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Twisted magnetic topological insulators
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Motivated by the discovery of the quantum anomalous Hall effect in Cr-doped (Bi, Sb)2Te3 thin films, we
study the generic states for magnetic topological insulators and explore the physical properties for both mag-
netism and itinerant electrons. First-principles calculations are exploited to investigate the magnetic interactions
between magnetic Co atoms adsorbed on the Bi2Se3 (111) surface. Due to the absence of inversion symmetry
on the surface, there are Dzyaloshinskii-Moriya-like twisted spin interactions between the local moments of Co
ions. These nonferromagnetic interactions twist the collinear spin configuration of the ferromagnet and generate
various magnetic orders beyond a simple ferromagnet. Among them, the spin spiral state generates alternating
counterpropagating modes across each period of spin states, and the skyrmion lattice even supports a chiral
mode around the core of each skyrmion. The skyrmion lattice opens a gap at the surface Dirac point, resulting in
the anomalous Hall effect. These results may inspire further experimental investigation of magnetic topological
insulators.
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I. INTRODUCTION

Topological insulators (TIs) have attracted tremendous re-
search interest in the past decade, owing to their fundamental
physics and potential applications for next-generation devices
[1,2]. Three-dimensional (3D) TIs have a gapped electron
structure in the bulk and a metallic surface state whose exis-
tence is protected by the nontrivial topology of the bulk bands
under time-reversal symmetry (TRS) [3–5]. The metallic sur-
face state consists of an odd number of Dirac electrons. A
unique nature that makes it different from an ordinary surface
state is spin-momentum locking. The spin direction of the
Dirac electron is dictated by its momentum direction, and
vice versa. It cannot be gapped by nonmagnetic impurities
because the TRS is still respected, and the bulk band topology
remains nontrivial. In contrast, magnetism from the magnetic
impurities would break the TRS. With a ferromagnetic order,
the surface Dirac fermion acquires a mass, as demonstrated by
experiments [6]. Such gap opening by ferromagnetic impuri-
ties can lead to various interesting physical phenomena, such
as the half-integer quantum Hall effect [5], the topological
magnetoelectric effect [5,7], the induced magnetic monopole
[8], the quantum anomalous Hall effect [9–11], and so on.

On the other hand, the TI surface itself breaks the spatial in-
version symmetry between two magnetic adatoms. As a result,
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the magnetic interaction between the adatoms involves not
only the Heisenberg interaction but also the Dzyaloshinskii-
Moriya interaction (DMI) [12,13]. The latter is an effect
rooted in spin-orbit coupling (SOC) that cannot be ignored
on the TI surface and is nonvanishing in noncentrosymmetric
systems in general. TIs such as Bi2Se3 [14] have large SOC,
so that their bulk bands are inverted, resulting in their non-
trivial band topology. It is conceivable that such a large SOC
can bring about significant DMI components in the adatom
interactions. In fact, strong DMI has been found in the Co/Pt
interface [15–19], where the heavy Pt atoms provide strong
SOC to induce DMI between magnetic Co atoms. With the
DMI, the magnetic adatoms on the TI surface could develop
much richer magnetic orders, such as the spin density wave,
spin spirals, and the skyrmion lattice [20–25], than a simple
ferromagnet. The DMI between Fe adatoms on Bi2Se3 was
calculated to be quite large [26]. Experimental evidence has
been found for the existence of magnetic skyrmions at the in-
terface of ferromagnetic Cr2Te3 and TI Bi2Te3 [27]. Besides, a
phase diagram that contains noncollinear magnetic structures
such as spin spirals and the skyrmion lattice still needs to be
established.

Conversely, the magnetic structures have an impact on the
TI surface states. The low-energy spectrum may no longer be
a massless Dirac cone, and the wave functions may not be uni-
formly distributed in space (on a large scale compared with the
lattice constant) anymore. It was found that although out-of-
plane ferromagnetically ordered surface impurities generate
a band gap on the surface, the domain wall between up and
down magnetization supports one-dimensional gapless chiral
modes [28]. Magnetic textures such as domain walls and
skyrmions become electrically charged when coupled to a 3D
TI surface [29,30]. Magnetic skyrmions can give rise to bound
states on TI surfaces [31]. In regard to transport properties, the
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single magnetic skyrmion was found to induce an anomalous
Hall effect on TI surfaces that is different from the conven-
tional topological Hall effect [32]. The skew scattering from
the skyrmion is robust against geometric deformation [33].
Most of these analyses focused on Bloch-type skyrmions,
and approximations such as hard-wall approximations were
employed to model the skyrmion structure, inevitably losing
the twisting information of the skyrmion.

