Mechanical rotation at low Reynolds number via reinforcement learning
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There are growing interests in the development of artificial microscopic machines that can perform complex maneuvers
like swimming microorganisms for potential biomedical applications. At the microscopic scales, the dominance of
viscous over inertial forces imposes stringent constraints on locomotion. In the absence of inertia, Purcell first proposed
an elegant way to generate net translation using kinematically irreversible motions (E. M. Purcell, Am. J. Phys., 45, 3
(1977)). In addition to net translation, a more recent prototype known as Purcell’s "rotator” has been proposed in R.
Dreyfus, J. Baudry and H. A. Stone, Eur. Phys. J. B, 47, 161 (2005) as a mechanical implementation of net rotation at
low Reynolds numbers. These ingenious designs rely on knowledge of the surrounding environment and the physics of
locomotion within the environment, which may be incomplete or unclear in more complex scenarios. More recently,
reinforcement learning has been used as an alternative approach to enable a machine to learn effective locomotory gaits
for net translation based on its interaction with the surroundings. In this work, we demonstrate the use of reinforcement
learning to generate net mechanical rotation at low Reynolds numbers without requiring prior knowledge of locomotion.
For a three-sphere configuration, the reinforcement learning recovers the strategy proposed by Dreyfus et al.. As the
number of spheres increases, multiple effective rotational strategies emerge from the learning process. However, given
sufficiently long learning processes, all machines considered in this work converge to a single type of rotational policies
that consist of traveling waves of actuation, suggesting its optimality of the strategy in generating net rotation at low

Reynolds numbers.

I. INTRODUCTION

Swimming microorganisms inhabit a world dominated by
the viscous force. The Reynolds number, Re = pU/¢/u (where
¢ and U represent the characteristic length and speed of the
swimmer, and p and u are fluid density and dynamic vis-
cosity, respectively), falls in the range of 10~* to 102 for
swimming bacteria and spermatozoa!=. The inertial force
is therefore negligible compared with the viscous force. At
such low Reynolds numbers, common swimming strategies
based on inertia at the macroscopic scales become largely
ineffective*. Microorganisms have evolved different strate-
gies, including the use of flagellar rotary motors® or the action
of molecular motors within flagella’, to swim effectively in
their microscopic world. There are growing interests in devel-
oping artificial microscopic machines that can self-propel like
their biological counterparts for potential biomedical and en-
vironmental applications®. However, without sophisticated
biological molecular machines possessed by microorganisms,
it remains a challenge to design micromachines for complex
maneuvers in the viscously dominated flow limit!©.

Purcell’s work popularized the fundamental fluid dynami-
cal aspects of swimming at low Reynolds numbers'!. In par-
ticular, his scallop theorem rules out any reciprocal motion—
sequence of motions with time reversal symmetry (e.g., open-
ing and closing the hinge of a single-hinged scallop) for self-
propulsion without inertia. To escape from the constraints
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by the scallop theorem, Purcell designed a three-link swim-
mer that can perform kinematically irreversible cyclic mo-
tions for net translation''2. Najafi and Golestanian'3 pro-
posed another ingenious design consisting of three linked
spheres, which can translate by modulating the distances be-
tween the spheres; the mechanism inspired a wide variety
of variants'4?2. In addition to net translation, the design of
mechanisms that can produce net rotation at the microscale
is important to the development of micromachines. To this
end, Dreyfus et al. proposed a mechanism (also known as Pur-
cell’s “rotator”)>3, which consists of three spheres linked like
the spokes on a wheel (Fig. 1), as the rotational analogue of
Purcell’s three-link swimmer for translation. The rotator per-
forms a prescribed sequence of motions that exploit the hy-
drodynamic interaction between the spheres to produce net
rotation. The mechanism of Purcell’s rotator shares similar-
ity with the conformational changes of some molecular mo-
tors undergoing ATP- or photochemically-driven rotational
movements>3 2>,

