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Abstract—High performance lidars are essential in autonomous 

robots such as self-driving cars, automated ground vehicles and 
intelligent machines. Traditional mechanical scanning lidars offer 
superior performance in autonomous vehicles, but the potential 
mass application is limited by the inherent manufacturing 
difficulty. We propose a robotic lidar sensor based on 
incommensurable scanning that allows straightforward mass 
production and adoption in autonomous robots. Some unique 
features are additionally permitted by this incommensurable 
scanning. Similar to the fovea in human retina, this lidar features 
a peaked central angular density, enabling in applications that 
prefers eye-like attention. The incommensurable scanning method 
of this lidar could also provide a much higher resolution than 
conventional lidars which is beneficial in robotic applications such 
as sensor calibration. Examples making use of these advantageous 
features are demonstrated.  
 

Index Terms—Laser radar, optical scanning, Risley prism, 
calibration, autonomous driving, eye-inspired sensors, intruder 
detection 
 

I. INTRODUCTION 
idar (light detection and ranging) has emerged as an 
important scientific apparatus in a variety of applications 

such as environmental survey [1], [2], air aerosol measurement 
[3], turbulence detection [4] and space exploration [5]. Recent 
advancements in autonomous robots such as self-driving cars 
has raised significant demands on smaller and lower-cost lidar 
sensors, which are indispensable in tasks such as detection, 
perception and navigation [6]–[8]. Existing robotic lidars [1], 
although with relatively good performance, can hardly meet the 
mass-deployment requirements on cost, size and reliability, 
hindering the development and mass deployment of self-driving 
cars and other intelligent robots. We propose a new type of lidar 
sensor that offers advantages in these aspects as well as 
performance, with potential to accelerate the development of 
fully autonomous robots. Featuring an angular density 
distribution similar to human retina, this lidar is ideal for scene 
perception and tracking applications inspired by the attention 
mechanism of human vision. The unique scanning method 
could also enable capturing the field of view (FoV) in high 
resolution provided enough accumulation time, which is 
beneficial for various robotic applications such as sensor 
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calibration. This new sensor is also upgradable with 
straightforward modifications. 

II. RELATED WORK 

A. Conventional mechanical multi-line lidar 
The dominant type of existing robotic lidars are based on 

multi-line mechanical scanning due to its simplicity and the 
achievements in autonomous driving competitions from 
DARPA grand to urban challenges [1], [6]–[8]. In these time-
of-flight type lidars, multiple pairs of semiconductor 
transceivers, namely pulsed laser diode (PLD) and avalanche 
photodetectors (APD), are optically aligned at the focal plane 
of telescoping lens to form a vertical array of rangefinders. 
These rangefinders are then rotated along the vertical axis to 
capture objects along the line-of-sight at full azimuthal angles. 
As an example, Fig. 1(a) schematically shows the working 
principle of a conventional 16-line lidar [1]. PLD and APD 
assemblies are positioned at the focal plane of the telescoping 
lenses such that the collimated light beam will be parallel to the 
line intersecting the semiconductor and the center of lens [9]. 
Each PLD and APD transceiver pair will be responsible for a 
ranging beam at a different vertical angle. (In Fig. 1(a) the beam 
from the last of the 16 transceiver pairs is illustrated as an 
example.) The FoV of this lidar is determined by the vertical 
space span of the PLD and APD assemblies (Fig. 1(a)) relative 
to the telescoping lenses. The vertical resolution is thus 
determined by the number of transceivers within the FoV. 
However, assembly automation of these lidars becomes 
difficult when one needs to align the many transceivers with 
alignment accuracy (for best detection range) and large space 
span (for large vertical FoV), i.e. a dynamic range problem.  
In sensing, display, communication and control systems, 
dynamic range typically refers to the ratio between the maximal 
range and minimal attainable value, and is always finite due to 
physical limitations [10]. For example, in a size measurement 
system utilizing still camera machine vision, the minimal 
measurable value is limited by the pixel size, diffraction limit, 
optical aberration and their combinations, while the largest 
measurement range is limited by the CMOS sensor size and 
focal length. In general, dynamic range is difficult to improve 
for a given physical system and has been the target for many 
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research topics across different fields.  
In the alignment of multi-line lidar system, a dynamic range 

could be defined as the ratio between the space span and the 
smallest alignment accuracy. As illustrated in Fig. 1(a), the 
space span is defined as the total vertical space a PLD/APD is 
allowed to move. The smallest alignment accuracy is defined as 
the minimum tolerable displacement to best align the PLD and 
APD so that angularly the emitter beam maximally overlaps 
with the receiving beam. With the current design of the multi-
line lidars, space span is usually on the order of ~5 cm (Fig. 1(b) 
& 1(c)), and sometimes can go up to more than 10 cm, while 
the accuracy requirement is on the order of ~10 μm as the active 
areas of the PLD and APD dies are on the order of ~100 μm. 
These numbers give a dynamic range above 5000 (5 cm / 10 
μm), which is difficult for existing alignment and assembly 
automation. The limitations could include limited pixel 
numbers for machine vision, inaccurate rough positioning over 
large movable scale due to strain or thermal expansion, 

insensitivity of alignment feedback signals or simply lack of 
tools to accurately position the PLD and APD within a small 
housing. Furthermore, these semiconductors need to be glued 
to the fixtures due to the large flexibility (span) requirements. 
The complicated gluing process involving initial curing and 
thermal treatment further complicates the dynamic range 
problem. (Fig. 1(b) & 1(c)) Therefore, manufacturing of this 
type of lidar requires lengthy alignment procedures from skilled 
labors and thus renders prohibitive yield and cost for the 
automotive market. Additional cost also arises from the many 
transceiver pairs and their respective high-speed electronics, as 
vertical resolution is directly related to the number of 
transceiver pairs. 