In this paper we explore the phase diagram of a magnetic
cobalt adatom lattice on a TI surface and investigate the effect
of different twisted magnetic structures on the TI surface
states. The remaining parts of the paper are organized as
follows. In Sec. II, we describe the results of first-principles
calculations on the geometry of cobalt atoms adsorbed on the
surface of a typical TI, Bi2Se3. The magnetic properties of Co
atoms are also discussed. In Sec. III, we calculate the magnetic
interactions between the Co adatoms. Then Ginzburg-Landau
theory is used to analyze the magnetic phase diagram of a
Co adatom lattice. Magnetic structures of spin spirals and
skyrmions are found to be achievable. In Sec. IV, we numeri-
cally solve the problem of TI surface Dirac electrons coupled
to the twisted magnetic structures. The electronic states under
the magnetic background of a spin spiral, a single skyrmion,
and a skyrmion lattice are discussed. The paper is concluded
in Sec. V.

II. GEOMETRIC AND MAGNETIC PROPERTIES
OF THE ADATOM

The material Bi2Se3 has a layered structure consisting
of Se-Bi-Se-Bi-Se quintuple layers (QLs) stacking along the
crystallographic c axis. Each atomic layer forms a triangular
lattice, and they stack in the ABCAB sequence within each
QL [see Fig. 1(a)]. The two topmost atomic layers of Bi
and Se, enclosed by the dashed rectangle in Fig. 1(a), make
up a honeycomb lattice when viewed from the z direction,
as shown in Fig. 1(b). The equilibrium position of a mag-
netic cobalt atom adsorbed on the surface is determined by
first-principles calculations (see details in Appendix A). It is
found that among the three typical adsorption sites marked by
colored crosses in Fig. 1(b), site A is the most stable one. The
height of the Co atom is 0.24 Å lower than the top Se layer.
Thus the Co adatom can be seen as an interstitial impurity
occupying the hollow site buried a little bit into the Bi2Se3

(111) surface.
In the absence of spin-orbit coupling (SOC), the magnetic

moment of the Co adatom is 1.0 μB from our first-principles
calculation. To investigate the electron configuration, the band
structure of a 3 × 3 supercell is plotted, where the weight
of different Co atomic orbitals is color coded as presented
in Figs. 2(a)–2(h). It can be seen that the 3d states of the
Co atom lie inside the bulk gap of Bi2Se3. Due to the C3v

point-group symmetry of the adsorption site A, the five 3d
orbitals split into three sets in their energies: {dxz, dyz}, {dz2},
and {dx2−y2 , dxy}. In contrast to the empty 4s orbitals, most
of the 3d orbitals are fully occupied except the {dx2−y2 , dxy}
manifold, which has an unpaired electron. From this observa-
tion, it can be inferred that the electron configuration of the
Co adatom is 4s03d9, and the filling is schematically shown in
Fig. 2(i). There is no doping from Co to Bi2Se3 when the SOC
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FIG. 1. (a) A side view of a QL of Bi2Se3. (b) Viewing from
the z direction, the two topmost atomic layers enclosed by a dashed
rectangle in (a) form a hexagonal lattice with the primitive cell
indicated by a rhombus. Three typical adsorption sites are marked
by colored crosses, in which site A is most stable. (c) The 3 × 3
supercell used for calculating the magnetic interactions between two
Co adatoms connected by a mirror plane σv . (d) A triangular lattice
formed by the Co adatoms.

in the system is shut off, only that the two 4s electrons are
transferred into the 3d shell. This is different from the isolated
Co atom, which has the electron configuration 4s23d7. The
existence of only one unpaired electron explains the 1.0 μB

magnetic moment.
The SOC slightly raises the magnetic moment of the Co

adatom to about 1.2 μB. The increase can be attributed to
the doping effect of the Co electrons into the surface state
of Bi2Se3. To see this, the band structures without and with
SOC are compared in Fig. 3. The weight of the Co atomic
orbitals is color coded. Without SOC, the bands originating
from the Co atom are nearly flat, indicating that the Co 3d
electrons are well isolated. When SOC is turned on, the Co
bands overlap and hybridize with those from Bi2Se3. The band
hybridization leads to a fraction of the Co electrons doping
into the Bi2Se3 surface. Because of such doping, the unpaired
part of the Co electrons becomes larger considering Hund’s
rule, which accounts for the larger magnetic moment.

In Fig. 3 one can further see that the surface state of Bi2Se3

is gapped, and only the upper massive Dirac cone is in the bulk
band gap. This is because we use a slab of one quintuple layer
in our first-principles calculations. The surface states of the
top and the bottom layer overlap in the bulk and hybridize,
leading to the gap opening [34,35].