These ingenious designs rely on knowledge of the sur-
rounding environment and the physics of locomotion within
the environment, which may not be complete or clear in
more complex scenarios. In particular, for biological appli-
cations, the properties of some highly complex, heteroge-
neous biological environments may not be known a priori,
posing additional challenges on the design of effective self-
propelled micromachines. Recent approaches have exploited
the prowess of machine learning in the studies of different
aspects of locomotion in fluids**?, including individual and
collective motion of fish?%-3* and birds3>-3¢, as well as differ-
ent navigation’’ and cloaking*® problems of self-propelled
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FIG. 1. Schematic diagram and notations of a mechanical setup
based on Purcell’s rotator by Dreyfus ef al.?>. The machine con-
sists of three spheres of radius R connected to the center P with con-
necting rods of length L. The spheres are connected to the center of
the circle P with connecting rods. (a) In its initial configuration, the
three spheres have equal angular spacing, 6, = 27/3. There exist
active elements that can contract the angle 6,; or 63 by an amount
¢ or expand by the same amount to return to the value 6,. In (b), we
illustrate the configuration of the machine after it contracts the angle
635, which results an overall change of the angular centroid of the
machine, 0 (indicated by the red dashed lines).

objects. In particular, an alternative framework based on re-
inforcement learning has enabled a microswimmer to learn
effective locomotory gaits based on its interactions with the
surrounding low-Reynolds-number environment*’. Without
any prior knowledge of locomotion, such a “self-learning” mi-
croswimmer is able to acquire a previously known propulsion
strategy by Najafi and Golestanian'? for net translation and
adapt its locomotory gaits in different media.

Similar in spirit, in this work we employ a reinforcement
learning approach to generate mechanical rotation at low
Reynolds numbers. We adopt the mechanical configuration
of the Purcell’s rotator shown in Fig. 123; however, instead of
prescribing the locomotory gaits of Purcell’s rotator, we allow
the machine to progressively learn how to exploit hydrody-
namic interactions to produce net rotation via reinforcement
learning on its own. We will examine the locomotion strate-
gies acquired by the learning process and consider more com-
plex scenarios when the number of spheres in the machine in-
creases. The paper is organized as follows: in §II we present
the geometric setup (§II A), formulation of the hydrodynamic
(§IIB) and the reinforcement learning (§11C) problems used
in this work. We discuss the results in §1II for a three-sphere
rotator (§III A), before extending the studies to configurations
with a higher number of spheres (§IIIB). We conclude the
investigation with some remarks in §IV.

1. FORMULATION
A. Geometric setup

We first illustrate the geometric setup using a three-sphere
configuration similar to Purcell’s rotator (Fig. 1a), before con-
sidering systems with an increased number of spheres. We
place three spheres of radius R on an imaginary circle of ra-
dius L. The spheres are individually connected to the center

of the circle P with connecting rods. Fig. 1 shows an ini-
tial configuration with equal angular spacing (8, = 27/3) be-
tween the spheres, where the angle between spheres 2 and 1
(6>1) and the angle between spheres 3 and 2 (63,) attain their
fully extended values (6,1 = 63, = 6,). There exist two in-
ternal active elements that can contract 8, or 03, (referred to
as active angles here) by an amount ¢ (Fig. 1b), or expand an
angle back to its fully extended value 6,. The remaining an-
gle between spheres 3 and 1 (0;3) only reacts passively to the
contraction and expansion. To measure the net rotation of the
machine, we define the angular centroid 6= ):? 0;/3, which
is the average of the angles of all spheres 6; measured from
the x-axis. The angular centroid of the initial configuration
shown in Fig. la is given by 8 = 27/3, as indicated by the
red dashed line. Actuating (contracting or expanding) any of
the active angles will alter the angular centroid of the machine
as illustrated in Fig. 1b. The goal of the machine is to gener-
ate net rotation (i.e., a net increase in the angular centroid 0)
in the anti-clockwise direction by choosing different actions
of the active elements. Without requiring prior knowledge of
low-Reynolds-number locomotion, we will demonstrate a re-
inforcement learning approach in achieving this goal. We next
present the formulation of the hydrodynamic problem in §11 B
and its integration with a reinforcement learning algorithm in
§IIC.

