with relatively severe service schedule
delays (more than 20 minutes). This paper tries to quantify how the service schedule
delay and service unreliability could affect travelers’ choices.

4.2. Problem setting and formulation: Sydney case

This section discusses the case study setting in order to embed real-world observations
into the proposed dynamical models.

We start with how we define an OD pair. We define a departure bus stop as the
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Fig. 2. Variation of average daily demand over the study period (from 1 April 2017 to 30
June 2017) with respect to three departure zones: inner, middle and outer ring.

(a) In-vehicle time (b) Service schedule delay

Fig. 3. Distribution of in-vehicle time and service schedule delay

origin of travelers. The exact home locations of travelers are not known. Bus stops
are not very dense in the suburban area in the Greater Sydney area and travelers
from suburban areas often stick to a single bus stop (other few surrounding bus stops
usually operate bus services to different destinations). Differently, the destination is
defined as a set of arrival bus stops within a 500-meter radius. We define this as the
“destination zone”. This is because travelers may take different bus lines at the same
departure bus stop and may alight at bus stops close to their final destinations (e.g.,
workplaces). This is often the case in the Sydney CBD, where the density of bus stops
is very high (on average 20 bus stops within a 1km × 1km square area). Note that a
circle area with a radius of 500 meters already covers a significant number of bus stops
and the walking distance involved expects to be acceptable to most travelers.

We now further discuss the selected departure origins. There are 20,693 bus stops in
Sydney at the time of data collection. Fig. 4a shows the distribution of total demand for
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these departure bus stops in the morning peak hours from 7 am to 10 am. Apparently,
around 90% of the bus stops involve only a small demand (total demand in the morning
peak hours < 100). For these low-demand OD pairs, many travelers may have a trip
in one day, but then do not have a trip record in the next day (or even in next few
days), i.e., discontinuity of activities in trip records over days. On the one hand, many
of these observations (e.g., no trip records at all for some days) might be due to other
factors rather than the service quality of the public transit. Including these might
make our analysis less meaningful. On the other hand, when there are no trip records
for one day, we do not have tap-on and tap-off records, and there is no data for us to
calculate the experienced service schedule delay and travel time. In this study, we focus
on the top 100 most used departure bus stops (at 99.5th percentile), with total demand
> 310 (at departure bus stops) in the morning peak hours. The demand distribution
for targeted bus stops is shown in Fig. 4b. Overall, 171 OD pairs are selected for the
case study i.e., |K| = 171. We will further examine the cases where we either include
additional low-demand OD pairs or further exclude some low-demand OD pairs in the
171 selected OD pairs in Section 4.6.4.

(a) CDF plot of total average demand at all departure
bus stops in Sydney

(b) Distribution of demand at top 100 most used de-
parture bus stops in Sydney

Fig. 4. Distribution of departure-bus-stop-based demand in Sydney

Moreover, we focus on demand changes over different departure time intervals.
Therefore, we do not distinguish passengers departing within the same time inter-
val but with different bus routes. This is to say, we do not consider bus line/route
choice. In Sydney, the departure time interval is often more critical, and which bus
lines to take often depends on the sequence of buses arrival at the stop, which involves
non-negligible uncertainty in the peak period.

As discussed in Section 3, the costs of users include the service schedule delay and
the in-vehicle time. With the available data (i.e., smart transit card data and GTFS
data; refer to Section 2), the service schedule delay is estimated as the time difference
between the scheduled bus arrival time and the boarding time of travelers; and the
in-vehicle time is estimated as the difference between boarding time (tap-on) and
alighting time (tap-off). Travelers’ walking time to and from the bus stop, and the
buffer time duration between the travelers’ arrival time at the bus stop and scheduled
bus arrival time usually vary slightly from day to day, as such we do not consider them
here. These walking and waiting times are also not known unless additional surveys
are conducted.

With the above in mind, we can formulate the travel cost. As discussed earlier, in
order to alleviate the impact of randomness related to individual traveler and trip,
we adopt an aggregate approach. For example, for a given departure time interval m,

17



we can define the mean experienced cost (based on costs of all individuals within this
departure time interval) rather than individual experienced cost, which is

C
e,q
m = ωwqm + t

q
m (18)

where wqm is the mean service schedule delay experienced by all travelers Gqm who
departed at time interval m on day q; and t

q
m is the mean in-vehicle time experienced

by the same group of travelers Gqm. The above “mean-value-based” cost function then
replaces the original individual-based cost function in Eq. (2).

We now further discuss how to compute the “effective travel cost” defined in Eq. (1).
For a given OD pair and time interval m, we compute the mean values and standard
deviations of in-vehicle time and service schedule delay based on all trip records in the
dataset in the 59 working days. This is to say, we use the mean values and standard
deviations based on the 59 working days to approximate travelers’ knowledge based
on long-term experience or information provision. Travelers’ long-term knowledge can
be better approximated if a longer observation duration of transit smart card data is
available.

4.3. Time horizon discretization and peak-demand duration identification

The analysis in this paper is based on discrete departure time intervals, where the time
horizon is discretized into multiple time intervals. We now discuss how to choose the
time interval length ϕ. Essentially, the interval length ϕ should be chosen in the way
that helps uncover/reflect true departure time changes of travelers. Firstly, the time
interval length should not be too small. For example, if the time interval length is much
less than the bus headway (e.g., 30 seconds � 5 minutes), postponing or forwarding
the departure time by a few intervals likely result in boarding the same bus, which may
be simply due to individual randomness rather than intentionally changing departure
times. Secondly, the time interval length should not be too large. For example, if
the time interval is 2 hours, due to the low time resolution, one may never observe
departure time interval changes. We set ϕ = 10 minutes in the benchmark case for the
following analysis. We will test different lengths of time intervals (i.e., ϕ = 5, 10 and
20 minutes) in Section 4.6.1.

Fig. 5a shows the distribution of the average service headways of the 171 selected
OD pairs modeled in this study. From Fig. 5a, it can be seen that the headway of
the 171 selected OD pairs are all within 10 minutes, which is smaller than the length
of time intervals utilized for the model calibration (i.e., 10 minutes). We will further
investigate how the modeling results are impacted if the OD pairs with an average
service headway larger than 10 minutes are considered in Section 4.6.3. Fig. 5b and
Fig. 5c further plot the joint probability distribution in the two-dimensional domain of
origin-bus-stop-based demand and headway, which visualize the relationship between
headway and passenger demand regarding the 171 selected OD pairs. According to
Fig. 5b, when the OD demand is no less than 200, the average service headway is less
than 2.5 minutes. By contrast, as shown in Fig. 5c, as the OD demand drops, the
service headway increases in general.