III. MAGNETIC INTERACTIONS OF ADATOMS AND
MAGNETIC PHASE DIAGRAM

OF THE ADATOM LATTICE

To calculate the magnetic interactions between two Co
adatoms on neighboring A sites, we use a 3 × 3 supercell as
shown in Fig. 1(c). The spin-spin interactions between them
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FIG. 2. The band structures of the (a)–(d) majority spin and (e)–(h) minority spin of a Co atom adsorbed on a 3 × 3 supercell of Bi2Se3

without the spin-orbit interaction. The color represents the weight of different Co atomic orbitals: 4s [(a) and (e)], 3dxy + 3dyz [(b) and (f)],
3dz2 [(c) and (g)], and 3dx2−y2 + 3dxy [(d) and (h)]. The Fermi level is shifted to E = 0. (i) schematically represents the occupancy of the Co
3d shell.

can be described by the Hamiltonian

H12 = S1·
↔
J ·S2. (1)

The system has a mirror symmetry σv with respect to the plane
which perpendicularly bisects the line joining atoms 1 and

2. With such a symmetry constraint, the tensor
↔
J takes the

general form

↔
J=

⎡
⎣ Jxx Dz �xz

−Dz Jyy Dx

�xz −Dx Jzz

⎤
⎦, (2)

in which Jii (i = x, y, z) are Heisenberg interactions, Dx and
Dz are DMIs, and �xz is the off-diagonal pseudodipolar inter-
action.

The results of the parameters in
↔
J are listed in Table I (see

methods in Appendix B). For convenience, we have rescaled
the interaction parameters for a normalized spin |S| = 1. It
can be seen that the symmetry requirement of �xy = �yz =
Dy = 0 is confirmed by first-principles calculations. It is clear
that the Co adatoms are mainly coupled by the Heisenberg
ferromagnetic interaction. Besides, there are the DMI and the
pseudodipolar interaction. Both of them are relativistic SOC
effects. The former is made nonzero by the broken inversion
symmetry of the TI surface. Among them, the DMI can lead

FIG. 3. Comparison of the band structure of a Co atom adsorbed
on a 3 × 3 supercell of Bi2Se3 (a) without and (b) with spin-orbit
interaction. The weight of the Co atomic orbitals is color coded. The
Fermi level is shifted to E = 0.

to more interesting magnetic structures than ferromagnetism.
In the following, we assume a high coverage of Co adatoms
located on the A sites and arranged in a triangular lattice as
shown in Fig. 1(d).

To discuss the magnetic ground state, we derive the contin-
uum model from the microscopic magnetic interaction model
and make use of the Ginzburg-Landau theory. In the long-
wavelength limit, one can expand the spin distribution to the
second order,

Sμ(r + δr) ≈ Sμ(r) + δr · ∇Sμ(r) + 1
2 (δr · ∇)2Sμ(r), (3)

and obtain the zero-temperature free energy under external
magnetic field B = (0, 0, B) up to quadratic order of S(r)

F �
∫

d2r
{

J̃1

2
[(∂xSx )2 + (∂ySy)2] + J̃2

2
[(∂xSy)2 + (∂ySx )2]

+ J̃3

2
[(∂xSz )2 + (∂ySz )2] + (J̃1 − J̃2)∂xSx∂ySy

+ �̃(∂xSx∂xSz − 2∂xSy∂ySz − ∂ySx∂ySz )

+ 2D̃(Sx∂xSz + Sy∂ySz ) + ÃS2
z + C̃S2 − BSz

}
, (4)

where the coefficients are related to the microscopic parame-
ters as

J̃1 = −
√

3

2
(Jxx + 3Jyy), J̃2 = −

√
3

2
(3Jxx + Jyy), (5)

J̃3 = −2
√

3Jzz, �̃ =
√

3�xz, D̃ = 2
√

3

a
Dx, (6)

TABLE I. First-principles calculation results of the magnetic
interaction parameters in Eq. (1), in units of meV. The interacting
spins have been normalized to unit vectors, |S| = 1.

Jxx Jyy Jzz �xy �xz �yz Dx Dy Dz

−56.12 −57.19 −60.12 0.00 −0.38 0.00 −0.41 0.00 1.03
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Ã = 2
√

3

a2

(
2Jzz − Jxx − Jyy + 2

3
A

)
, (7)

C̃ = 2
√

3

a2
(Jxx + Jyy). (8)

Here, a = 4.11 Å is the adatom lattice constant, and a
contribution from single-ion anisotropy A has been incor-
porated in Ã. The first-principles calculation finds a tiny
A = −0.04 meV. Note that the low-energy continuum model,
Eq. (4), has the same form as in Ref. [36] except for the
lattice-dependent coefficients in Eqs. (5)–(8). This is because
in the Ginzburg-Landau theory the underlying microscopic
differences are coarse grained and it relies solely on the C3v

point-group symmetry.
The magnetic structures of the free energy with the form

of Eq. (4) have been discussed in detail [36]. Here, we review
the main conclusions. The free energy can be split into two
parts, F = F0 + F ′, in which F0 contains the J̃1, J̃2, J̃3, D̃,
and B terms. One can make the approximation J̃1 ≈ J̃2 ≈ J̃3

and treat the difference F ′ as a perturbation according to their
values in Table I. The ground state of F0 is a spin spiral

S(r) = [φ1 sin(q · r) cos θ, φ1 sin(q · r)

× sin θ, φ1 cos(q · r) + φ0] (9)

with the propagation vector q = Q(cos θ, sin θ, 0), Q =
|D̃/J̃|. The additional ferromagnetic component φ0 comes
from the partial spin polarization under the external magnetic
field and satisfies the global normalization constraint [37]

〈|S(r)|2〉 = φ2
1 + φ2

0 = 1. (10)

The contour degeneracy of arbitrary θ for the free energy
is quite similar to the case in spiral spin liquids [38]. The
inclusion of F ′ leads to a hexagonal warping in the free energy
landscape and six discrete propagation directions favored by
the ground-state spin spiral.

