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The goal of this study was the development of a control
method for the levitation stabilization of an aerody-
namically levitated train called “Aero-Train,” which
is a high-speed and high-efficiency train system that
levitates using the wing-in-ground effect acting on a
U-shaped guideway. To achieve this goal, the authors
have been developing the experimental manned ve-
hicle ART003R. This paper provides an overview of
ART003R and its control system. Moreover, a descrip-
tion is given of the results of preliminary levitation ex-
periments using simple PD control, which confirmed
the effectiveness of the developed control system hard-
ware.
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1. Introduction

The recent expansion of the range, scale, and types of
activities undertaken by human beings has created global
environmental problems. Thus, the realization of high-
efficiency transportation systems is an important task that
will benefit society. On the other hand, there has been
a great demand for high-speed systems. Therefore, the
next-generation transportation system should have both
characteristics: high efficiency and high speed.

For this purpose, Kohama et al. [1–3] proposed an
aerodynamically levitated high-efficiency and high-speed
transportation system called “Aero-Train,” as shown in
Fig. 1(a). Aero-Train has wings and levitates on a U-
shaped guideway by utilizing the wing-in-ground (WIG)
effect [4], in which the lift-to-drag ratio increases greatly
as a result of the air cushion effect under the wings, when
they approach the ground or a water surface. This sys-
tem has several advantages: the wind drag of the vehicle
body from the guideway is lower than that of a magneti-
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(a) Concept image [3] (b) ART002 prototype [13]

(c) ARTE01 prototype [15]
Fig. 1. Concept and prototypes of Aero-Train.

cally levitated train (MAGLEV), and it is safer and more
efficient than WIG-effect crafts on a water surface [5–8]
because of using a solid guideway. Kohama et al. stud-
ied the levitation height at which this phenomenon is ef-
fective, along with the lift-to-drag ratio under the WIG
effect and the optimal design of the wing and vehicle [9–
12]. Furthermore, actual levitation in manual operation
has been achieved using the ART002 prototype shown in
Fig. 1(b).

To provide levitation stabilization control of Aero-
Train, based on the distance between the guideway and
vehicle body, a simple PD control [14] and PID con-
trol [13] have been studied using the ART002 prototype.
However, the performance of this prototype has been un-
stable, because the low control frequency of 50 Hz and
low accuracy and response of the hobby-use RC servo-
actuators used to drive the moving blades have been in-
sufficient, and the controller has not been based on a dy-
namical model of a WIG-effect vehicle. The authors de-
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Fig. 2. Orthographic views of experimental manned WIG effect vehicle ART003R.

veloped a small and lightweight experimental WIG-effect
vehicle (ARTE01) that can levitate at low speed, as shown
in Fig. 1(c), derived 6-DOF dynamic model that included
the WIG effect, and designed a controller based on this
model for the vehicle height, roll and pitch angles by us-
ing state feedback based on a linear quadratic regulator.
Through experiments, its effectiveness at achieving stable
levitation running under a WIG effect with strong nonlin-
earity was confirmed [15, 16].

Taking this knowledge into account, Kohama et al.
started to develop an experimental manned prototype of
Aero-Train (ART003R) that runs at speeds greater than
150 km/h, and the authors have been developing the levi-
tation control system based on the controller of ARTE01.

A brief overview of this manned prototype (ART003R)
was given in [17]. This paper describes the details of the
experimental manned WIG-effect vehicle ART003R and
its control system hardware. Furthermore, the results of a
preliminary experiment to confirm the basic performances
of the developed hardware are described.

2. Experimental Manned Wing-In-Ground
Vehicle ART003R

2.1. Structure and Equipment

The orthographic views, the isometric views, a photo-
graph, and the specifications of the experimental manned
WIG-effect vehicle ART003R, are provided in Figs. 2, 3,
and 4 and Table 1, respectively.