B. Risley prism pairs 
Risley prism pair, composed of two refractive prisms serially 

mounted (Fig. 2(a)), provides another simple yet versatile 
optical scanning method. Unique advantages in prism-based 
approaches such as low cost, small form factor and robustness 
permits their wide uses in microscopy [11], interferometry [12], 
infrared imaging [13], infrared countermeasure [14], explosive 
detection [15], free space communication [16] and aerial object 
detection [17]. We propose that these features can be explored 
in robotic lidar settings, especially to overcome the 
manufacturing obstacle of existing mechanical lidars and to 
enable scaling up of autonomous robots such as self-driving 
cars. In this article, we systematically explore the design and 
application of low-cost robotic lidars based on the Risley prisms.  

The resulting point density distribution is investigated and 
compared to human retina. Incommensurable scanning, a 
unique feature associated with Risley prism optical steering, is 
discussed theoretically and experimentally in terms of robotic 
applications. We also demonstrate performance upgradability 
in this design in terms of scanning density increase and 
customized field of view specifically for autonomous driving. 
Examples exhibiting the advantages of this type of lidars are 
provided. 

III. DESIGN OF PRISM-BASED LIDAR 

A. Construction of prism-based lidar 
In Fig. 2(a), we present the new lidar based on prism 

scanning. It consists of two separate modules (transceiver and 
scanner) that are packed sequentially with a co-axial design. In 
the transceiver module, the pulsed laser light emitted from the 
PLD is directed by a tilted mirror, and an aspherical lens is used 
to collimate the light towards the scanner and the far field. After 
hitting the object at the far field, the returned signal beam enters 
the same lens and focuses onto the APD. The distance is 
measured by calculating the time-of-flight between the emitting 
and receiving pulses. (Note that the reflector is designed to 
optimize the overall transceiver efficiency. Due to the 
difference in numerical apertures of the emitting and receiving 
beams, this reflector size is carefully chosen to reflect most of 
the PLD light while still allow the majority of the receiving 
photons to hit the APD.) A scanner modal, comprising two 
rotating prisms, is used to direct the transceiver beam to 

 
Fig. 1. Conventional multi-line type lidar. (a) Schematics show the working 
principle of conventional 16-line lidar. PLD and APD assemblies are positioned 
at the focal plane of the telescoping lenses. The 16th emitting and receiving 
beams are shown. Note the stringent requirement for accuracy while the 
alignment is done within a large space span. (b, c) Photo of PLD (b) and APD 
(c) assemblies from a state-of-the-art conventional 40-line scanning lidar. There 
are 10 groups of transceiver assemblies, each group having 4 respective PLDs 
and APDs, to form a 40-line lidar. The PLD assemblies are made by multiple 
printed circuit boards. These 40-line transceiver elements are located at 
different vertical positions without an overlap to provide vertical FoV and 
resolution. Each PLD needs to align accurately with the corresponding APD. 
Notice the assembly is non-trivial; the PLDs are fixed by glues within the 
structural fixtures for high precision adjustment. Glues are also used in fixing 
APDs. 
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different directions. With this separated prism-based scanner 
module, we no longer require the scanning function and 
scanning FoV to be associated with the positioning of the 
transceivers. Due to this reason, the dynamic-range requirement 
in the transceiver module is mitigated; only a single alignment 
of the transceiver packages within a small space span is needed. 

 Fig. 2(b) and 2(c) show the prototype photos of the prism 
scanner module. It features two oppositely mounted hollow-
motors (brushless) that we specifically designed for this lidar. 
The two prisms, attached with periodically-poled NeFeB 
magnet rings, are mounted as rotors inside the bearing apertures. 
Currents in the external stator coils are supplied and controlled 
by the respective motor drivers to rotate the prisms at desired 
rotation speeds and phases, by which the beam is scanned.  

Although the actual beam angle calculation is done with 

exact refraction computations, the scanning process can be 
understood in paraxial approximations [9], [18] for a more 
intuitive understanding. The monochromatic beam will be 
refracted by the prism in a linear way regardless of the incident 
direction, and we could consider the beam direction been 
deflected by a fixed angular vector for each static prism (Fig. 
3(a)). The two prisms are identical in refractive index and 
wedge angle, meaning the two vectors will have equal 
magnitude. Rotation of the prisms about the common central 
axis causes the rotation of these two equal magnitude vectors 
(Fig. 3(b, c)). The scanning pattern is a result of adding these 
two asynchronously rotating vectors. As illustrated in Fig. 3(b), 
when they move opposite to each other, the net vector points to 
the center of the FoV, while when they move parallel to each 
other, the net vector lands on the rim of the FoV. Generally, one 
can access any target vector inside the FoV as shown in Fig. 
3(c). Depending on the difference between the two rotation 
speeds, the beam will scan either in a spiral pattern or a rosette 
pattern, as shown in Fig. 4(a) and Fig. 4(b) respectively. In fact, 
the density distribution is a generic feature of this scanning 
which does not depend on the relative rotation direction, as 
illustrated analytically in the next session. We use the rosette 
configuration in our prototype for simplicity. 