As more terms beyond quadratic order are considered,
spin spirals with different directions of propagation vectors
can interact with each other, resulting in the superposition of
several spin spirals. The leading term of such a correction is a
quartic one �F ∝ ∫

d2r|S(r)|4. It makes possible the ground
state being the skyrmion lattice (SkX)

S(r) =
6∑

i=1

φie
ιq·r ei√

2
+ φ0ez, (11)

where qi = Q(cos θi, sin θi, 0) and ei = 1√
2
(−ι cos θi,−ι sin

θi, 1). The θi’s and φi’s have the relationship θ2 = θ1 + 2π/3,
θ3 = θ1 + 4π/3, θi+3 = θi + π , and φi+3 = φ∗

i (i = 1, 2, 3).
The SkX is composed of three spin spirals whose propagation
vectors have a relative angle of 120◦ with one another. Their
amplitudes are subject to the constraint

∑3
i=1 |φi|2 + φ2

0 = 1.
After comparing the free energy including the quartic term

between the spin spiral, Eq. (9), and the SkX, Eq. (11), it was
found that when the external magnetic field strength lies in the
range

5D̃2/J̃√
457

< B < D̃2/J̃, (12)

FIG. 4. (a) The phase diagram for the spin spiral, skyrmion
lattice (SkX), and ferromagnetic (FM) structure. The small yellow
region below the red dashed line is a magnetic structure in which
the spin directions are twisted but can be continuously connected to
the FM phase. The calculated material parameters are shown by the
vertical line. (b) A typical spin configuration of the SkX phase, where
the out-of-plane component Sz is indicated by the colors.

the SkX will have lower energy than the spin spiral [36]. Here,
J̃ is the average of J̃1, J̃2, and J̃3. We draw the phase diagram
on the B–D2

x/|J| plane in Fig. 4(a), in which B is converted
to units of milliteslas and J is the average of J1, J2, and
J3. The calculated material parameters are indicated by the
vertical black line. The magnetic field strength corresponding
to the SkX phase is about tens of milliteslas, which is quite
accessible in the laboratory. The wavelength of the spin spiral
is λ = 2π/Q = 364 nm. A typical spin distribution of the
SkX phase is presented in Fig. 4(b). The distance between
two adjacent skyrmion centers is 2λ/

√
3 = 421 nm. The spin

spiral and the SkX are both of the Néel type, with the spins
rotating in the plane spanned by the wave vector and the
surface normal. Note that although the external magnetic field
influences the energetics among different magnetic structures
and adds some ferromagnetic spin components into the spin
spiral and SkX, it does not alter their periods.

IV. DIRAC ELECTRONS COUPLE
TO MAGNETIC TEXTURES

In the previous section, we have investigated the twisting
effect of Dirac electrons on the magnetic interactions between
adsorbed Co atoms. It gives rise to versatile magnetic orders
as shown in Fig. 4(a). Once the spin spiral or SkX is formed
on the adatom lattice, the Dirac electrons could interact with
the large-scale magnetic texture S(r) conversely via Kondo
(or Hund’s) coupling. In general, this coupling tends to align
the spin of the electrons with the orientation of local moment,
an inverse process of the spin transfer torque effect. However,
further complexities would inevitably emerge when the spin-
momentum locking is incorporated for the Dirac electrons.
Such a process can be modeled by the following Hamiltonian:

H = vF(p × σ ) · ẑ − JexS(r) · σ

2
. (13)

The first term is a Rashba-type Hamiltonian describing the
surface state of Bi2Se3 [1], and the second term is Kondo
(or Hund’s) coupling between the electron spin and the spin
of the magnetic adatom. Because the ferromagnetic exchange
coupling Jex is typically much larger than the Zeeman energy
arising from the external magnetic field, we neglect the latter
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FIG. 5. The band structures of Dirac electrons on the TI surface
coupled to a spiral magnetic structure, with (a) ky = 0 and (b) kx = 0.
(c) The spin configuration of the spiral magnetic structure is shown
in the upper panel. The modulus squared of the wave functions of the
valence states at k = (0,−k0 )Q and k = (0, +k0)Q (with k0 = 0.1)
are shown in the middle and lower panels, respectively. The direc-
tions of the group velocity are represented by the white arrows.

hereinafter for the sake of simplicity. In this section, we ex-
plore the fate of Dirac electrons under the fixed background
spin texture S(r) of a spin spiral, a single skyrmion, and a
skyrmion lattice.