ART003R has two levitation wings at the bottom of the
front and rear of the vehicle body in a tandem configu-
ration, along with four guide wings at the tips of these
levitation wings. The cross section of the guideway is
U-shaped, and the levitation wings generate the lift force
for levitation using the WIG effect on the under-surface
of the guideway, whereas the guide wings use the WIG

Vehicle body

Guide wingLevitation wing

Levitation wing

Canopy

Propeller

Guide wing

Thrust motor

Rear left rudder

+

+

+

+

+

+

+

Rear left aileron frap

Rear right aileron frap Rear right rudder

Front right aileron frap

Front right rudder

Front right aileron frap

Front right rudder

φ θ

ψ
X

Y

Z

φ

θψ

X

YZ

φ θ

ψ
X Y

Z

Guide wheel

Guide wheel
Sideward laser displacement meter

Downward laser displacement meterLanding wheel

Thrust motor
Propeller

Anemometer

Fig. 3. Overview of ART003R [17].

effect to generate lift for repulsion from the sidewall of
the guideway to maintain the straightness of the course.
The dimensions of the wings were designed based on the
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Fig. 4. Photograph of ART003R running on guideway.

Table 1. Specifications.

Model No. ART003R
Dimension / Weight

Height 950 mm
Width 3260 mm
Length 8700 mm
Weight 474 kg

Material Incombustible magnesium
Levitation wing

Wing number 2
Airfoil NACA4408 modified
Chord length 1500 mm
Wing span 3260 mm
Angle of attack (front) 2◦
Angle of attack (rear) 2.5◦

Guide wing
Wing number 4
Airfoil NACA4408 modified
Mean chord length 900 mm
Wing span 950 mm
Angle of attack (front) 3◦
Angle of attack (rear) 3◦

Moving blade
Aileron flap 4
Rudder 4

Thruster
Number 4
Model No. A200-6
Maximum Power 15 kW
Speed Controller MasterSpin 220 OPTO

Actuator
Number 10
Model No. RSF-14B-100
Rated power 18.9 W
Maximum torque 28 Nm
Maximum speed 60 rpm

Computer
CPU Intel Pentium M 1.8 GHz
CPU board PCI-6881F-00A2E
AD converter board PCI-3135
DA converter board PCI-3346A
Pulse counter board PCI-6205C
OS QNX 6.1.0
Control frequency 1 kHz

Sensors
Laser displacement meter LD-1300L-200 ×5
Air speedometer 6332D + 0964-02
Revolution meter E3C-LR + E3C-LDA + K3HB-RNB ×2

guideway in Miyazaki prefecture, which is used for MA-
GLEV experiments conducted by the Railway Technical
Research Institute, where the experiments with ART003R
have also been conducted. The levitation wings and guide
wings employed a NACA 4408 modified airfoil, which is

Fig. 5. Control system configuration [17].

considered to be effective at utilizing the WIG effect. To
provide thrust, each side of the vehicle body was equipped
with two by two motors and propellers of the type used for
model aircraft.

The vehicle body is primarily made of a non-
combustible magnesium alloy [18] developed by
Sakamoto et al. The vehicle body was designed as a
monocoque construction and has spaces for two passen-
ger seats. The landing wheels have disk brakes on the
undersurface and wheels on the side of the guide wings to
prevent collisions with the sidewall of the guideway. It is
also equipped with a parachute for braking at high speed.

Each levitation wing has aileron flaps on its posterior
border on the right and left sides, and each guide wing has
a rudder. In contrast to a normal airplane, each moving
blade can be controlled independently using a servomotor
with a harmonic drive reduction gear.

This prototype has three laser displacement sensors on
the undersurface, with two at the tips of the levitation
wings to measure the distance between the guideway and
the vehicle body. In addition, it is equipped with an
anemometer to measure the air speed and rotational speed
meters for the propellers.

2.2. Control System Configuration
The control system configuration of ART003R is

shown in Fig. 5.
The control computer works with a control cycle of

1 ms. It computes the position along the Y - and Z-axes
and the orientation about the roll, pitch, and yaw axes of
the vehicle based on the distance between the guideway
and the vehicle body measured using laser displacement
meters. It also computes the moving blade angles based
on the control law, and controls them. This control com-
puter also measures the air speed and rotational speed of
the thrust propellers.
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In the experiment, a car for surveillance followed the
ART003R. From the point of view of safety, the thrust
propellers, disk brakes, and parachute were manually op-
erated via a radio control signal from the car. In the fu-
ture, a feedback system will be configured for the running
speed, including the control of the thrust propellers. In ad-
dition, an emergency stop switch for the controller could
be operated from the surveillance car via a wireless IO
unit.