We now turn to discuss the peak-demand hours for each OD pair. The morning
peak hour typically lasts from 7 am to 10 am in Sydney. Due to the heterogeneity
of socio-demographic and socio-economic characteristics among different suburbs, the
work-activity-related decisions vary, and so does the peak-hour duration. In this study,
we define the peak duration based on the demand level as follows. We evenly divide
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(a) Distribution of headway regard-
ing the 171 OD pairs

(b) Demand ≥ 200 (c) Demand < 200

Fig. 5. Headway distribution and its relationship with OD demand

the duration between 7 am and 10 am into 18 time intervals with the predefined
interval length ϕ = 10 minutes. Then, the observed OD bus passenger demand (i.e.,
passenger flow) at each departure time interval can be calculated. The grey lines in
Fig. 6 illustrate the changes in passenger flow from 7 am to 10 am with respect to
two representative OD pairs, where the tick values along the horizontal axis are the
interval index: the first interval is from 07:00 to 07:10 and the last interval is from
09:50 to 10:00. Building upon the time series (associated with 18 time intervals in the
case study), we use the piecewise regression discussed in McZgee and Carleton (1970)
to approximate a time series of length n = 18 with four linear segments, i.e., four blue
lines displayed in Fig. 6. A threshold line (the red line) valued at 50th percentile of the
total demand is then drawn in Fig. 6, which intersects two of the four straight lines
and determines the peak start time and peak ending time. It is noteworthy that we
use four straight lines for the temporal demand approximation. This is based on the
consideration that the demand profile is expected to include four stages, i.e., the low
demand stage, the demand increasing stage, the demand decreasing stage and the low
demand stage again.

(a) OD pair 1 (b) OD pair 2

Fig. 6. Peak-demand hour identification regarding two representative OD pairs (as illustrative
examples)
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4.4. Model calibration

We now discuss how to calibrate the proposed day-to-day dynamical models (i.e.,
LPUP and PSAP) using 59-day trip records for the 171 OD pairs i.e., |Q| = 59,
|K| = 171. It should be noted that all the selected OD pairs are mutually indepen-
dent. We include all the selected OD pairs for model calibration, which helps alleviate
randomness related to individual OD pair. Note that an additional subscript i to in-
dicate a specific OD pair i ∈ K is added to some of the notations in this subsection,
while in previous sections it is omitted to ease the notation.

To calibrate the LPUP model, we propose the following minimization problem,
which is to minimize the weighted sum of the square of difference between the ob-
served flow-change (or demand-change) percentage and the estimated flow-change (or
demand-change) percentage, i.e.,

min
∑
i∈K

|Q|∑
q=1

Mi∑
mi=1

yqmi

Y q
i

(
zqmi
− ẑqmi

)2
(19)

s.t.

c̃qmi
> 0 ∀q ∈ Q, ∀mi ∈ Vi, i ∈ K (20)

θi > 0 (21)

ρ ∈ [0, 1) (22)

where zqmi =
yqmi

/Y q
i −y0mi

/Y 0
i

y0mi
/Y 0

i
is the observed flow change percentage with respect to day

zero (Monday, 3 April 2017) at time interval mi; and ẑqmi =
[ρPq−1

mi
+(1−ρ)Pq

mi
]−y0mi

/Y 0
i

y0mi
/Y 0

i

is the estimated flow change percentage that is calculated by the proposed LPUP
model. Both observed flow and estimated flow are represented in a fractional form,
i.e., the flow at time interval mi over the total OD demand on day q, i.e., yqmi/Y

q
i and

ρPq−1
mi

+ (1− ρ)Pqmi
, respectively. More specifically, Pqmi

and Pq−1
mi

are the proportions
defined in the LPUP model in Eq. (4) for day q and day q − 1, respectively;4 yqmi is
the observed flow with respect to time interval mi on day q; Y q

i is the total observed
demand between the OD pair i on day q. Besides, we assume that on the initial day, i.e.,
q = 0, travelers’ perceived cost is equivalent to the effective travel cost i.e., c̃0

mi
= Emi

.
It is noteworthy that θi in Eq. (21) is OD pair specific. We set θi = θ (∀i ∈ K)

in the benchmark case. Doing so produces an aggregate estimation of θ for all OD
pairs and helps to mitigate errors or noises associated with specific OD pairs in the
model calibration. We also test the cases where we set OD-specific θ. The results are
summarized and discussed in Section 4.6.2.

To calibrate the PSAP model, we propose the minimization problem as follows,
which is to minimize the weighted sum of the square of the difference between the

4In order to fully utilize the real trip records, in the minimization problem in Eq. (19), when calculating Pq
mi

,
we do not use the cost-flow relationship defined as c(xq

m). Instead, we use the observed cost C
e,q
mi

defined in
Eq. (18) to replace c(yq

mi
) when computing Eq. (3).
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model-based day-to-day demand change and the observed demand change, i.e.,

min
∑
i∈K

|Q|∑
q=1

Mi∑
mi=1

yq−1
mi

Y q−1
i

(
(1− ρ)αyq−1

mi

(
Emi
− C

e,q−1
mi

)
− (yqmi

− yq−1
mi

)
)2

(23)

s.t.

α > 0 (24)

ρ ∈ [0, 1) (25)

where (1− ρ)αyq−1
mi

(
Emi
− C

e,q−1
mi

)
is the estimated change of demand based on the

PSAP model, and yqmi − yq−1
mi is the observed change of flow between two successive

days q and q − 1 with respect to time interval mi. Since on the initial day i.e., q = 0,
the past-day experienced cost is untraceable, we set the starting point at q = 1.

In summary, the proposed problems in Eq. (19) and Eq. (23) both minimize the
discrepancy between the estimated flow (demand) and the observed flow (demand)
when calibrating the two dynamical models. All the calibrations are conducted through
‘shgo’ (Simplicial Homology Global Optimisation) algorithm through SciPy (a Python
library). Regarding the ‘shgo’ algorithm, convergence to a global minimum is expected
for Lipschitz smooth functions.