A. The spin spiral case

We first consider a spin spiral propagating along the x
direction, whose spin configuration is

S(r) = (sin Qx, 0, cos Qx). (14)

Because of the periodicity along the x and y directions, the
electron wave function ψ (r) can be expanded by plane waves
with a cutoff N ,

ψ (r) = eι(kxx+kyy)
∑
|n|�N

eιnQx

[
un

vn

]
. (15)

By taking the coupling parameter Jex = 1 in units of h̄vFQ, we
solve this eigenvalue problem in N = 5. The Fermi energy is
determined by requiring half filling of the energy bands and is
tuned to E = 0. Then without the coupling to the spin spiral,
the Fermi energy lies at the Dirac point of the surface state.

From the band structures shown in Figs. 5(a) and 5(b), one
can see that after coupling to the spin spiral, the TI surface re-
mains a semimetal, with the Fermi energy still lying at a Dirac
cone. The spatial distributions of two wave functions with
k = (0,±k0)Q on the negative branch of the Dirac cone are
presented in Fig. 5(c). Here, k0 = 0.1. By comparing with the
spin configuration of the spiral structure, it can be seen that the
wave functions localize around the domain walls with Sz = 0.
The wave function at the domain wall with Sx >0 (Sx < 0)
has a velocity vy > 0 (vy < 0). The spatial distribution and
velocity of the states near the Fermi energy are reminiscent of
the chiral edge states of the quantum Hall effect. For a small
Q, the magnetic structure varies rather smoothly, so that an
electron may only feel the environment surrounding it. In the
Sz �= 0 areas, the electron behaves as if its band structure has

a Dirac mass whose sign is determined by the sign of Sz. In
the transition region where Sz changes its sign, the absolute
value of Dirac mass decreases to zero and then increases.
The existence of gapless states at the domain walls can be
understood qualitatively in this way.

We further comment on the possibility of thermal fluc-
tuations in the spin spiral state. As the energy scale of the
exchange is much lower than the electron bandwidth, the
thermal fluctuations would affect the magnetism first. It is
known that the thermal fluctuations often convert the coplanar
spin spiral state into a collinear spin density wave state before
the system enters the paramagnetic state. If the collinear spin
density wave state modulates with the Sz component, the chi-
ral edge mode associated with the domain walls persists until
the system becomes paramagnetic.

It is illuminating to make a connection with the early
work on magnetic domains on the surface of topological
insulators. There, on the domain wall between two neighbor-
ing ferromagnetic domains, there exists a conducting chiral
edge mode. This is because the neighboring ferromagnetic
domains with opposite magnetic orders perpendicular to the
surface have opposite Chern numbers [1]. This domain chiral
edge mode has been realized experimentally on the surface
of magnetic topological insulators [39,40], and with a more
controlled method with the strong permanent magnet placed
atop the GaAs/AlGaAs quantum Hall heterojunction [41].
The spin modulation of the spin spiral state with one spiral
period can be approximately viewed as one domain wall,
and there will naturally be a chiral edge mode associated
with it.

B. The single-skyrmion case

Being an example of a topologically nontrivial magnetic
texture, a skyrmion could influence the flow of electron spins
and even nucleate itinerant electrons through the spin transfer
torque effect. This is quite different from the spin spiral case.
Before considering the SkX, we first clarify the physics of
Dirac electrons within a single skyrmion in order to get some
insight. To achieve this, the effective Hamiltonian in Eq. (13)

FIG. 6. A Néel-type skyrmion on a disk of radius R. The out-of-
plane components Sz are indicated by the colors. (b) The low-energy
spectrum of the surface Dirac electrons coupled to a single skyrmion,
showing chiral edge states (colored in red) inside the gap. (c) The
probability density |�|2 of the edge state with near-zero energy,
marked as a solid red circle in (b).
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is applied to an open system with the disk geometry of radius
R as shown in Fig. 6(a). Note that only the spin momentum
σ is involved in the exchange interaction and the possible
contribution from the orbital momentum L = r × p due to the
nucleation is not considered at this stage. As analyzed in the
previous section, the skyrmion on the surface of Co/Bi2Se3

is of the Néel type and hence can generally be written in the
polar coordinates r = (r, θ ) as

S(r) =
[
cos θ sin

(π

R
r
)
, sin θ sin

(π

R
r
)
, cos

(π

R
r
)]

, (16)

so that at the skyrmion core r = 0 we have S(r) = [0, 0, 1]
and at the skyrmion boundary r = R we have S(r) =
[0, 0,−1].