With carefully engineered magnetic preload and mass 
balance, each rotor is capable of fast and reliable rotations up to 
12000 rpm. While the overall size of the motor/lidar is kept 
minimal, optical aperture size in this design can be kept as large 
as possible (Fig. 2) to maximize the receptor signal-to-noise 
ratio hence the detection range performance. This is another 
advantage of transmissive prisms instead of 2-axis rotating 
mirror scanners; the size is significantly reduced for the same 
optical aperture. With the 905 nm laser satisfying Class I laser 
safety requirement, the detection distance of our device is 260 

 
Fig. 3. Scanning principle of prism-based lidar. (a) Illustration of the 
deflection angle by a single prism in paraxial approximations. The deflection of 
the optical beam is rotating with the prisms. (b) The parallel and anti-parallel 
addition of the two vectors from the two prisms define the rim and the center of 
the field of view (FoV). (c) Access to arbitrary point inside the FoV by vector 
addition. (d) To calculate the radial density of the point cloud distribution, a 
local coordinate is used to align with 𝑟𝑟1����⃗  (first prism vector) for simplicity. 
  

 
Fig. 2. Physical structure of the prism-based lidar. (a) A schematic 
illustration of the design. The transceiver and scanner modules (outlined with 
dashed boxes) are responsible for range-finding and scanning respectively. The 
size of the overall lidar is small (a 10 mm scale is indicated). (b) Photo of the 
assembled lidar (without enclosure box). (c)  Photos of the dismantled scanner 
module comprising motors, prisms and encoder disks. 
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meters for an 80% reflectivity object and with false alarm rate 
below 0.01% under direct sunlight (100 klux). The detection 
distance can reach 500 meters with a slightly increased form 
factor. The scanning module also ensures high reliability 
because the rotating components are optical prisms and passive 
mechanical attachments without any electrical connections, 
avoiding prone-to-failure rotating electronics (e.g. slip-rings or 
wireless transmission setups in multi-line lidars).  

B. Retina-like scanning pattern 
Interesting and useful features for autonomous robots can be 
obtained from the Risley prism lidar. It is noted that the point 
cloud density distribution becomes retina-like in this lidar. We 
simulated the angular density distribution of the point cloud 
from Fig. 4(b) with a reasonable accumulation time (red curve 
in Fig. 5(a)), and found the density distribution is similar to 
cone (photoreceptor) distribution in human retina, whose 
central part (the fovea region) is peaked for sharp vision (the 
blue curve stands for visual acuity of human eyes in Fig. 5(a)) 
[19], [20].  This is an interesting feature that permits us to devise 
eye-like sensing mechanism, as illustrated in the Example 
Section. 

The fovea-like distribution of the scanning density is a 
generic feature of this scanning method regardless of specific 
patterns (i.e., rotating speeds) and can be analytically derived. 
If we scan with relatively long periods, only the radial 
distribution will be of interests, as the scanning is symmetric in 
the polar directions. Since the ranging measurement takes place 
with a constant rate, the density is directly proportional to the 
duration the pointing vector stays at the radial position. 
Therefore, in Fig. 3(d) we could specify that the y axis is aligned 
with the first prism vector, while the second prism vector will 
be oriented with an angle (𝜔𝜔1 − 𝜔𝜔2) ∙ 𝑡𝑡, which represents the 
angular displacement of the two prism vectors at time t (Fig. 
3(d)). The final vector can be expressed by projecting on to the 
x and y coordinates. 

𝑟𝑟 = 𝑟𝑟1���⃗ + 𝑟𝑟2���⃗                                              
𝑟𝑟 = [𝑅𝑅(1 + cos(𝜔𝜔1 − 𝜔𝜔2) ∙ 𝑡𝑡)]𝑦𝑦� + 

[𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅((𝜔𝜔1 − 𝜔𝜔2) ∙ 𝑡𝑡))]𝑥𝑥�                              (1) 
where R is the magnitude of the prism vector. This equation 

leads to 
𝑟𝑟 = √2𝑅𝑅�1 + 𝑐𝑐𝑐𝑐𝑐𝑐((𝜔𝜔1 − 𝜔𝜔2) ∙ 𝑡𝑡)                (2) 

The radial density is proportional to the derivative of 𝑟𝑟 w.r.t. 
time 𝑡𝑡. 

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= −
𝑅𝑅2(𝜔𝜔1 − 𝜔𝜔2)

𝑟𝑟
sin�(𝜔𝜔1 − 𝜔𝜔2) ∙ 𝑡𝑡� 

~ 𝑅𝑅(𝜔𝜔1 − 𝜔𝜔2)�1 −
𝑟𝑟2

4𝑅𝑅2
                               (3) 

which is independent of 𝑡𝑡 , as we expected for a static 
distribution. The radial density ρ, can be derived, 

𝜌𝜌 =
𝑁𝑁 ∙ 𝑑𝑑𝑑𝑑

2𝜋𝜋𝜋𝜋 ∙ 𝑑𝑑𝑑𝑑
=

𝑁𝑁
2𝜋𝜋𝜋𝜋(𝜔𝜔1 − 𝜔𝜔2)

1

𝑟𝑟�1 − 𝑟𝑟2
4𝑅𝑅2

~
1

𝑟𝑟�1 − 𝑟𝑟2
4𝑅𝑅2

 (4) 

where 𝑁𝑁 is the rate of ranging measurement. The analytical 
expression of 𝜌𝜌  is plotted in Fig. 5(b). The analytical result 
agrees well with simulation result (Fig. 5(a)) and experimental 

 
Fig. 4. The spiral and rosette pattern from the lidar for 0.1s, with rotation 
speeds of small difference (7294 rpm and 6664 rpm, Fig. (a)) and large 
difference (7294 rpm and -4664 rpm, Fig. (b)) respectively. 
  