B. Low-Reynolds-number hydrodynamics

We consider the hydrodynamics governed by the Stokes
equation in the low Reynolds number regime. Here we neglect
the hydrodynamic influence of the connecting rods and ac-
count for the leading-order hydrodynamic interaction between
the spheres via the Oseen tensor!>23*8 in the limit R/L < 1.
The forces F; and velocities V; of the spheres (i = 1,2,3) are
related as

3
F=Y H,V; )
j=1
where
—67UR], if i=j
Hij = {6nukﬁe’§j<l+ﬁijﬁij>, if i @)

and R;; = |[r; — || , r; is the position of sphere i from the
center P, IA{,'.,- = (r; —r;j)/R;j, and I is the identity matrix. The
hydrodynamic torque about the origin in the laboratory frame
is given by I' = D; x F; = D; x 23=1 H;;V;, where D; is the
position vector of each spheres in the laboratory frame. Here
we focus on pure rotation of the machine and thus fix its cen-
ter P to the origin in the laboratory frame. If the center is
not kept fixed, the machine can undergo both translation and
rotation?3. The velocity of the spheres V; = L6; ég are there-
fore purely tangential to the imaginary circle, where &g is the
unit vector tangent to the circle. In the absence of an external
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The machine is allowed to actuate any one of the active el-
ements in each step to contract or expand the angle at a rate
. For instance, in Fig. 1 from (a) to (b), the machine con-
tracts the angle 63, by an amount ¢ (i.e., 6; — 6, = —), while
maintaining the angle 6,; fixed (i.e., 6, = 6)). Such action re-
sults an overall change of the angular centroid of the machine,
6 (indicated by the red dashed lines in Fig. 1). These kine-
matic constraints close the system of equations, which can be
numerically solved to determine the rotational dynamics of
the machine for each action taken. We remark that the linear-
ity and time-independence of the Stokes equation leads to the
property of rate independence®!!: any translational or rota-
tional displacement of the machine resulting from its configu-
ratonal changes (contraction/expansion of active angles) does
not depend on the rate of configurational changes but only on
the sequence of the changes. We therefore follow Dreyfus et
al.?® and assume a uniform rate of expansion and contraction
 in this work.

C. Reinforcement learning

The goal of the machine is to generate net rotation by per-
forming an effective sequence of strokes. Instead of prescrib-
ing the sequence of strokes in the conventional approach, here
we use a simple reinforcement learning algorithm to enable
the machine to acquire effective locomotion strategies by it-
self. Such an approach does not rely on prior knowledge of
locomotion but allows the machine to learn and adapt its loco-
motion strategies based on its experience interacting with the
surroundings. Here we implement the Q-learning algorithm
for its simplicity and expressiveness compared with other re-
inforcement learning algorithms*’.

In a given learning step in Q-learning (for example, the n-
th step in Fig. 2), the machine performs an action (a,, con-
tracting or expanding one of the active angles), taking the
machine from the current configuration state (s,) to the next
state (s,+1). The “success” of action a,, is measured by reward
ry, which is defined as the resulting difference of the angular
centroid (i.e., r, = 0,.1 — 0,). The expected long-term re-
ward for taking the action a, given the state s, is quantified by
the Q-matrix, Q(s,,a,), which is an action-value function that
encodes the adaptive decision-making intelligence of the ma-
chine. After each learning step, the Q-matrix evolves based
on the experience gained by the machine,