It can be verified that the z component of the total angular
momentum Jz = −ιh̄∂θ + h̄/2σz commutes with the effective

Hamiltonian in Eq. (13) and thus provides a good quantum
number jz. The wave function has the general form

�(r, θ ) =
[

u�(r)eι�θ

v�(r)eι(�+1)θ

]
(17)

with an integer �, satisfying Jz�(r, θ ) = jz h̄�(r, θ ) with
jz = � + 1/2. The Hamiltonian in Eq. (13) can be further
separated into angular and radial parts, and the latter reads

H�

[
u�(r)
v�(r)

]
= E�

[
u�(r)
v�(r)

]
, (18)

where

H� =
[ − Jex

2 cos
(

π
R r

) −h̄vF
(

∂
∂r + �+1

r

) − Jex
2 sin

(
π
R r

)
h̄vF

(
∂
∂r − �

r

) − Jex
2 sin

(
π
R r

) + Jex
2 cos

(
π
R r

)
]
. (19)

The radial Hamiltonian can be solved in each subspace of
fixed angular momentum quantum number � by expanding
the radial wave functions u�(r) and v�(r) in the Fourier-Bessel
series with a cutoff N [42],

u�(r) =
N∑

n=1

unϕ�,n(r), v�(r) =
N∑

n=1

vnϕ�+1,n(r). (20)

The orthonormal basis is defined by

ϕ�,n(r) =
√

2

RJ�+1( j�,n)
J�

(
j�,n

r

R

)
, n = 1, . . . , N, (21)

where the parameter j�,n is the nth zero of the �-order Bessel
function of the first kind J�(x). The Dirichlet boundary condi-
tion has been assumed implicitly. This approximation reduces
the radial Hamiltonian to a 2N × 2N matrix eigenvalue prob-
lem [ −C�,� T�,�+1 − S�,�+1

T�+1,� − S�+1,� +C�+1,�+1

]
ψ� = E�ψ�, (22)

where ψT
� = (u1, . . . , uN , v1, . . . , vN ). The matrix elements

of the Hamiltonian are given by

(C�,�′ )n,n′ = Jex

2

∫ R

0
cos

(π

R
r
)
ϕ�,n(r)ϕ�′,n′ (r)rdr, (23)

(S�,�′ )n,n′ = Jex

2

∫ R

0
sin

(π

R
r
)
ϕ�,n(r)ϕ�′,n′ (r)rdr, (24)

(T�,�+1)n,n′ = +2h̄vF

R

j�,n j�+1,n′

j2
�,n − j2

�+1,n′
, (25)

(T�+1,�)n,n′ = −2h̄vF

R

j�+1,n j�,n′

j2
�+1,n − j2

�,n′
. (26)

The Fermi velocity of a Bi2Se3 surface Dirac electron
is about h̄vF = 329 meV nm. For numerical convenience, a
characteristic length r0 is defined such that the energy unit
h̄vF/r0 = 100 meV, which gives r0 ≈ 3.3 nm. Based on the
analysis of density functional theory (DFT) and Ginzburg-
Landau theory, the typical radius of a single skyrmion is

estimated to be R = 60 in units of r0. With the coupling
Jex = 40 meV and a cutoff N = 100 on the Fourier-Bessel
basis, the low-energy spectrum is computed and depicted in
Fig. 6(b). In the total angular momentum space, the Dirac
electrons open an energy gap immediately, and a chiral edge
model emerges concurrently inside. This can be understood
through the skyrmion topology. The swirling structure of a
skyrmion is characterized by the topological charge, which
counts the times that S(r) wraps a virtual sphere. For a single
Néel-type skyrmion with a unit topological number shown
in Fig. 6(a), the winding of spins divides the disk into two
regions bounded by r = R/2. Both the net magnetization and
its resulting Dirac mass have opposite signs inside and outside
the boundary. Therefore there must be a closing and reopening
of the bulk energy gap when crossing from one region to
another, which produces edge modes near the boundary. In
Fig. 6(c), the probability density |�|2 for one of such edge
states with near-zero energy is shown and compared with the
skyrmion spin texture. In addition, the degeneracy of states
with ± jz is lifted by the coupling due to the spin-momentum
locking, and only the one with smaller energy can be local-
ized on the boundary. This endows the edge mode with a
chirality.

C. The skyrmion lattice case

To investigate the effect arising from the pure spin texture
of the skyrmion lattice, we neglect the possible ferromagnetic
component in the spin configuration. Although the SkX phase
has a lower energy than the ferromagnetic and spin spiral
phase only in the application of the external magnetic field,
there are energy barriers among them, meaning that even
though the magnetic field is turned off, the SkX state can still
be metastable, with no ferromagnetic component.