 
Fig. 5.  (a) Comparison of the receptor density distribution of the lidar (red) 
and human retina (blue). In human retina, the central peaked region is the fovea 
region and the dip (blind-spot) in retina is due to nerve fibers [19]. (b) The plot 
of the analytical point cloud density derivation. Notice the divergence at the 
center and the rim. The distribution agrees with the simulated (a) and 
experimental distribution (Fig. 14(a)). 
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result (Fig. 14(a)). 

C. Incommensurable scanning pattern 
Non-repeating pattern is a natural consequence of this lidar 

design which could provide a high-resolution description of the 
environment. Fig. 6(a-d) shows the demonstration of this 
scanning in an outdoor scenario. As the scanning time increases 
from 0.2s to 40s, the 3D view obtains higher resolution 
coverage (see definition in Appendix E). Fig. 6(e) shows the 
percentage of coverage as a function of time, reaching 50% and 
90% in the first 0.3 s and 0.8 s respectively and more in longer 
time. Understanding of this non-repetition behavior is desired. 
For a repetition to happen the following equations should 
satisfy simultaneously, 

𝜔𝜔1 ∙ 𝑇𝑇 = 𝑛𝑛 ∙ 2𝜋𝜋                                     (5) 

𝜔𝜔2 ∙ 𝑇𝑇 = 𝑚𝑚 ∙ 2𝜋𝜋                                    (6) 
where T denotes the time when the first repetition happens, and 
𝜔𝜔1, 𝜔𝜔2 are the rotation speeds of the two prisms respectively. 
Symbols m and n denote integer numbers. By dividing these 
two equations, we have 

𝜔𝜔1
𝜔𝜔2

=
𝑛𝑛
𝑚𝑚

                                           (7) 

meaning the rotation speeds for the two prisms need to be 
commensurable [21] if any repetition exists, i.e. the ratio is a 
rational number as denoted by n/m. Although the equation is 
seemingly always satisfied because only rational numbers for 
𝜔𝜔1  and 𝜔𝜔2  can be set in the electronic motor control, the 
repetition rarely happens in realistic cases. It is because the 𝜔𝜔1 
and 𝜔𝜔2  would always possess small uncertainties due to the 
various disturbances in the motor control feedback system 
(environmental disturbances, sensor noises, control error etc.). 
Even a relatively small uncertainty is enough to break the 
commensurability and form a non-repeating pattern. 
Sometimes active noise injection can be considered if the 
passive noises are not present in a system. With a typical 1% 
gaussian noise, we performed a simulation to find out how long 
the scanning would reach 90% coverage in the FoV for different 
rotation speeds as shown in Fig. 7(a). Most parameter space 
colored deep blue in Fig. 7(a) are ideal for non-repeating 
patterns, in great contrast to commensurable (repeating) 
situation (Fig. 7(b)) where no noise is present. 

 
Fig. 6. (a) Photo of a scanned outdoor scenario. (b-d) The scanned point 
clouds of (a) from lidar with accumulation time 0.2 s, 1 s and 40 s respectively. 
The color represents the object reflectivity. (e) The FoV coverage percentage 
as a function of accumulation time.  
 

 
Fig. 7. (a) Simulated time to reach 90% coverage as a function of the two 
motor speeds (counter-rotating) with 1% noise added in motor speeds. 
(Configuration of our device is marked with red circle.) This is in great contrast 
to the case where no noise is present (b). The color scale is capped at 5 seconds. 
(b) Time to reach 90% coverage with no noise in the motor speeds. 
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D. Performance upgradability in point density and FoV 
Another advantage of this lidar design is the ease in 

performance improvement, such as the increased scanning 
density and the customized FoV. In conventional mechanical 
lidars, the improvement of both the point density and field of 
view require placing many additional transceiver pairs, and the 
difficult arises significantly due to the dynamic range problem 
as explained in Section II. In the prism-based design, the 
improvements are much easier thanks to the separation of 
transceiver module and scanning module. 
1) Scanning density improvement with packaged arrays 

Instead of using only one PLD and one APD in their 
respective packages, we could use an array of PLDs and APDs 
to increase the scanning density. Unlike the difficult manual 
alignment for the conventional mechanical lidars, packaging 
technology is readily available to achieve this goal. The new 
span (size of a transceiver semiconductor package ~ 3 mm) is 
an order of magnitude smaller than the space span in multi-line 
design (~5 cm or more). This reduction in span size 
significantly eases the requirement from dynamic range. Fig. 
8(a) shows the actual packages used in a prototype containing 
semiconductor dies of 6 PLDs and 6 APDs respectively. The 
semiconductor positioning area has a size about 3 mm, and the 
assembly process is automated via off-the-shelf commercial 
packaging equipment. By replacing the single die package in 
the original design with these array packages, a six-fold 
increase in point density is immediately available, which 
significantly reduced the scanning time if a high resolution is 
needed. We show the spiral and rosette pattern examples from 
these arrays in Fig. 8(b) and 8(c). One can easily extend to more 
dies in the packages with high precision, speed and yield. The 

increased density offers superior density and performance, 
which is especially useful in self-driving cars. Consequently, 
significant reduction of cost is expected as compared to the 
existing multi-line lidars with similar point density. 
2) Customized FoV with simultaneously controlled prisms 

In many robotic applications, such as high speed self-driving 
cars, close-to-rectangle FoV is required. In the horizontal 
direction, a lidar should cover a horizontal FoV as large as 
possible to sense the surroundings and events. However, 
vertical FoV does not need to be large because there are not 
many features on the ground or above in the sky. In this regard, 
the circular FoV might not be the best choice for this scenario. 
One should consider increasing the FoV in the horizontal 
direction while limit the FoV in the vertical direction.  