4.5. Results and implications

4.5.1. Calibration results and discussions

In order to evaluate to what extent the proposed two dynamical models can approx-
imate real observations, we compute percentage errors between the observed flows
(demand) and the estimated flows (demand) with respect to departure time interval
mi associated with OD pair i on day q based on the proposed models. The distri-
butions of percentage errors are displayed in Fig. 7 for both models, where the cor-
responding average percentage error and standard deviation of percentage error are
presented in Table 4. It is evident that LPUP outperforms the PSAP in terms of
the percentage error. This is because, LPUP model is more capable of capturing the
non-linear impacts of cost change on choice change through the multi-nomial Logit
choice model in Eq. (6). Differently, PSAP model assumes a proportional relationship
between flow/demand change and cost difference, as formulated in Eq. (12). The above
results imply that models with stronger capabilities to capture non-linear effects or
relationships may produce better approximations of reality. In addition, the PSAP
model incorporates the elasticity/variation of demand, whereas the LPUP model does
not. This implies that adding one more degree of freedom (demand elasticity) may
create additional noise in model calibration and thus affect the accuracy (i.e., PSAP
is outperformed by the LPUP).

Table 4 further summarizes the values of calibrated parameters of the two models.
All calibrated parameters are dimensionless except α in the PSAP model whose unit
is adjustment rate per unit travel cost. Additionally, the unit of variables related to
travel costs is minute; and the magnitudes of α and θ depend on the unit of travel
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Fig. 7. Distribution of percentage errors regarding the proposed dynamical models

cost variables. Since the PSAP model involves much larger errors, we focus on the
values of parameters based on the LPUP model. In particular, we have the following
observations.

• Firstly, the relative value of service schedule delay against in-vehicle time ω is
around 3.27, which means that service schedule delay is more costly than in-
vehicle time in the peak hour. This is compatible with the value of unexpected
delay time suggested by the Transport for New South Wales, i.e., 3.2 times the on-
board transit time.5 Other empirical studies on evaluating demand parameters
for inner Sydney Public Transport also recommended 3.2 times the in-vehicle
time as the value of lateness (e.g., Douglas and Jones, 2016).
• Secondly, the sizes of safety margins in relation to service schedule delay and in-

vehicle time are 1.83 (η1) and 2.09 (η2) times the standard deviation of service
schedule delay and in-vehicle time, respectively. The standard deviation of the
observed service schedule delay and the standard deviation of the observed in-
vehicle time are 3.12 minutes and 10.37 minutes, respectively. These indicate that
travelers leave around 6-minute safety margins for the service schedule delay and
around 20-minute safety margins for the in-vehicle time. It should be noted that
these numbers are averages based on 171 selected OD pairs, involving long trips
with an in-vehicle time more than 20 minutes and congestion uncertainty in the
peak duration.
• Thirdly, ρ = 0.828695 means that, in the context of the LPUP model, around

83% of the travelers repeated their travel choices and did not re-consider their
travel choices from day to day; or equivalently almost 17% of the travelers con-
sidered changing their departure time over the 59-day observation period. This
implies that a considerable amount of travelers did not re-consider their travel
choices day by day.
• The day-to-day learning parameter is relatively small (κ = 0.067545), which

means that travelers did not sharply change their forecasting behavior. Also
note that the system is more likely to be stable if κ is smaller. This will be

5This is based on Transport for NSW Economic Parameter Values (https://www.transport.nsw.gov.au/
news-and-events/reports-and-publications/transport-for-nsw-economic-parameter-values).
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further discussed in Section 4.5.2.

Table 4. Model calibration result

LPUP
Error avg. Error SD ω ρ η1 η2 θ κ
35.257753% 25.163339% 3.268301 0.828695 1.831775 2.089608 0.010153 0.067545

PSAP
Error avg. Error SD ω ρ η1 η2 α
104.243680% 34.227432% 1.102067 0.903608 1.409276 2.544926 0.060617

Error avg. and Error SD stand for the average percentage error and the standard deviation of percentage error, respec-
tively. Specifically, the average percentage error and the standard deviation are computed based on the percentage errors
of all segmented time intervals associated with the 171 selected OD pairs over the 59-day study period.

As can be seen from Table 4 and Fig. 7, while LPUP outperforms PSAP in terms
of accuracy, the errors for both LPUP and PSAP (in terms of fitting the data) are
not small. This might be due to other factors or uncertainties in relation to individual
travel and activity patterns that are not considered in this paper. A future study may
incorporate other information or data sources such as weather, household survey, char-
acteristics of travelers, social media platform data, road traffic condition to examine
the day-to-day traffic variation.

4.5.2. System stability analysis

In Section 3, we derived the analytical conditions for the existence, uniqueness and
stability of traffic flow at the fixed point for both LPUP and PSAP models. These
conditions are built upon Assumption 1, where c(·) is a strictly increasing function. It
requires that the first derivative of the cost-flow function, i.e., c′(·), is positive. In order
to evaluate the marginal effect of the flow on travel cost, we formulate the cost-flow
function c(xq−1

mi ) as follows (i.e., a linear approximation)

c(xq−1
mi

) = β0 + β1xq−1
mi

+ β2Li (26)

where β0, β1 and β2 are the coefficients; and Li is the Euclidean distance between the
origin and the center of the destination zone with respect to OD pair i. Li captures the
spatial heterogeneity among different OD pairs. Regarding the OD pair i ∈ K, Li is a
constant, and so is the term β0 + β2Li. We then estimate the coefficients in Eq. (26)

with the observed experienced cost C
e,q−1
mi

and the observed flow (demand). Due to
the difference in the calibrated values of ω for LPUP and PSAP models, we estimate
the cost function separately for the two dynamical systems. Table 5 provides the
estimated parameters, their statistical significance and the goodness-of-fit regarding
cost-flow functions for the two models. It is evident that the estimated parameters
are all positive and statistically significant (P-value ≤ 0.05). This implies that c(·) is
strictly increasing with the flow, which is consistent with Assumption 1 in Section 3.3.