The SkX solution of the Ginzburg-Landau free energy is
given by Eq. (11). After turning off the ferromagnetic compo-
nent φ0, the spin distribution of the SkX under investigation
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FIG. 7. (a) The band structure of the topological surface state
coupled to a skyrmion lattice. (b) The spin configuration of the
skyrmion lattice is shown in the upper panel. The wave-function
distributions of the conduction and valence states at the � point are
shown in the middle and the lower panels, respectively. (c) The Berry
curvature distributions of the valence and conduction bands near the
Dirac gap are shown in the left and the right panels, respectively.

is

S(r) =
[

1√
3

(
sin Qx + sin

Qx

2
cos

√
3Qy

2

)
,

cos
Qx

2
sin

√
3Qy

2
,

1√
3

(
cos Qx + 2 cos

Qx

2
cos

√
3Qy

2

)]
, (27)

which corresponds to the case of φ1 = 1 and θ1 = 0 in
Eq. (11). The wave vector Q = |D̃/J̃| implies a SkX lattice
constant of 421 nm. It has the symmetry of a triangular lattice
as shown in Fig. 4(b). Therefore Bloch’s theorem can be
employed to expand the wave function as

ψ (r) = eιk·r ∑
n1n2

eι(n1b1+n2b2 )·r
[

un1n2

vn1n2

]
, (28)

where k lies in the first Brillouin zone and b1, b2 are the
two primitive vectors of the reciprocal lattice. As in the spin
spiral case, Hund’s coupling is also chosen to be Jex = 1 in
units of h̄vFQ. We use the cutoff |n1| and |n2| � 5 to solve
the eigenvalue problem, and the band structure is plotted in
Fig. 7(a).

In contrast to the spin spiral case, when the Dirac electrons
couple to a skyrmion lattice, an energy gap opens at the Fermi
level. Such a gap opening goes beyond the first-order pertur-
bation, because the second term of Eq. (13) does not couple
the two degenerate states at the unperturbed Dirac point when
〈Sz(r)〉 = 0. Hence the energy gap is small compared with the
value of Jex. The spatial distributions of the wave functions
of the conduction and valence states at the � point are pre-
sented in Fig. 7(b). It can be seen that the conduction states
concentrate around the skyrmion cores, while the valence
states concentrate around the boundaries between skyrmions.

It is more comfortable for the Dirac electrons to settle in the
regions where Sz ≈ 0 as expected. The wave-function distri-
butions are similar to the case of topologically trivial electrons
coupled to antiferromagnetic skyrmions [43], in which, when
the electrons concentrate at the skyrmion centers, they are
confined in a ringlike configuration. The localized electrons
charge the skyrmions and have certain overlaps with each
other. As a result, one can construct a tight-binding model
through the effective Wannier orbitals on a charged SkX and
investigate its low-energy properties. This physics has been
discussed in a very recent work [44].

The coupling between Dirac electrons and the magnetic
structure breaks the time-reversal symmetry. Because a gap
opens at the Dirac point, the Berry curvatures in gen-
eral can be nonzero. We calculate the Berry curvatures of
the valence and conduction bands around the � point and
present the results in Fig. 7(c). It is found that in this region,
most of the Berry curvatures distribute near the � point and
have opposite signs for the conduction and valence bands.
Because Bi2Se3 is usually n doped, there are some electrons
at the bottom of the conduction band. The nonvanishing Berry
curvature of these electrons will bring about the anomalous
Hall effect (AHE) on a SkX [45]. It should be emphasized
that the AHE in this system is not quite like the “conventional”
one, in which the Hall resistivity is empirically proportional to
the magnetization, which is zero in our case.

Phenomenologically, the AHE is similar to the topological
Hall effect (THE) [46] commonly found on skyrmion lattices.
In the THE, the electron experiences an emergent magnetic
field that is essentially the real-space Berry phase of the
electron hopping on the magnetic texture due to the scalar
spin chirality, with the electron spin aligned with that of the
magnetic moment. In our case, the electron is described by
a Rashba Hamiltonian with a strong spin-momentum locking
and already has the momentum-space Berry curvature. The
spin-orbit coupling prevents the electron spin from aligning
with the local magnetic moment. Still, the electron spin ro-
tates slightly during the hopping process, and a Berry phase
is accumulated for a closed loop in the real space. So this
is an example where both real-space Berry curvature and
momentum-space Berry curvature are present. The Berry cur-
vature distribution for both bands is depicted in Fig. 7(c).

V. DISCUSSION AND CONCLUSIONS

In our first-principles calculation of the magnetic inter-
actions between the Co adatoms, Bi2Se3 is assumed to be
intrinsic, i.e., the Fermi surface of the surface electrons is right
at the Dirac point. In this case, the magnetic interaction mainly
comes from direct exchange and superexchange mechanisms.
In reality, Bi2Se3 crystals grown in laboratories are n doped
due to the Se vacancies and antisite defects [47,48]. Neverthe-
less, the Fermi level can be tuned by further doping [49,50]. If
the surface electrons have finite Fermi surface, the Ruderman-
Kittel-Kasuya-Yosida (RKKY) mechanism will contribute to
the magnetic interactions [28]. The RKKY interaction was
found to be always ferromagnetic when the Fermi level lies
near the surface Dirac point [28]. Also, the RKKY interac-
tion has a DMI component when considering the spin-orbit
coupling [51]. Therefore, even for the case of finite doping,
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the magnetic interaction tensor (2) remains valid, and the
Heisenberg part retains its ferromagnetic nature. We expect
only quantitative change in the phase diagram of Fig. 4.