Q(Sn,an) %Q(Snaan)+
4
a[rn+7rglaxQ(sn+laan+l) _Q(Snaan)]’ “)

n+1
where « is the learning rate (0 < o < 1) that determines to
what extent new information overrides old information and
therefore control the learning speed of the machine. Here we
fixed & = 1 to maximize the learning speed. The discount
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FIG. 2. Mechanical rotation at low Reynolds numbers via reinforce-
ment learning. The goal of the machine is to generate net rotation by
performing different configurational changes. Instead of designing a
sequence of locomotory gaits in advance, here we leverage a simple
reinforcement learning algorithm (Q-learning) to enable the machine
to acquire effective locomotion strategy based on its interaction with
the surroundings. In each learning step, the machine performs an ac-
tion a, (contracting or expanding on the active angles) to transform
from one configuration state s, to the next s, 1. The reward r,, de-
fined as the resulting difference of the angular centroid (é,,H —6,),
measures the success of each action. The reinforcement learning pro-
cess progressively updates the Q-matrix, which encodes the adaptive
decision-making intelligence of the machine.

factor v (0 < v < 1) determines the trade-off between imme-
diate reward r,, and maximum future reward at the next state
max, ., Q(Sn+1,an+1). When yis small, the machine is short-
sighted and tends to maximize the immediate reward; when y
is large, the swimmer is farsighted and takes actions that maxi-
mize the long-term reward. In order to avoid the machine from
being trapped in locally optimal policies, we implemented an
e-greedy selection scheme: In each learning step, the machine
chooses the best action recommended by the Q-matrix with a
probability 1 — € or takes a random action with a small prob-
ability €, which allows the machine to explore new solutions.

I1l. RESULTS AND DISCUSSION
A. 3-sphere rotator

We first consider a three-sphere configuration in this sec-
tion. Instead of prescribing any sequence of strokes, we al-
low the rotator to take an action based on the Q-matrix (§1I1 C)
and use the resulting reward to update the Q-matrix, inform-
ing the next action. We measure the net rotation of the ma-
chine AB = 6, — 6y by comparing the angular centroid at the
n-th learning step (6,) with the initial angular centroid ().
Fig. 3a shows a typical learning process of a 3-sphere rota-
tor: the rotator takes the initial steps to explore the viscous
environment (Fig. 3b) without forming an effective rotational
strategy yet. As the machine learns from its interaction with
the environment progressively, it eventually repeats the same
sequence of cyclic motions that produce net rotation in the
anti-clockwise direction (Fig. 3c). We note that the policy
harvested by reinforcement learning here coincides with the
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FIG. 3. Reinforcement learning of a three-sphere (N = 3) rotator. (a) The net rotation of the machine, measured by the change of angular
centroid Af, generated by a series of actions at different learning steps n. (b) The rotator undergoes an initial learning stage by performing
different actions to interact with the surrounding environment and learn from the resulting rewards. (c) Via reinforcement learning, the
machine eventually repeats a sequence of cyclic motions that produce net rotation in the anti-clockwise direction. The strategy acquired
through reinforcement learning here coincides with that used for Purcell’s rotator by Dreyfus et al.?3. Inset in (a): the e-greedy scheme allows
a small probability € for the machine to act against the Q-matrix and perform a random action for exploration. Here we set ¢ = /6, ¥y = 0.9,
€ =0.05, and R/L = 0.1. The rigid body rotation illustrated in panels (b)—(c) are magnified by twenty times for better visualization of the

rotational motion.

mechanism proposed by Dreyfus et al. for Purcell’s rotator?>.
As the analogue of the self-learning swimmer that produces
net translation*’, our example here demonstrates the first use
of reinforcement learning to generate net mechanical rota-
tion in a low-Reynolds-number environment, without requir-
ing prior knowledge of locomotion.

As a remark, even when the machine is informed by the Q-
matrix to repeat the same sequence of strokes after sufficient
learning steps (Fig. 3a inset), the use of the e-greedy selec-
tion scheme allows a small but non-zero probability € for the
machine to act against the Q-matrix and perform a random
action for exploration. The sequence of strokes is therefore
sometimes interrupted with random actions as shown in the
inset. Such mechanism avoids being trapped around only lo-
cally optimal policies. For the 3-sphere configuration, the ma-
chine eventually returns to the Purcell’s rotator sequence after
the random actions. We will examine the effect of the magni-
tude of € with more complex examples in the next section.