The prism-based approach does provide this capability. A 
triple prism scanning, as shown in Fig. 9(a), can be designed to 
achieve this goal. The first two prisms are identical in wedge 
angle and refractive index and are controlled synchronously so 
that their rotation angles are exactly opposite to each other. This 
driving method constrains the net deflecting vector from these 
first two prisms to be a harmonic oscillator along the x axis (Fig. 
9(b)). The third prism is driven independently with smaller 
magnitude and slower speed to effectively rotates this oscillator 
vector circularly with lower frequency and contributes to a 
close-to-rectangle FoV. A scanning example is provided in Fig. 
9(c), where the horizontal and vertical FoV are 81.7° and 25.1° 
respectively. The 6-element package is placed vertically in this 
example for increased density to better meet the requirement of 
self-driving cars. This design has led to a product developed by 

 
Fig. 8. (a) Photo of the packages containing 6 PLD and 6 APD 
semiconductor dies. (b-c) The spiral and rosette pattern from 6 channels prism-
based lidar in 100 ms. Notice the increased density compared to Fig. 4(a) & 
4(b). 
 

 
Fig. 9. Illustration of close-to-rectangle scanning with three rotating prisms. 
(A) The configurations of three prisms, where P1 and P2 are controlled 
synchronously so that their phases are exactly opposite of the other. P3 is driven 
independently with a smaller deflection 5 magnitude and lower rotation speed. 
(B) Illustration of the rotation. P1 and P2 are rotated in opposite directions with 
the same speed. The phase angle difference is controlled accurately by a driver 
so that the net vector becomes a harmonic oscillator along the x direction. The 
additional P3 rotates this net vector further to form a close-to-rectangle FoV. 
(C) The final scanning pattern with this method. Here the 6-element package 
(Fig. 8(a)) is used for increased density to better meet the requirement of self-
driving cars. 
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Livox Technology, known as Horizon1. 
With increased density from packaged multi-transceiver 

arrays and the novel control of multiple prisms, a versatile 
method for these high demanding applications is provided with 
the advantages of low cost, small size, reliability and 
performance. We present the detailed specs of our devices and 
illustrate their exemplary applications in key tasks of self-
driving cars such as robot navigation, mapping, object detection 
and tracking in the next section. 

IV. APPLICATIONS 

A. Calibration of lidar and IMU 
Sensor calibration is usually a critical step in robotics that a 

slight mismatch of the coordinates could cause inaccurate or 
false fusion and undermine the system safety. The 
incommensurable scan can be valuable in extrinsic calibration 
between the lidar and other sensors. Conventional multi-line 
lidar [22] usually leads to inaccurate calibration in vertical 
directions due to the limited resolution; matching two scans 
reliably along vertical direction is difficult due to sparsity (Fig. 
10(a)). To address this, it is usually required to continuously 
move the lidar [23]–[26]. This, however, complicates the 
problem by coupling the estimation of motion that may 
introduce additional errors such as motion distortion [25], [27]. 
The incommensurable scanning significantly densifies the point 
cloud given reasonable accumulation time (Fig. 10(b)), 
enabling the lidar extrinsic parameters to be accurately 
calibrated at multiple static poses without motion.  

In this experiment, we take the calibration of lidar and IMU 
(inertial measurement unit) as an example, Fig. 11(a) shows a 
lidar-IMU sensor set installed on a robotic ground vehicle. The 
sensor set rotates by roughly 10 degrees and translates 0.10 
meters from its origin in all 6 degree of freedom (DOF). In each 
rotation/translation, the sensor set stays static at that pose for 10 
seconds, leading to 99.73% coverage ratio (see Fig. 6(e)). Based 
on the dense point cloud, the lidar relative transformations are 
then determined by matching the two respective scans  based 
on the normal distribution transform (NDT) method [32] 
although a variety of other methods could also be used such as 
iterative closest point (ICP) matching [28], [29], non-rigid point 
registration [30], and feature-based registration [33], [34].  

On the other hand, the IMU relative transformation are 
determined by integrating the angular velocity and linear 

 
1 https://www.livoxtech.com/horizon 

acceleration measured by the gyroscope and accelerometer, 
respectively. The biases of the IMU are estimated during each 
static pose, and linearly interpolated during the movement 
between two consecutive poses. With the relative poses 
determined by lidar point cloud registration and IMU 
integration, the  determination of extrinsic parameters is a 
standard hand-eye calibration problem and is solved by 
methods in  [35], [36].  