The discussion of the topological surface electrons cou-
pling to the magnetic structures can be generalized to
other topological materials, especially stoichiometric mag-
netic topological insulators such as MnBi2Te4 [52,53], as
mentioned in Ref. [54]. These platforms are easier to fabricate
in laboratories.

In conclusion, we calculate the magnetic interactions be-
tween cobalt adatoms on the topological insulator Bi2Se3

(111) surface. The Heisenberg part of the interaction is
ferromagnetic. Because of the broken inversion symmetry
and strong spin-orbit coupling on the surface, there is also
Dzyaloshinskii-Moriya interaction, which twists the spins of
Co atoms from a perfectly parallel alignment. We use the
Ginzburg-Landau theory to establish the phase diagram of a
Co adatom lattice. With the aid of a small external magnetic
field, a spin spiral and a skyrmion lattice can be stabilized,
besides the ferromagnetic phase. The topological surface state
under the influence of a spin spiral, a single skyrmion, and
a skyrmion lattice is numerically solved. Chiral conducting
modes are found on the domain walls with zero out-of-plane
magnetic moment in a spin spiral. Similar chiral modes are
also found on the boundary of a single skyrmion. For a
skyrmion lattice, a gap opens at the surface Dirac point, lead-
ing to the anomalous Hall effect.

Note added. Recently, we become aware of two recent
works by Paul and Fu [54] and by Divic et al. [44], in which
some similar results are obtained.
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APPENDIX A: DETAILS OF THE FIRST-PRINCIPLES
CALCULATIONS AND THE ADSORPTION

OF COBALT ATOMS

In this Appendix we describe the model geometry and
technical details of the first-principles calculations carried out
in this paper.

For the QL-stacked Bi2Se3, we consider one QL slab
with experimental lattice parameters [55] and build a slab
model of a 20-Å-thick vacuum layer to investigate the
adsorption of cobalt atoms on the surface and magnetic

interactions between them. The first-principles calculations
based on density functional theory (DFT) [56,57] are per-
formed with plane-wave basis sets and the pseudopotential
method, as implemented in the QUANTUM ESPRESSO package
[58,59]. Perdew-Zunger parametrization of the local density
approximation [60] is employed for the exchange-correlation
functional. The projector augmented-wave [61] pseudopoten-
tials in the PSLIBRARY [62,63] (version 1.0.0) are adopted. The
energy cutoff of the plane-wave basis set is chosen to be 70
Ry. The position of the Co adatom is relaxed by the Broyden-
Fletcher-Goldfarb-Shanno (BFGS) quasi-Newton algorithm
until the Hellmann-Feynman force is less than 0.001 Ry/bohr.
The Brillouin zone is sampled by a 3 × 3 × 1 grid in structure
relaxations and self-consistent charge density calculations. In
magnetic interaction calculations, a 5 × 5 × 1 grid is em-
ployed. Spin-orbit coupling (SOC) is included in all the
energy calculations unless explicitly stated otherwise.

Three typical adsorption positions are calculated, and their
energies are compared. As marked by colored crosses in
Fig. 1(b), they are above a hollow (site A), above a Bi atom
(site B), and above a Se atom (site C). The equilibrium ad-
sorption positions of these sites have different heights relative
to the surface Se atomic layer. Specifically, site A is 0.24 Å
below the Se layer, while site B and site C are 0.65 and 2.12
Å above the Se layer, respectively. The adsorption energies
on these sites are further computed using a 3 × 3 supercell.
It is found that the most stable adsorption site is site A, with
energy 0.71 and 3.14 eV lower than the energies of sites B and
C, respectively.

APPENDIX B: THE DETERMINATION OF SPIN
INTERACTION PARAMETERS

To calculate the magnetic interactions between two Co
adatoms on neighboring A sites, we use a 3 × 3 supercell as
shown in Fig. 1(c). In addition, we use the energy-mapping
method [64,65] to determine the interaction parameters in
Eq. (2) from DFT calculations. For example, we would like
to calculate the Jxy component. Then two magnetic configu-
rations are constructed: (1) S1 = (S, 0, 0), S2 = (0, S, 0); and
(2) S1 = (S, 0, 0), S2 = (0,−S, 0). We constrain the magni-
tude and direction of the magnetic moment of the two Co
atoms and calculate the total energy of the system, E1 and E2,
by DFT. By the spin-spin interaction model in Eq. (1),

E1 = E0 + JxyS2, (B1)

E2 = E0 − JxyS2, (B2)

where E0 is the energy of other parts of the system. Then Jxy

can be obtained from E1 and E2,

Jxy = E1 + E2

2
. (B3)

A similar method can be used to calculate Jyx; then �xy =
(Jxy + Jyx )/2 (which should be zero by symmetry) and Dz =
(Jxy − Jyx )/2 can be obtained.
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