3. Preliminary Experiment

As a preliminary step in the control system design of
ART003R based on its dynamic model and state equa-
tion, a preliminary levitation running experiment using a
simple PD controller was conducted.

3.1. Controller
In the case of a normal airplane, in consideration of

small disturbances during steady horizontal flight, the re-
lationship between the moving blade angle and the varia-
tion in the lift force is usually considered to be a simple
proportional relation [19]. Ishizuka investigated this re-
lationship under the WIG effect using several angles of
attack and distances from the ground in wind tunnel ex-
periments [20]. Fig. 6 shows the relationship between the
moving blade angle δ and the lift coefficient CL under sev-
eral angles of attack α , cord lengths c, and heights for the
rear edge of the wing from the ground h. It can be seen
that the relationship is also proportional under the WIG
effect.

Based on this knowledge, in this preliminary controller,
the control variable of each state variable was computed
based on a simple PD control, and the moving blade an-
gles were computed as these summations.

δδδ = AAAuuu
uuu = KKKPΔxxx+KKKDΔẋxx

}
. . . . . . . . . (1)

where δδδ is a moving blade angle vector, AAA is a matrix that
is specific for the vehicle structure, uuu is a control vector,
KKKP and KKKD are the proportional and velocity gain matri-
ces, and Δxxx is a state vector.

The elements of each matrix are as follows:

δδδ =
[
δ f ra f δ f la f δrra f δrla f δ f rd δrrd

]T

AAA =

⎡
⎢⎢⎢⎢⎢⎣

1 −1 1 0 0
1 1 1 0 0
1 −1 −1 0 0
1 1 −1 0 0
0 0 0 1 1
0 0 0 1 −1

⎤
⎥⎥⎥⎥⎥⎦

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

(2)

uuu =
[
uz uφ uθ uy uψ

]T

Δxxx =
[
Δz Δφ Δθ Δy Δψ

]T

KKKP = diag
[
KPz KPφ KPθ KPy KPψ

]
KKKD = diag

[
KDz KDφ KDθ KDy KDψ

]

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(3)

δ deg δ deg

(a) α = 2◦ (b) α = 4◦

δ deg

(c) α = 6◦ (d) Symbols

Fig. 6. Experimental results of lift coefficient [20].

where uz, uφ , uθ , uy, and uψ are control variables along
the Z- and Y -axes and about the roll, pitch and yaw axes;
Δz, Δφ , Δθ , Δy, and Δψ are the errors from the desired
value along the Z- and Y -axes and about the roll, pitch,
and yaw axes; and δ f ra f , δ f la f , δrra f , δrla f , δ f rd , and δrrd
are the angles of the front right, front left, rear right, and
rear left aileron flaps and the front and rear rudders, re-
spectively.

The purpose of the experiment was to evaluate the hard-
ware, including its integrated control system, as a prelim-
inary step toward a 6-DOF controller design based on the
dynamic model. Therefore, in this step, a simple PD con-
trol law without integral action was used, which has rela-
tively high robustness.

The KKKP and KKKD components were tuned heuristically,
with attention given to safety.

3.2. Experiment
Using the developed ART003R and control system, a

levitation experiment in the described guideway was con-
ducted. In this experiment, ART003R was pushed by a
car until its speed reached 100 km/h (28 m/s). It then ac-
celerated using its thrust propellers. Because of the length
limitation of the guideway, the levitation time was approx-
imately 30 s in this experiment. The desired height of the
COG was set at 450 mm. In this case, the desired levita-
tion height was 50 mm, because the COG height when the
wheels were landing was 400 mm.