We evaluate the calibrated extrinsic by comparing its 
projected lidar transformation with the ground truth, which are 
determined by registering the respective point scans 
accumulated for sufficient long times (e.g., 200s). Assume the 
calibrated extrinsic parameter is 𝑿𝑿� , the ground true lidar 
transformation between two poses is 𝑨𝑨, and the transformation 
integrated from the IMU data is 𝑩𝑩. Then, the error metric is 
defined as 

𝒆𝒆𝒆𝒆𝒆𝒆 = ||𝐿𝐿𝐿𝐿𝐿𝐿(𝑨𝑨) − 𝐿𝐿𝐿𝐿𝐿𝐿(𝑿𝑿�𝑩𝑩𝑿𝑿�−𝟏𝟏)||                  (8) 
where Log is the logarithm function on SE(3) and transforms 
an element in SE(3) to 𝔰𝔰𝔰𝔰(3) [37].  

We calculate the error when the extrinsic parameters are 

 
Fig. 10. Sample data of the calibration environment. (a) Data collected from a 
conventional 16-line mechanical lidar (b) Data collected from our lidar (c) The 
actual environment. 
 

 
Fig. 11. Extrinsic calibration of the lidar and an IMU on a robotic ground 
vehicle. (a) The lidar-IMU setup on a robotic ground vehicle for calibration. 
The inset magnified the lidar and the IMU setup where they are tightly bound 
to each other. (b) The calibration error versus the accumulation time at each 
pose. The inset pictures show the point cloud data at the various accumulation 
time during the calibration. 
 

https://www.livoxtech.com/horizon
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calibrated using different accumulation times and average the 
error for many different pairs of poses. The results are shown in 
Fig. 11(b). It is seen that as the accumulation time increases, the 
calibration error decreases monotonically as expected due to 
higher lidar resolution (Fig. 11(b), inset pictures). The error 
drops rapidly during the first second and then decreases slower, 
in good agreement with the coverage percentage in Fig. 6(e). 
The improvement brought forth by the incommensurable 
scanning could be clearly seen from the error reduction. More 
complicated tasks such as camera-lidar calibration and multi-
lidar calibration could also be benefited with the same principle. 
Generalization to shorter accumulation time or even real time is 
also feasible [25], [38]. 

B. Intruder UAV detection and tracking 
Intruder detection and tracking is emerging as an important 

field in robotics. Multi-line lidars is insufficient in detecting the 
intruders if they appear in the gap between any two lines. We 
offer an approach for real-time intruder detection and tracking 
with this new lidar, whose retina-like resolution and 
incommensurable scanning provide unique advantages. With 
the capability to cover the entire FoV, the incommensurable 
scanning ensures to detect an object, meanwhile the increased 
point density at the center of the FoV enables accurate tracking. 
These features are similar to human eyes, where the retina has 
a central region (i.e. the fovea) with high visual acuity and a 
surrounding peripheral region that is sensitive to grosser 
features, especially moving objects [19]. After a successful 
object detection by the peripheral regions, eyes are turned by 
extraocular muscles, the neck or the body to project the image 
of the object onto the high-resolution fovea region and permit 

its tracking and recognition [20] (inset of Fig. 12). Inspired by 
this, the lidar can be augmented with a two-degree-of-freedom 
gimbal system for eye-like robotic object detection and tracking 
(see Appendix F for details of the developed system). As a 
proof-of-concept demonstration, a UAV (unmanned aerial 
vehicle) intruder detection and tracking is considered. We first 
freeze the gimbal and examine the UAV detection by manually 
flying the UAV intruder horizontally through the center of the 
lidar FoV. Throughout the flight, the UAV is being constantly 
detected (Fig. 13(a-f)), even sometimes with only relatively few 
points (Fig. 13(d, f)). The number of points detected from the 
UAV at different locations of the FoV (Fig. 14(a)) agrees well 
with the lidar point density distribution from theoretical 
analysis (Fig. 5(a)). To exploit the high density at the lidar 
“fovea” region and obtain a high definition perception of the 
object, we actuate the two motors of the gimbal according to the 
feedback location of the intruder UAV (Fig. 12). With the 
feedback controller, the lidar quickly tracks the intruder with 
the “fovea” region once the object appears inside the FoV (Fig. 
12, Movie S1). The tracking time and accuracy is shown in Fig. 
14(b) and is mainly limited by the gimbal motor performance 
in our experiments. With the intruder location information from 

 
Fig. 12. Inspired by human eye and the associated movement, the lidar with a 
2-axis gimbal could perform automatic tracking of the UAV intruder with the 
central “fovea” region. The pink highlight region is where first detection 
happens, while the green highlight region denotes the active tracking phase. 
 

 
Fig. 13. (a-f) The intruder captured by an RGB camera (a-c, visual guidance 
only) and detected by the lidar (d-f). The intruder detection on lidar data are 
computed online automatically. The insets show the magnified pictures for 
better illustration. 
 

 
Fig. 14. (a) The number of points detected from the intruder at different 
locations along the horizontal line which is through the FoV center. (b The 
angular error from tracking with the same marking color as Fig. 12. (c) The 
computed flight trajectory of the intruder with lidar and gimbal data. 
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the lidar as well as the gimbal motor angle feedback, the flight 
trajectory of the intruder can be computed (Fig. 14(c)), useful 
for further actions from intruder management. Additional 
cameras (with or without fovea features) could be used in 
combination with this lidar to enable a more accurate detection 
and classification of the intruders. In comparison, camera-only 
systems will not be able to detect the UAV distance and the 
complete trajectory. The advantages from this bio-inspired 
robotic sensing system could be of great help for a broad scope 
of detection and tracking applications such as safety 
surveillances, industrial monitoring and autonomous driving. 