In Table 5, it can be seen that the value of R2 associated with the PSAP model is
larger than that associated with the LPUP model. This difference is due to the fact
that different values of ω are used in Eq. (18) to calculate the mean experienced cost
for the two models (see Table 4 where ω = 3.268301 for LPUP and ω = 1.102067
for PSAP). This result is consistent with the characteristics of the LPUP and PSAP
models, which is further explained below. From Eq. (11), one can see that the swapping
demand rate rqm (for the PSAP model) is linear with respect to the experienced cost.
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This indeed explicitly forces a certain linear relationship between experienced cost
and the flow, which exactly matches the linear relationship to be estimated between
experienced cost and flow in Eq. (26). This matching between the PSAP model and
the cost-flow relationship further means that the value of ω associated with PSAP
is calibrated to better fit a linear cost-flow relationship, which results in a higher R2

for a linear regression between cost and flow. Differently, the LPUP model assumes a
non-linear relationship between flow and cost (governed by the Logit model). It is also
noteworthy that the values of R2 for both PSAP and LPUP might be further improved
by incorporating other factors such as weather information and multi-modal traffic in
a future study, while the trip length and flow at the origin only partially capture the
factors affecting the travel cost.

Table 5. Cost function linear regression result

β0 P-value β1 P-value β2 P-value R2

LPUP 21.0089 0.0000 0.0570 0.0486 2.0480 0.0000 0.389
PSAP 13.8052 0.0000 0.1293 0.0000 2.0361 0.0000 0.517

We now empirically examine the stability conditions of the two dynamical systems
based on the above aggregations and approximations. We substitute the calibrated
parameters into the theoretical stability conditions, and summarize the results in Ta-
ble 6. Apparently, the system stability conditions are satisfied for both systems. This
implies that the Sydney public transit system might be in a stable state but with
day-to-day random variations. Therefore, we further examine Eq. (27), which is the
observed absolute weighted average percentage flow discrepancy between two succes-
sive days ∆q,q−1, i.e.,

∆q,q−1 =

|K|∑
i=1

Mi∑
mi=1

[
yqmi∑|K|
i=1 Y

q
i

∣∣∣∣∣yqmi

Y q
i

− yq−1
mi

Y q−1
i

∣∣∣∣∣
]

(27)

where yqmi is the observed flow/demand with respect to the departure time interval
mi on day q, and Y q

i is the total observed demand between OD pair i on day q. The
value of ∆q,q−1 is defined over all time intervals and all the 171 selected OD pairs.

Table 6. Stability condition

|γk| < 2(1 + ρ)/ [κ(1− ρ)]
LPUP 0.0465 316.0882

min(λf) max(λf) Lower bound: − 2
α(1−ρ) Upper bound: 0

PSAP -12.8007 -0.0647 -342.2903 0.0000

Fig. 8 visualizes the variation of ∆q,q−1 over the entire 59-day observation period.
It is obvious that ∆q,q−1 fluctuates around 6.5%. As discussed earlier, the stability
conditions of the two dynamical system hold. This 6.5% system variation from day to
day may be due to uncertainty related to human activities and demand conditions.6

A related study from the supply’s point of view by Liu and Szeto (2020) showed that
the transport system performance function can be stochastic, which can also yield flow

6According to the Australian Labour Market Statistics (published on October, 2010), 16% of employees aged
15 years and over in Australia usually worked shift work (based on records from Australian Bureau of Statistics

at https://www.abs.gov.au/AUSSTATS/abs@.nsf/Lookup/4102.0Chapter10102008).
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Fig. 8. Trajectory of observed changes in flow

fluctuations in the system from day to day while on average the system is considered
as converged.

The above stability analysis is based on the calibrated models for the 171 selected
OD pairs over the 59-day observation period. The analysis relies on the simplified cost-
flow relationship in Assumption 1. As a first step to examine the impacts of transit
service unreliability/reliability on day-to-day travel choices, we did not consider com-
plex flow interactions in a network. More complex and realistic network flow dynamics
might be incorporated in a future study, which also requires more data. The above
stability analysis has to be re-conducted as well after incorporating more complex
network-level interactions.

4.6. Sensitivity analysis

Section 4.5 presents the model calibration results for the LPUP and PSAP model
based on the 59-day trip records of the 171 OD pairs whose daily with the average
service headway < 10 minutes (i.e., the benchmark case). This section further explores
how the model settings and the variation of data used in the analysis can impact the
results, including (i) varying the time interval length ϕ, (ii) applying the OD-specific θ
(or Group-specific θ) for the LPUP model, (iii) modeling the OD pairs with relatively
large service headways (≥ 10 minutes), (iv) changing the size of modeling data based
on demand level, and (v) examining the day-of-the-week effect by excluding Fridays.
The additional model calibration results reported in this subsection are compared with
the results in the benchmark case i.e., Table 4.

4.6.1. Varying the time interval length ϕ

We first vary the length of time interval (for discretizing the time horizon within a
day) and compare the calibration results. In particular, we adopt ϕ = 5, 10 and 20
minutes (based on 171 selected OD pairs), respectively. Table 7 and Table 8 summarize
the results with respect to different lengths of time intervals for LPUP and PSAP,
respectively; and the error distributions are plotted in Fig. 9. We find that for the
LPUP model, the interval length of 10 minutes yields the smallest average error. For
the PSAP model, different interval lengths yields comparable average errors. In terms
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of estimated parameters, ϕ = 10 and ϕ = 20 (minutes) yield comparable results (e.g.,
similar ω, ρ, η1, η2, θ for LPUP). However, it is noteworthy that for both LPUP and
PSAP, when we decrease the time interval length, the estimated ρ decreases, which
means more travelers considered changing their travel choices. This is partially due to
the fact that when we have an over-small time interval, a small variation in departure
time (to catch the same bus) is regarded as changing departure time interval or travel
choices, and the proportion of travelers re-considered travel choices is over-estimated.
This also explains why a time interval length of 5 minutes always yields the largest
average error. By contrast, an over-large time interval (here the LPUP models with
interval length of 20 minutes) might be unable to capture the travel choice update and
can result in larger estimation errors (see the average errors for the LPUP model).