B. N-sphere rotator

We next extend the analysis beyond the three-sphere con-
figuration. For a configuration with N spheres, the descrip-
tion of the hydrodynamic force and velocity via the Oseen
tensor on sphere i can be readily extended from Eq. 1 as
F;, = ):’]y:l H;;V;. Similarly, the torque free condition now
reads ):?’:1 I'; =0, where I'; = D; x ):?’:1 H;;V;. Similar to
the case of three spheres, there are N — 1 active elements that

can contract or expand any one of the angles between two
neighbouring spheres by an amount ¢, except for the angle
01n, which only reacts passively to the contraction and expan-
sion of other angles. At each step, the Q-learning algorithm
informs one pair of neighbouring spheres (e.g., the i and i+ 1
spheres) to extend or contract their angle at a uniform rate ®:
6,1 — 6; = £, while keeping other angles fixed (i.e., 9 i = 0;
for j=1,2,...,i— 1 and §; = ;4 for j =i+2,i+2,...,N).
The goal is to learn effective strategies to generate net rotation
based on the machine’s interaction with the viscous environ-
ment.

We remark that as the number of sphere N in the machine
increases, the angle between the spheres in its initial (equally
spaced) configuration reduces accordingly as 6, = 2m/N.
This also limits the angle of contraction (¢) allowed as the
number of spheres increases in the machine. In order for ¢
to not exceed the maximum angle between the spheres (6),
we set ¢ = 6,/4 = w/(2N) in our simulations for a N-sphere
system. In other words, the machine uses a fixed portion of 6,
for contraction. The machine, hence, has a smaller angle of
contraction as the number of sphere increases. We note that
only a small portion (1/4) of 6, is used for contraction here
to ensure that the spheres are sufficiently far apart for the hy-
drodynamic description via the Oseen tensor to be valid (see
§IIB).

When we have a larger number of spheres N in the ma-
chine, the increased degree of freedom allows multiple effec-
tive strategies to emerge. The policy identified by reinforce-
ment learning largely depends on different learning param-
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FIG. 4. Reinforcement learning of a four-sphere (N = 4) rotator. (a) The net rotation of the machine, measured by the change of angular
centroid A@, generated by a series of actions at different learning steps n. The value of ¢ in the £-greedy scheme affects the policies acquired
by the machine at the end of the learning process. (b) With € = 0.05, the machine has learned four-stroke cyclic motion same as that in the three-
sphere rotator (Fig. 3b), without utilizing the active angle 643. The angular displacement per cycle AGc = 0.008; the angular displacement
per cycle per stroke ABs = 0.002. (c) With € = 0.1, the machine has learned an improved but sub-optimal six-stroke cyclic motion with
ABc =0.0161 and Afg = 0.0027. (d) With & = 0.2, the machine further improves the performance with another six-stroke cyclic motion with
ABc = 0.0238 and ABg = 0.004. The motion involves a sequential contraction of all active angles 011, from i =1 to i = 3, followed by a
sequential expansion of all active angles 6;, 1 ; from i = 1 to i = 3. This policy, which consists of traveling waves of actuation propagating in
the anti-clockwise direction, represents an extension of the strategy in Purcell’s rotator to the case four spheres with all active angles utilized
in the sequence. As a remark, the policy obtained with € = 0.3 is the same as that with € = 0.2; yet the more frequent interruptions by the
random actions with &€ = 0.3 leads to a smaller net rotation overall compared with the case with € = 0.2 as shown in (a). In these simulations
¢ =m/8, y=0.9, and R/L = 0.1. The rigid body rotation illustrated in panels (b)—(d) are magnified by twenty times for better visualization

of the rotational motion.

eters, including the discount factor, the number of learning
steps, and the value of € in the e-greedy scheme. We illus-
trate some general characteristics using a four-sphere (N = 4)
configuration. Fig. 4a shows that, for a fixed number of learn-
ing steps, a four-sphere machine evolves different rotational
policies depending on the value of € in the &-greedy scheme.
We can measure the performance of different policies by the
angular displacement per cycle (A8¢) or the displacement per
cycle per stroke (ABs = AB¢ /Ny); the latter measure divides
the angular displacement per cycle by the number of strokes
involved in the cycle, N;, to account for the difference in the
number of strokes in individual policies.