C. Demonstration of applications in self-driving cars 
In this section, we demonstrate the applicability of our lidars 

in self-driving cars. We use the upgraded lidar configuration 
named Horizon as detailed in Section III.D. 

Fig. 15(a-c) shows the system configuration consisting of a 
Horizon lidar for data collection, a Nvidia AGX Xavier2 for 
data processing, and a customized board for data routing. We 
demonstrate two applications which are essential in self-driving 
cars: object detection and tracking, and lidar odometry and 
mapping. The algorithm of each application is detailed as below. 
Both of the two algorithms run on the Xavier in real-time. 
1) Object detection and tracking: 

The detection program consists of three parts, namely, 
detection, segmentation and tracking. The detection part uses 
 

2 https://developer.nvidia.com/embedded/jetson-agx-xavier-developer-kit 
3 https://www.livoxtech.com/mid-40-and-mid-100 

an end-to-end neural network [39] to extract, classify, and 
predict the size, location, and orientation of objects of interests, 
including car, bus, truck, pedestrian, bicycle, and motorbike. 
The network was trained on a proprietary dataset specifically 
labeled for the Horizon lidar. The second part, the segmentation, 
splits the ground points based on the points height and normal 
vector. Then the ground, foreground objects and background 
objects are clustered and fused with the detection results in the 
first part to produce more reliable and accurate segmentation 
results. Finally, the last part, the tracking, builds on the 
detection and segmentation results in the previous two parts, 
pairs for each object in the current frame according to the 
distance of these objects from the last frame, and smooth the 
trajectory of each object via a Kalman filtering method. The 
final results can be seen in the video demonstration at 
https://youtu.be/sqYGFJVR1HU. 
2) Lidar odometry and mapping (LOAM): 

We adopt the lidar odometry and mapping algorithm to the 
Horizon lidar [40]. After receiving a frame (i.e., 100ms) of point 
cloud, the algorithm extracts edge and plane feature points and 
register them in a local map as in [41]. Additionally, an IMU is 
added and calibrated. In the run-time, the IMU data is pre-
integrated as in [42] to provide a reliable initial pose estimation 
for feature point registration. The demonstration of our lidar 
odometry and mapping in both urban and high-way 
environments can be seen at https://youtu.be/Aw7I6H7Wj1U. 

V. CONCLUSION 

The prism-based scanning method provides a new machinery 
in robotic lidar sensors, albeit adoption difficulties could arise 
from existing algorithms which are designed for conventional 
multi-line lidars. With simple setup, low cost, low profile and 
good robustness, we believe this new lidar design will be 
gradually welcomed by academia and industry, and new 
autonomous robotic applications will be enabled by the retina-
like density distribution and ubiquitous incommensurable 
scanning.  

APPENDIX 

A. Product Development 
Based on this lidar design, Livox Technology has developed 

a series of product known as Mid-40 3, Tele-15 4 (Increased 
density and range), Horizon 5 (Increased horizontal FoV and 
density), with price tags around or below 1000 USD.  

B. Detailed operating parameters for the lidar prototype 
The exemplar scanner is composed of two identical prisms 

with refractive index of 1.51 and wedge angles 18 degrees. The 
rotating speeds are 7294 rpm and -4664 rpm respectively. The 
actual beam pointing direction in our device is computed in 
real-time by the on-board FPGA from refractions happening at 
the prism surfaces, whose positions are measured accurately by 
the encoders. The transceiver operates at a constant 
measurement rate of 100 kHz ~ 300 kHz, each with the 

4 https://www.livoxtech.com/tele-15 
5 https://www.livoxtech.com/horizon 

 
Fig. 15. Lidar data collection vehicle. (a-b) The Livox Horizon lidar is 
installed on the vehicle rooftop (c) Nvidia Xavier is used to process the lidar 
data in real-time. A customized board is developed to power the lidar and route 
its data to the Xavier for real-time processing. 
 

https://developer.nvidia.com/embedded/jetson-agx-xavier-developer-kit
https://www.livoxtech.com/mid-40-and-mid-100
https://youtu.be/sqYGFJVR1HU
https://youtu.be/Aw7I6H7Wj1U
https://www.livoxtech.com/tele-15
https://www.livoxtech.com/horizon
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following procedures. 
1. Emitter emits a pulse of about 5 ns ~ 10 ns, 50W – 100W 

peak power. 
2. The receiver is triggered and powered on for a few µs. 
3. The receiver receives signal if there are returned signals. 

The internal time-to-digit converter converts the time-of-flight 
to distance. 

C. Definition of coverage 
To define the LiDAR coverage for a certain time period, the 

FoV is divided into 100 segments in both horizontal and vertical 
directions, ideally leading to a total of 10000 voxels. However, 
due to a circular (not rectangular) FoV and scenario-related 
constrains, we have 7132 effective voxels. If the laser beam 
scans to that voxel and a point is collected, the voxel is viewed 
as filled. Assumed that at time t, n voxels are filled, the formula 
of coverage percentage is: 

𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 =
𝑛𝑛

7132
× 100%                           (9) 

D. Intruder UAV detection and tracking 
1) System overview 

Our gimbal augmented lidar detection system is seen in Fig. 
16. The gimbal system is a “PTS-303H” from PTS electronics6. 
It has two-degree-of-freedom: yaw and pitch, respectively 
driven by two high-torque motors. With the manufacturer 
supplied software API, the rotation speeds of each motor are 
independently specified, which enables the gimbal to point 
along different directions. We developed an integrated software 
running on a host PC to process all the lidar point cloud data 
(i.e. for intruder detection), compute and generate motor 
commands of gimbal systems (i.e. for intruder tracking) and 
recover the intruder’s trajectory in space. The communication 
between the PC and the lidar is via Ethernet while the 
communication to the gimbal is via an UART interface. 
2) Detection algorithm 
Algorithm 1 summarizes our detection algorithm. It runs in 