Table 7. LPUP model calibration results with different time interval lengths

Interval length Error avg. Error SD ω ρ η1 η2 θ κ
5 mins 52.465744% 48.039260% 2.408839 0.664861 2.434893 2.051908 0.010918 0.052824
10 mins (benchmark) 35.257753% 25.163339% 3.268301 0.828695 1.831775 2.089608 0.010153 0.067545
20 mins 40.105993% 36.640015% 2.968240 0.918244 1.830910 2.059496 0.009022 0.104904

Table 8. PSAP model calibration results with different time interval lengths

Interval length Error avg. Error SD ω ρ η1 η2 α
5 mins 118.641249% 72.146586% 0.662135 0.773786 0.895209 3.287503 0.041796
10 mins (benchmark) 104.243680% 34.227432% 1.102067 0.903608 1.409276 2.544926 0.060617
20 mins 103.641919% 32.071789% 1.532342 0.905716 2.536335 2.578217 0.018759

(a) LPUP (b) PSAP

Fig. 9. Distribution of percentage errors regarding dynamical models with different time
interval lengths.

4.6.2. OD-specific/Group-specific θ for LPUP model

As discussed in Section 4.4, we calibrate a single θ value for all OD pairs in the LPUP
model. We now further examine the cases where we may have different values of θ for
different OD pairs. We compare three cases: (i) a single θ value for all OD pairs; (ii) four
different θ values for four groups of OD pairs, where OD pair groups are determined
based on level of passenger demand (Group-specific-θ LPUP); (iii) OD pair specific
value of θ for each OD pair (OD-specific-θ LPUP). For the Group-specific-θ LPUP
model, the OD pairs are evenly divided into four groups based on their average daily
demand (the group-wise averages are 108.72, 201.54, 260.01 and 434.05 trips per day),
and the OD pairs from the same group share a single parameter θg, g ∈ {1, 2, 3, 4}.
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Note that for the three different cases, we use the same dataset with 171 OD pairs
and minimize the weighted sum of the square of difference between the observed flow-
change percentage (zqmi) and the estimated flow-change percentage (ẑqmi) by using the
same minimization problem defined in Eqs. (19) - (22).

Table 9. Calibration results of LPUP-based models

LPUP (Benchmark with a single θ)
Error avg. Error SD ω κ η1 η2 θ ρ
35.257753% 25.163339% 3.268301 0.067545 1.831775 2.089608 0.010153 0.828695

Group-specific-θ LPUP
Error avg. Error SD ω κ η1 η2 θ (weighted avg.) ρ
31.888573% 24.464857% 3.092961 0.075342 2.031523 2.117915 0.009745 0.852760

OD-specific-θ LPUP
Error avg. Error SD ω κ η1 η2 θ (weighted avg.) ρ
34.202047% 23.434054% 2.981137 0.046117 2.252958 2.133635 0.009921 0.854407

The OD-pair-specific weights ki (group specific kg) used to compute the weighted average values of θ are calculated based on daily

average demand of OD pair i (group-wise daily average OD demand of group g), i.e., ki = Y i∑|K|
i=1 Y i

(kg =
Wg∑4

g=1 Wg
), where Y i

(W g) is the average daily demand of OD pair i (group-wise daily average OD demand of group g).

Fig. 10. Comparison between the LPUP and its two variations.

Table 9 summarizes the model calibration results and Fig. 10 displays the distri-
butions of percentage errors for the three cases, i.e., Case (i): a single θ for all OD
pairs; Case (ii): Group-specific-θ LPUP; and Case (iii): OD-specific-θ LPUP. Based on
Table 9 and Fig. 10, we have the following observations.

Firstly, allowing different values of θ for different OD pairs can yield better calibra-
tion results (in terms of estimation error), i.e., Case (ii) and Case (iii) yield smaller
average errors over all OD pairs than Case (i). This is straightforward as more param-
eters are introduced to allow better fitting. Secondly, it is found that Case (iii) with
more parameters yields a larger average error than Case (ii). This is because, Case (iii)
involves too many parameters in the calibration (i.e., 171 OD-specific θ parameters
since we have 171 OD pairs), it is more likely that the solution (of the minimization
problem for calibration) is sub-optimal. Thirdly, while the three cases yield different
calibration results, these results are comparable in terms of the estimated parameter
values and level of accuracy. This implies that estimation results are sensitive to the
number of θ parameters used only to a limited extent.
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4.6.3. OD pairs with a large service headway

In the benchmark case, we calibrate the proposed models using the 171 selected OD
pairs whose average headway is less than 10 minutes (refer to Fig. 5a). We now inves-
tigate OD pairs with a larger headway (≥ 10 minutes). In particular, we further select
another 20 OD pairs with a headway between 10 and 20 minutes and 6 OD pairs with
a headway between 20 and 30 minutes. Note that these OD pairs associate with low
demand. The selection of these OD pairs are based on the prerequisite that there are
trip records for each day in the analysis (we cannot compute the service schedule delay
and travel time when there is no trip record for OD pairs with very low demand).

Moreover, for the OD pairs with a headway between 10 and 20 minutes (20 and
30 minutes), we use a time interval length of 20 minutes (30 minutes) to ensure that
the headway is always smaller than the length of time intervals. The minimization
problems shown in Eqs. (19) - (22) (for LPUP) and Eqs. (23) - (25) (for PSAP) are
again utilized to calibrate the proposed models.

Table 10. Model calibration results for OD pairs with different average headway lengths

LPUP Model
Headway range Error avg. Error SD ω κ η1 η2 θ ρ
0 ≤ Headway < 10 mins (benchmark) 35.257753% 25.163339% 3.268301 0.067545 1.831775 2.089608 0.010153 0.828695
10 ≤ Headway < 20 mins 40.054673% 22.812027% 2.528855 0.242059 2.343091 1.557752 0.010075 0.954713
20 ≤ Headway < 30 mins 37.250333% 20.475015% 1.210742 0.405762 1.828809 1.573496 0.008095 0.961301

PSAP Model
Headway range Error avg. Error SD ω α η1 η2 ρ
0 ≤ Headway < 10 mins (benchmark) 104.243680% 34.227432% 1.102067 0.060617 1.409276 2.544926 0.903608
10 ≤ Headway < 20 mins 100.259454% 5.597379% 2.103550 0.004752 2.269105 2.487236 0.939028
20 ≤ Headway < 30 mins 101.335122% 8.597552% 1.048317 0.005001 2.456542 1.879570 0.913499

(a) LPUP (b) PSAP

Fig. 11. Distribution of percentage errors regarding the OD pairs with a large headway (>
10 mins).