Similar to the case for translation?’, the value of € in the
e-greedy scheme plays an important role in the learning pro-
cess. When there is not any exploration scheme (€ = 0), the
machine frequently gets trapped going back and forth between
two states, resulting in reciprocal motion that does not yield
net rotation*’. With a small € = 0.05 (blue line in Fig. 4a), the
machine is able to identify an effective but sub-optimal policy

for net rotation (Fig. 4b); indeed the four-stroke policy follows
the same sequence of strokes as a 3-sphere Purcell’s rotator in
Fig. 3c, with the angle 043 not participating in the gait at all
(sphere 4 thus acts essentially like a passive cargo). The an-
gular displacement per cycle for this policy is given by AB¢ =
0.008 and ABs = ABc/4 = 0.002 on a per stroke basis. As we
increase the exploration rate (¢ = 0.1, red line in Fig. 4a),
the machine learns an improved six-stroke policy (Fig. 4c)
with larger ABc = 0.0161 and Afs = ABc/6 = 0.0027. For
€ = 0.2 (green line in Fig. 4a), the machine acquires another
six-stroke policy as shown in Fig. 4d with further improved
ABc = 0.0238 and ABs = ABc/6 = 0.004. This policy here
consists of contraction of all active angles in a sequential man-
ner starting from 6, in the anti-clockwise direction, followed
by expansion of all active angles again in a sequential man-
ner starting from 6,;. More generally, we define such type of
policies, namely a sequential contraction of angles 6, ; from
i=1toi=N—1 followed by a sequential expansion of an-
gles 6;11; from i =1 to i = N — 1, traveling wave policies,
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FIG. 5. Mechanical rotation of a N-sphere rotator via reinforcement learning. (a) The number of different policies N, adopted by a N-sphere
rotator when the learning process is stopped at different values of target angular displacement, Afr, in 20 sample runs. For each run, the
machine continues to learn until the net angular rotation A8, reaches AB7. With a relatively short learning process (ABy = 27; top panel),
the three-sphere and four-sphere rotators converge to a single policy in all runs (red bars), which correspond to the traveling wave policies.
For N > 4, the machine adopts a wider variety of different policies as N increases (blue bars). With a longer training process (A8r = 507;
middle panel), more rotators converge to the traveling wave policies at the end of the learning process (red bars), with a reduced number of
policies for N > 7. With a sufficiently long learning process (67 = 3507; bottom panel)), all rotators converge to the traveling wave policies.
(b) Characterization of the performance of the traveling wave policies of individual N-sphere rotators by the net angular displacement per
cycle AB¢ and the net angular displacement per cycle per stroke (inset) A@s = ABc/2(N — 1), where 2(N — 1) is the number of strokes in the
traveling wave policies. Both AG¢ and A increase with N. In these simulations, ¢ = 7/(2N), y=0.9, € = 0.15, and R/L = 0.1.

because the sequence of action corresponds to a propagation
of traveling wave of actuation in the anti-clockwise direction.
These traveling wave policies therefore consists of 2(N — 1)
strokes; indeed the sequence of strokes in Purcell’s rotator
(N = 3) in Fig. 3c and the N = 4 policy in Fig. 4d are both
traveling wave policies. As a remark, the machine also learns
the traveling wave policy with an even higher exploration rate
(¢ = 0.3, black line in Fig. 4a); yet the overall displacement
of the angular centroid is less compared with the case with
€ = 0.2 (green line) because the sequence of actions is fre-
quently interrupted by the random actions at the higher value
of €.