 
6 http://en.ptscctv.com/cn/index.html 

real-time at 10Hz and slices the lidar point stream into a frame 
(i.e. 𝑷𝑷) for every 100ms. We assume that the space of interest 
is denoted as 𝓓𝓓 and it contains no background objects. Then if 
any point in 𝑷𝑷 lies in 𝓓𝓓, it is caused by the intruder UAV and 
should be retained (Line 4-9). The retained points in 𝑷𝑷 are then 
used to estimate the intruder position by calculating the median 
coordinate (Line 10). Compared with mean coordinate, the 
median coordinate we use is more robust to outlier points in 𝑷𝑷. 

Algorithm 1: Intruder detection 
1. input: Point cloud 𝑷𝑷 
2. output: Point 𝒑𝒑𝒅𝒅 
3. begin 
4. for every point 𝒑𝒑𝒊𝒊 in 𝑷𝑷 do 
5. if 𝒑𝒑𝒊𝒊 ∉ 𝓓𝓓 then 
7. Delete 𝒑𝒑𝒊𝒊 from 𝑷𝑷; 
8. end 
9. end 
10. Sort 𝒙𝒙, 𝒚𝒚 and 𝒛𝒛 of points in 𝑷𝑷 respectively and find 

the median 𝒙𝒙𝒎𝒎, 𝒚𝒚𝒎𝒎 and 𝒛𝒛𝒎𝒎; 
11. 𝒑𝒑𝒅𝒅  ← [𝒙𝒙𝒎𝒎, 𝒚𝒚𝒎𝒎, 𝒛𝒛𝒎𝒎]𝑇𝑇; 
12. Return 𝒑𝒑𝒅𝒅; 
13. end 

3) Tracking algorithm 
Algorithm 2 summarizes our detection and tracking 

algorithms. It first runs a detection (Line 3-10) as in Algorithm 
1 to determine the intruder’s position relative to the lidar (Line 
11-12). If the relative position is below a threshold (e.g. 2°), no 
action is needed (Line 13-14, Line 18-19). Otherwise, the motor 
speeds are set proportionally to the relative error (Line 15-17, 
Line 20-22). Note here 𝑷𝑷 refers to the gimbal’s local frame. 

Algorithm 2: Intruder tracking 
1. input: Point Cloud 𝑷𝑷 
2. output: motor speeds: 𝒗𝒗𝒚𝒚 (yaw) and 𝒗𝒗𝒑𝒑 (pitch) 
3. begin 
4.     for every point 𝒑𝒑𝒊𝒊 in 𝑷𝑷 do 
5.         if 𝒑𝒑𝒊𝒊 ∉ 𝓓𝓓 then 
6.             Delete 𝒑𝒑𝒊𝒊 from 𝑷𝑷; 
7.         end 
8.     end 
9.     Sort 𝒙𝒙, 𝒚𝒚 and z of points in 𝑷𝑷 respectively and get 

the median 𝒙𝒙𝒎𝒎, 𝒚𝒚𝒎𝒎 and 𝒛𝒛𝒎𝒎; 
10.     𝒑𝒑𝒅𝒅  ← [𝒙𝒙𝒎𝒎, 𝒚𝒚𝒎𝒎, 𝒛𝒛𝒎𝒎]𝑇𝑇; 
11.     𝒆𝒆𝒚𝒚 ← arctan (𝒚𝒚𝒎𝒎/𝒙𝒙𝒎𝒎); 
12.     𝒆𝒆𝒑𝒑 ← arctan (𝒛𝒛𝒎𝒎/𝒙𝒙𝒎𝒎); 
13.     if �𝒆𝒆𝒚𝒚� < 2°  then 
14.        𝒗𝒗𝒚𝒚 = 0; 
15.     else 
16.         𝒗𝒗𝒚𝒚 = −𝒌𝒌𝒚𝒚𝒆𝒆𝒚𝒚 ; 
17.     end 
18.     if �𝒆𝒆𝒑𝒑� < 2° then 
19.         𝒗𝒗𝒑𝒑 = 0; 
20.     else 
21.         𝒗𝒗𝒑𝒑 = −𝒌𝒌𝒑𝒑𝒆𝒆𝒑𝒑; 
22.     end 
23.     Return yaw speed 𝒗𝒗𝒚𝒚 and pitch speed 𝒗𝒗𝒑𝒑; 

 
Fig. 16. A close-up view of the lidar gimbal system. 
 

http://en.ptscctv.com/cn/index.html
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24. end 
4) Gimbal angle calibration 

The detection algorithm in previous sections determines the 
intruder’s position relative to the lidar. To recover the intruder’s 
trajectory in the space (e.g. intruder management), the gimbal 
orientation is also needed. This is unfortunately not available 
with the gimbal software API. In our experiments, we calibrate 
the gimbal’s rotation speed by tracking a pre-known feature 
point (e.g. a room corner) in the lidar point cloud. The 
calibration builds a lookup table mapping the command to 
actual rotation speed. Then during the actual intruder tracking, 
the rotation speed is determined from the command and then 
integrated to produce the angle estimate.  
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