Table 10 summarizes the model calibration results for the large-headway OD pairs;
and the corresponding distributions of percentage errors are plotted in Fig. 11. We
discuss the main observations below. Firstly, LPUP always outperforms PSAP in terms
of fitting the data. For the LPUP model, the percentage errors distribute closely for
these three categories of OD pairs.

Secondly, for OD pairs with a larger average headway, the estimated parameter ρ
(i.e., ratio of travelers who do not consider changing their travel choices) under the
LPUP model is larger, indicating that less travelers will re-consider their travel choices
from day to day. This is consistent with our expectation that for OD pairs with very
low-level transit services, many people will choose to drive (and thus are not captured
in the dataset) and those taking buses often stick to the same bus from day to day
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(e.g., leaving sufficient buffer time to catch up with the bus from day to day).
Thirdly, under the LPUP model, for OD pairs with a larger headway, although fewer

passengers re-consider their travel choices from day to day (a smaller 1− ρ), the value
of κ is larger. This means that those truly re-considering their choices under a larger
headway might be more sensitive to the previous day’s experience. Differently, the
observation on κ in the LPUP model does not hold for a similar parameter α in the
PSAP model. This is further discussed below. PSAP yields much larger inaccuracy,
while it yields comparable values of ρ, the results on both ρ and α are less reliable.
Moreover, while κ and α play comparable roles in two dynamical models (LPUP
and PSAP), κ converts costs into costs and is dimensionless, but α converts costs to
percentage change in flow and has a unit of adjustment rate per unit cost. Overall,
LPUP model with a dimensionless κ outperforms the PSAP model with α that has a
dimension, and produces more reliable estimations and interpretations.

Finally, considering the parameters describing service reliability, for OD pairs with
a larger average headway, the relative value of service schedule delay against in-vehicle
time ω (refer to the LPUP model) is smaller. This means for OD pairs with a large
service headway, travelers taking transit service regularly are relatively insensitive to
the service schedule delay. This might be because, the service schedule delay is often
negligible when compared to the large service headway. For the values of η1 and η2,
they are still comparable when we consider OD pairs with different service headways.

Table 11. Stability conditions for OD pairs with a large headway

LPUP |γk| < 2(1 + ρ)/ [κ(1− ρ)]
10 ≤ Headway < 20 mins 0.0592 356.6303
20 ≤ Headway < 30 mins 0.0821 249.8062

PSAP min (λf) max (λf) Lower bound: − 2
α(1−ρ) Upper bound: 0

10 ≤ Headway < 20 mins -2.7799 -0.0647 -6902.7655 0.0000
20 ≤ Headway < 30 mins -5.8578 -0.9012 -4623.2993 0.0000

The stability conditions are also examined regarding the OD pairs with a larger
average headway; and the results are presented in Table 11. We find that for both
LPUP and PSAP, the stability conditions are still satisfied for different groups of OD
pairs (based on different average service headways).

4.6.4. Varying the size of modeling data based on demand level

This subsection investigates how the model calibration results might be affected if we
include additional OD pairs with low OD demand or exclude some low demand OD
pairs from the 171 selected OD pairs.

(Enlarging the size of the data) We now include additional OD pairs with
relatively low demand into the analysis. We select additional 68 OD pairs, where the
minimum OD demand is 16 trips per day on average (whereas, the minimum OD
demand for the benchmark case is 85 trips per day). For these 68 low-demand OD
pairs, we have trip records for each day in the analysis and thus can calculate the
service schedule delay and in-vehicle time accordingly. We then re-calibrate our model
with 239 (= 171 + 68) OD pairs and use the time interval length of 10 minutes. The
calibration results are summarized in Table 12 and the distributions of percentage
errors are displayed in Fig. 12.

From Table 12 and Fig. 12, we can see that including OD pairs with relatively low
demand yields more errors for the LPUP model, but produces comparable parameter
estimation to the benchmark case for the LPUP model (e.g., ω, η1, η2, ρ). The increased
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average error is partially due to that we use the single calibrated model setting to rep-
resent more OD pairs (with more variations). However, for the PSAP model, including
OD pairs with relatively low demand yields similar errors and produces comparable
estimated values for ω and ρ.

(Reducing the size of the data) We now further look at the case where we
reduce the number of OD pairs in the analysis. Specifically, we choose 86 OD pairs
with relatively high demand (the minimum OD demand is 226 trips per day) from the
171 selected OD pairs utilized in the benchmark case to re-calibrate the models with
a time interval length of 10 minutes. The calibration results are reported in Table 12;
and the distributions of percentage errors are also plotted in Fig. 12. From Table 12
and Fig. 12, we can see that excluding relatively low-demand OD pairs from the 171
OD pairs in the benchmark case yields comparable estimation accuracy for both LPUP
and PSAP, and also yields similar estimated values for most parameters.

Table 12. Model calibration results regarding the changes in data size

LPUP (enlarged size of data)
Error avg. Error SD ω κ η1 η2 θ ρ
46.249791% 42.538623% 3.068334 0.105472 1.831758 2.089511 0.008268 0.838676
LPUP (reduced size of data)
Error avg. Error SD ω κ η1 η2 θ ρ
36.119960% 25.326164% 3.231330 0.060637 1.995193 2.321480 0.009658 0.812946
LPUP (benchmark)
Error avg. Error SD ω κ η1 η2 θ ρ
35.257753% 25.163339% 3.268301 0.067545 1.831775 2.089608 0.010153 0.828695

PSAP (enlarged size of data)
Error avg. Error SD ω α η1 η2 ρ
101.707781 % 16.749153 % 1.210992 0.011969 1.081108 4.968254 0.902730
PSAP (reduced size of data)
Error avg. Error SD ω α η1 η2 ρ
103.889078% 31.298879% 0.894099 0.015463 1.523291 3.389905 0.724350
PSAP (benchmark)
Error avg. Error SD ω α η1 η2 ρ
104.243680% 34.227432% 1.102067 0.060617 1.409276 2.544926 0.903608

(a) LPUP (b) PSAP

Fig. 12. Distribution of percentage errors regarding dynamical models with different data
sizes.