Next, we further increase the number of spheres in the sys-
tem up to N = 9 and examine the number of different policies
obtained by reinforcement learning for different values of N.
The policy eventually adopted by the machine largely depends
on the number of learning steps allowed. In Fig. 5a, we ex-
amine the policy adopted by the machine when its rotation
has reached a certain target angular displacement, A@r. For
instance, when the machine is allowed to learn up to a tar-
get angular displacement of A@; = 27 (top panel, Fig. 4a), all
trials for N = 3 and N = 4 machines converge to a single pol-
icy — the traveling wave policy. However, increasingly more
policies emerge in the trials for machines with a larger num-
ber of spheres. When more learning is allowed by increas-
ing the target angular displacement to ABr = 507 (middle
panel in Fig. 5a), more configurations converge to the trav-
eling wave policies (N = 3 to N = 6) with lower number of
policies appearing in the trials for N > 7. Finally, when suffi-
cient amount of learning is allowed (e.g., ABr = 3507, bottom
panel in Fig. 5a), all configurations considered converge to a

single policy, namely the traveling wave policy. These results
demonstrate that the larger the target angular displacement,
the more chance the the machine can learn to converge to the
traveling wave policy, suggesting its optimality in generating
net rotation at low Reynolds number. We also note that the
same trend applies to swimmers consisting of linear chains
of spheres for net translation*’: given sufficient amount of
learning, the swimmers with different numbers of spheres all
converge to the same type of traveling wave policy via rein-
forcement learning.

In Fig. 5b, we quantify the performance of the traveling
wave policy for different values of N in terms of the angu-
lar displacement per cycle AGc and the angular displacement
per cycle per stroke A (inset). As the number of sphere N
increases, the traveling wave policy generates more displace-
ment per cycle AGc. Even though the number of strokes in the
traveling wave policy also increases as 2(N-1), machine with a
higher number of spheres still produce a larger displacement
per cycle per stroke, ABs = ABc/2(N — 1), as shown in the
inset.

IV. CONCLUDING REMARKS

In this work we demonstrate the first use of reinforce-
ment learning to generate mechanical rotation at low Reynolds
numbers. This alternative approach diverges from the conven-
tional way of prescribing a pre-defined sequence of strokes
based on knowledge of locomotion; instead we exploit a sim-
ple reinforcement learning algorithm (Q-learning) to enable
a machine to identify effective rotational policies based on



its interaction with the surroundings, without requiring prior
knowledge of locomotion. When the machine has the mini-
mum degrees of freedom for net rotation (N = 3), it recovers
the strategy identified by Dreyfus et al. for Purcell’s rotator,
which shares similarity with the conformational changes of
some molecular motors undergoing ATP- or photochemically-
driven rotational movements>>~2>. For an increased number of
spheres (N > 4), the machine is capable of identifying multi-
ple effective policies for net rotation, depending on different
learning parameters in the system. However, when sufficient
learning steps are allowed, the machine eventually evolves to
a single policy — the traveling wave policy. The traveling
wave policy enables the machine to generate net rotation by
a sequential contraction (and then expansion) of active angles
in the machine. The sequence of strokes in Purcell’s rato-
tor is a special case of this family of traveling wave policies.
As a remark, the change in the angular centroid is used as
the reward in reinforcement learning here based on the goal
to maximize net rotation of the machine. Rewards account-
ing for energy consumption due to different actions may also
be considered in future work for optimization based on ener-
getic considerations. Recent works have also suggested trav-
eling wavelike deformations to be energy-optimal strokes for
locomotion!330-52,

The alternative approach in this work is particularly desir-
able when a machine explores an environment with unknown
properties or when the knowledge of locomotion remains in-
complete in more complex environments. The approach based
on reinforcement learning bypasses the challenging of design-
ing locomotory gaits in advance in these situations. As a proof
of concept, we adopt a standard Q-learning algorithm for its
simplicity and expressiveness. There exists a vast potential in
the use of more advanced machine learning approaches 3%
for locomotion problems involving more complex maneuvers
in future works.
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