The experimental results are shown in Figs. 7, 8, and
9. Fig. 7(a) shows the air speed. Figs. 7(b) and (c) show
the revolution speed of the thrust propellers. Figs. 8(a)
and (b) show the position of the COG with respect to the
center line of the surface of the guideway, and Figs. 8(c),
(d), and (e) show the orientation of the vehicle body. The
levitation height is the value left when 400 is subtracted
from Z, as shown in Fig. 8(b). Figs. 9(a), (b), (c), and (d)
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Fig. 7. Experimental results (1 of 3).

shows the blade angles of aileron flaps and rudders.
As shown in Fig. 7(a), the revolution speeds peaked

at 168–207 s, and the air speed was accelerating in this
period. After 183 s, the vehicle was in the cruise condition
with a maximum speed of 43–45 m/s (155–162 km/h).
Fig. 10 shows snapshots of the vehicle during this period.
After 207 s, braking was started by the halt of the thrust
propellers and parachute.

As shown in Fig. 8(b), the levitation height increased
with the acceleration of the air speed, and it was main-
tained at 80–100 mm in the cruise condition. In this
period, although a small vibration with an amplitude of
20 mm was seen, it can be said that stable levitation
was realized. However, considering the desired height of
50 mm, the 30–50 mm error seen here is a stationary error.
From Figs. 9(a) and (b), all the aileron flaps maintained
negative angles to decrease the lift in this cruise condi-
tion. In particular, considering that the desired levitation
height is 50 mm and the unevenness of the road surface of
the guideway is about 10 mm, the desirable vibration am-
plitude is considered to be approximately 10 mm. These
results show that there is still room for improvement in
the gain and offset value of the blade angle.

The pitch angle shown in Fig. 8(d) is stable without a
large pitch-up under the increase in air speed and levita-
tion height during the acceleration phase from the start of
levitation to the start of the cruise period. In contrast, the
roll angle shown in Fig. 8(c) has a small vibration and
stationary error. It was mainly affected by the extremely
low S/N ratio because the distance between the right and
left laser sensors, which was used to compute the roll an-
gle, was a tenth of the distance between the front and rear
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Fig. 8. Experimental results (2 of 3).

sensors used to compute the pitch angle. In addition, as
shown in Fig. 10, no large vibration could be visually con-
firmed.

In relation to the lateral-directional motions, as shown
in Fig. 8(a), although the motion along the Y -axis shows
a continuous vibration from the acceleration phase to the
start of the cruise period, it is relatively stable in the cruise
condition. In the same way, as shown in Fig. 8(e), the yaw
motion also has a large vibration until the cruise condi-
tion but is then stable in the cruise condition. Although
it is necessary to discuss the characteristics of the guide
wings based on additional experimental results, it can be
said that a sufficient lift force for guiding and vibration
suppression using guide wings with shorter spans than the
levitation wings requires a higher air speed than that re-
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Fig. 9. Experimental results (3 of 3).

quired for levitation.
From these results, although the control performance

left much room for improvement, it could be confirmed
that ART003R could levitate when running at 160 km/h,
and the developed hardware could control the levitation
height and orientation of the vehicle during levitation.

4. Conclusions and Future Work

In this paper, an overview was given of the hardware,
the control system configuration, and the results of a pre-
liminary experiment for the experimental manned WIG-
effect vehicle ART003R. This prototype has two levita-
tion wings and four guide wings with aileron flaps and
rudders, and it utilizes the WIG effect for levitation and
guiding. Its body is made of a non-combustible mag-
nesium alloy, and it has four thrust propellers, landing
wheels, a parachute, etc. The control system measures
the distance of the vehicle from the guideway, along with
the air speed and rotational speeds, and controls the mov-
ing blades. The results of a preliminary experiment using
a simple PD control law for the purpose of confirming the

Fig. 10. Snapshots of experiment.
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basic performances of the developed hardware confirmed
that ART003R could levitate at 160 km/h, and the devel-
oped hardware could control the levitation height and ori-
entation of the vehicle.

Our next report will discuss a 6-DOF dynamic model
that extends the model described in [15], as well as a
controller design based on this model, which was briefly
shown in [21].

In parallel, the authors will develop a control system
for the traveling speed by using air speed feedback for
ART003R. Future work will also include investigations on
the stability and the modeling and control of the vehicle
motion on a curved and banked guideway, during the ac-
celeration and deceleration phases, and at higher speeds.
In addition, a controller will also be designed that takes
advantage of the nonlinearity of the WIG effect. Studies
on appropriate WIG vehicle structures for a train system
are also interesting from the design and control points of
view.
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