30



4.6.5. Excluding Fridays

In the benchmark case, we do not differentiate different weekdays and do not consider
the day-of-the-week effect. To visualize whether the day-of-the-week effect is significant
in Sydney, we first plot the variations of the daily average demand over a week with
respect to each departure zone (inner, middle and outer rings, which are defined in
Section 4.1) in Fig. 13. As can be seen, the average daily demand varies slightly over
different weekdays, and Fridays do show a drop in demand, but only to a limited
extent. These indicate that the day-of-the-week effect (considering weekdays only)
for the public transit system in the Greater Sydney area might be limited. There
are significant demand drops in the weekends, which are excluded in the analysis, as
discussed in Section 4.1.

Fig. 13. Daily average demand variations for a week

We also test the case where Fridays are excluded in the model calibration. Table 13
compares the model calibration results without and with Fridays; and the error dis-
tributions are plotted in Fig. 14. As can be seen, after excluding Fridays, while some
estimated parameters are still comparable, the average error becomes larger. This
might be because, how Thursdays’ experiences affect Fridays’ travel choices, and how
Fridays’ experiences affect the following Mondays’ travel choices are missed in the
calibration.

Table 13. Model calibration results with/without the exclusion of Fridays

LPUP (w/o Fridays)
Error avg. Error SD ω κ η1 η2 θ ρ
42.653063% 44.267057% 3.286383 0.168189 2.048269 2.270548 0.004185 0.821387
LPUP (benchmark)
Error avg. Error SD ω κ η1 η2 θ ρ
35.257753% 25.163339% 3.268301 0.067545 1.831775 2.089608 0.010153 0.828695

PSAP (w/o Fridays)
Error avg. Error SD ω α η1 η2 ρ
109.050639 % 52.385683% 1.320550 0.009178 0.985292 5.639989 0.580011
PSAP (benchmark)
Error avg. Error SD ω α η1 η2 ρ
104.243680% 34.227432% 1.102067 0.060617 1.409276 2.544926 0.903608
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(a) LPUP (b) PSAP

Fig. 14. Distribution of percentage errors regarding dynamical models with/without the ex-
clusion of Fridays.

5. Conclusions and Discussions

This paper explores the day-to-day travel choices in Sydney public transit systems,
with an emphasis on service reliability. Two dynamical systems (i.e., learning and per-
ception updating process, and proportional-switch adjustment process) are proposed
and analytical properties of the two systems are examined. The proposed day-to-
day reliability-based departure time models are further calibrated by using real-world
smart transit card data from Sydney under some aggregations and approximations.

A series of empirical insights are generated. We highlight a few of them here. Firstly,
the relative value of service delay against in-vehicle time is around 3.27. Secondly, the
sizes of safety margins in relation to service schedule delay and in-vehicle time are 1.83
and 2.09 times the standard deviation of service schedule delay and in-vehicle time,
respectively. Thirdly, a significant number of travelers repeated their travel choices and
did not re-consider their travel choices from day to day. Fourthly, the stability condi-
tions of the two developed dynamical system are examined with real data, indicating
possible public transit system stability in Sydney but with random variations from
day to day. Last but not least, the LPUP model approximates the real trip records
better than the PSAP model, which might be due to (i) LPUP’s stronger capability
to capture non-linear relationship between cost perception and travel choice, and (ii)
PSAP’s incorporation of demand elasticity.

This study illustrates the potential of smart transit card data to be utilized to
uncover public transit service reliability and how the reliability has affected travel-
ers’ day-to-day travel choices. However, the discrepancy between the observed and
estimated flow/demand is not small for the proposed day-to-day models (refer to Ta-
ble 4). If one aims to reduce estimation errors (this can be particularly useful in
demand forecasting), one may either try to include other factors that are not captured
in this paper (this requires much more data), or to utilize more powerful tools in terms
of fitting the data such as machine learning models (while the results are likely less
interpretable, see, e.g., Li et al., 2021). For instance, as discussed in Section 4.5, a
future study may integrate the smart transit card data with other survey data, so-
cial media platform data, road car traffic data to further examine impacts of factors
beyond service reliability and travel time on travelers’ day-to-day travel choices.

Moreover, this study assumes a simplified cost-flow relationship in the day-to-day
dynamical models and ignores network traffic interactions. A future study may incor-
porate more complex and realistic network flow dynamics together with other factors
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such as weather conditions and car traffic. In this context, we may also empirically
examine the day-to-day travel choices and system stability from different perspectives,
including not only departure time choices, but also route choices and mode choices.

Besides, this study takes an aggregate approach to study the impacts of transit
service reliability/unreliability on travelers’ day-to-day travel choices. It should be
noted that losing individual attributes of travelers can affect the modeling accuracy.
If additional travelers’ attributes become available, additional parameters or group-
specific parameters can be adopted in the day-to-day cost perception and choice
updating modeling framework proposed in this paper. Doing so can better capture the
traveler heterogeneity and potentially improve modeling accuracy and also provide
additional insights regarding mobility patterns of different traveler groups. It is of our
interest to further examine this in a future study when a more comprehensive dataset
becomes available.
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Appendix A.

A.1. Proof for Lemma 1. To prove Lemma 1 that Jp is a negative semidefinite
matrix, we start with establishing Jp, which is the Jacobian matrix of P(c̃∗), i.e.,

Jp = −θA = −θ ·


P∗1(1− P∗1) ... −P∗1P∗m ... −P∗1P∗M

...
. . .

...
...

−P∗mP∗1 ... P∗m(1− P∗m) ... −P∗mP∗M
...

...
. . .

...
−P∗MP∗1 ... −P∗MP∗m ... P∗M (1− P∗M )

 (a1)

where the matrix Jp is the product of −θ and the matrix A and P∗m = exp(−θc̃∗m)∑M
z=1 exp(−θc̃∗z)

for ∀m ∈ V . It is evident that A is a symmetric matrix with positive diagonal entries.
Also, A is a zero-row-sum matrix. This means that A is a positive semidefinite matrix.
Since −θ < 0, Jp is negative semidefinite. This completes the proof.

A.2. Proof for Proposition 1. Firstly, D can be expressed as D = dI. At the fixed
point, x∗ and DP(c(x∗)) are both bounded from below and above by {0, ..., 0, ...0︸ ︷︷ ︸

M

}T

and {d, ..., d, ...d︸ ︷︷ ︸
M

}T. Also, DP(c(x∗)) is continuous as P(·) and c(·) are continuous.

It follows that DP(c(x∗)) maps the convex set x∗ from a closed and bounded set to
the same set. Therefore, all the hypotheses of the Brouwer’s existence theorem are
satisfied and Eq. (8) has at least one solutions.

At the fixed point, x∗ is pinned down by h(x) = 0, where h(x) = DP(c(x))−x. The
Jacobian matrix of h(x) is termed as Jac(h(x)) = DJpJc− I. Jac(h(x)) is a negative
definite matrix at the fixed point x∗ as Jp is a negative semidefinite matrix, Jc and
D are positive definite matrices. Thus, the dynamical system defined in Eqs. (3) and
(6) has a unique flow and the travel cost pair (x∗, c̃∗) at the fixed point.
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A.3. Proof for Lemma 2. Denote the eigenvector associated with the eigenvalue γk

by νk, hence, DJpJcνk = γkνk. Also, define ν′
k =

[
aνk

DJPνk

]
, which satisfies

JLPUPν
′
k =

[
(a+ κγk)νk

(a(1− ρ) + ρ+ κ(1− ρ)γk)DJpνk

]
Hence if a and λ satisfy Eq. (a2), λ is then an eigenvalue of JLPUP and ν′

k is the
corresponding eigenvector.{

a+ κγk = aλ

a(1− ρ) + ρ+ (1− ρ)γkκ = λ
(a2)

From Eq. (a2) by eliminating a, we can conclude that the relationship between λ
and γk can be described as in Eq. (10). For each of the M eigenvalues of γk of matrix
DJpJc, two eigenvalues λ

′

k = λk and λ
′′

k = λM+k of matrix JLPUP are the solutions of
the quadratic equation defined in Eq. (10); and in this way, we can obtain all the 2M
eigenvalues of JLPUP This completes the proof.

A.4. Proof for Proposition 2. Since DJpJc is negative semidefinite, γk ≤ 0, ∀k.
For each γk, λ

′

k = λk and λ
′′

k = λM+k satisfy

tr{λk} = λ
′

k + λ
′′

k = [ρ+ γkκ (1− ρ) + 1] and det{λk} = λ
′

kλ
′′

k = ρ > 0

where tr{λk} is the trace of the matrix JLPUP, and det{λk} is the determinant of the
matrix JLPUP.

Based on the sign of (tr{λk})2 − 4det{λk}, the following cases can arise.

(1) (tr{λk})2− 4det{λk} ≥ 0 and tr{λk} ≥ 0, both λ
′

k and λ
′′

k are real, and λ
′

k,λ
′′

k =

(tr{λk} ±
√

(tr{λk})2 − 4det{λk}/2) ≥ 0. In this case, |λ′k| < 1 and |λ′′k | < 1
requires that 

tr{λk}+
√

(tr{λk})2−4det{λk}
2 < 1

(tr{λk})2 − 4det{λk} ≥ 0

tr{λk} ≥ 0

(2) (tr{λk})2− 4det{λk} ≥ 0 and tr{λk} < 0, both λ
′

k and λ
′′

k are real, and λ
′

k,λ
′′

k =

(tr{λk} ±
√

(tr{λk})2 − 4det{λk}/2) ≤ 0. In this case, |λ′k| < 1 and |λ′′k | < 1
requires that 

tr{λk}−
√

(tr{λk})2−4det{λk}
2 > −1

(tr{λk})2 − 4det{λk} ≥ 0

tr{λk} < 0

(3) (tr{λk})2 − 4det{λk} < 0, λ
′

k and λ
′′

k are of a complex conjugate pair, with

|λ′k| = |λ
′′

k | = (det{λk})
1

2 < 1 requires that

(tr{λk})2 − 4det{λk} < 0
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We can reduce the above three cases to the following two cases.
tr{λk} − det{λk} < 1

tr{λk} ≤ 2

tr{λk} ≥ 0

⇒ 0 < −γk ≤
ρ+ 1

(1− ρ)κ

or 
tr{λk}+ det{λk} > −1

tr{λk} ≥ −2

tr{λk} ≤ 0

⇒ ρ+ 1

(1− ρ)κ
≤ −γk <

2(ρ+ 1)

(1− ρ)κ

Combining the above two cases, we can conclude that the moduli of λ
′

k and λ
′′

k are
both less than 1, if and only if

|γk| <
2(1 + ρ)

(1− ρ)κ

A.5. Proof for Proposition 3. At the fixed point, x∗ and F(x∗) are both bounded
from the below and above by {0, ..., 0, ...0︸ ︷︷ ︸

M

}T and {d, ..., d, ...d︸ ︷︷ ︸
M

}T Also, F(x∗) is con-

tinuous as c(·) is continuous. It follows that F(x∗) maps the convex set x∗ from a
closed and bounded set to the same set. Therefore, all the hypotheses of the Brouwer’s
existence theorem are satisfied and Eq.(15) has at least one solution.

Let JF = Jac(F(x∗)) denote the Jacobian matrix of the flow at the fixed point x∗.
According to Eq.(13) and Eq. (16), JF can be written as can be written as

JF = I + α


−x∗1c′(x∗1) ... 0 ... 0

...
. . .

...
...

0 ... −x∗mc′(x∗m) ... 0
...

...
. . .

...
0 ... 0 ... −x∗Mc′(x∗M )

 (a3)

According to Eq. (a3), it is evident that JF− I is a negative definite matrix. There-
fore, the fixed point x∗ is pinned down by h(x) = 0, where h(x) = F(x) − x, which
is a monotonically decreasing function. Then, the unique flow x∗ is always ensured if
the following two conditions, i.e., x → 0 ⇒ c(x) < E and x → d ⇒ c(x) > E, hold.
This completes the proof.

A.6. Proof for Proposition 4. λf is the eigenvalue of the Jacobian matrix JPSAP.
To ensure the stability of the dynamical system, the maximum modulus |λf| among
all the eigenvalues of the Jacobian matrix JPSAP should be less than one, i.e.,

maxf=1,...,M |λf| < 1
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Since JPSAP is a diagonal matrix, the elements on the diagonal are the eigenvalues of
JPSAP. Then,

maxm=1,...,M |1 + α(1− ρ)
(
−x∗mc′(x∗m)

)
| < 1

which means that,

−1 < 1 + α(1− ρ)
(
−x∗mc′(x∗m)

)
< 1 (∀m ∈ V )

It follows that

− 2

α(1− ρ)
< −x∗mc′(x∗m) < 0 (∀m ∈ V )
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