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ABSTRACT 3D Instance segmentation is a fundamental task in computer vision. Effective segmentation
plays an important role in robotic tasks, augmented reality, autonomous driving, etc. With the ascendancy
of convolutional neural networks in 2D image processing, the use of deep learning methods to segment 3D
point clouds receives much attention. A great convergence of training loss often requires a large amount of
human-annotated data, while making such a 3D dataset is time-consuming. This paper proposes a method
for training convolutional neural networks to predict instance segmentation results using synthetic data. The
proposedmethod is based on the SGPN framework.We replaced the original feature extractor with ‘‘dynamic
graph convolutional neural networks’’ that learned how to extract local geometric features and proposed a
simple and effective loss function, making the network more focused on hard examples. We experimentally
proved that the proposed method significantly outperforms the state-of-the-art method in both Stanford 3D
Indoor Semantics Dataset and our datasets.

INDEX TERMS Point cloud, instance segmentation, deep learning.

I. INTRODUCTION
Segmentation is an important means to make data easier
to understand and analyze. It is helpful for robot tasks [1],
autonomous driving [2], augmented reality [3], and visual
servoing [4]. Generally, the RGBD image or scene point
cloud contains a lot of redundant information, for instance,
irrelevant objects and background. It is necessary to grab
related details that contain asmany key factors as possible and
as few irrelevant contents (interference, noise) as possible.

Some progress has been made in point cloud segmenta-
tion using deep learning [5]–[8]. In this paper, we focus
on bin-picking scenes, where a large number of identical
parts are piled up in a box waiting to be aligned. Before
pose estimation of parts, an effective segmentation method is
beneficial. The segmentation method does not only mitigate
computational cost but also improve the precision of pose
estimation [9]–[13]. However, these image-based methods
are easy to get the defective point cloud by image-based
segmentation methods that do not use point cloud directly.

The associate editor coordinating the review of this manuscript and
approving it for publication was Huiyu Zhou.

For example, Liu et al. [11] locate the object in the image
using convolutional neural networks (CNN) [14]–[17], and
then obtain the corresponding point cloud through bounding
box or mask [9]–[11]. Li et al. [1] and Li and Hashimoto [13]
simply divided the point cloud into many regions of
interest (ROI).

Inspired by SGPN [7], which uses a single network for
performing instance segmentation on point clouds, we pro-
pose a simple and effective method. The proposed method
reduces the cost of generating a dataset and improves esti-
mation accuracy. Unlike many current instance segmentation
methods based on 2D image [18] or 3D point cloud [19], [20],
where RGB image or color information plays an important
role, the proposed method requires only point cloud without
color. Thus the proposed method can obtain the training data
by synthesis. With this method, we can recognize almost all
the target objects in the scene and pick out the appropriate
point cloud for some robot tasks such as pose estimation and
grasping. Note that, although the training dataset is synthetic,
the test results were performed on real data.

We made some significant improvements under the frame-
work of SGPN [7], which uses PointNet/PointNet++ [5], [6]
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as a feature extractor and predicts instance segmentation
based on regression of a similarity matrix, a confidence
map, and a semantic prediction. Because PointNet does not
show enough performance for the extraction of local informa-
tion [6], we replace it with the network structure of Dynamic
Graph CNN (DGCNN)’s segmentation model [8]. Besides,
we propose a focal double-hinge loss function to make the
network more focused on the segmentation for difficult cases,
as shown in Section III-B.

The main contributions of our works are shown below:
• Performance of instance segmentation by the pro-
posed method outperforms SGPN [7] on the Stanford
Large-Scale 3D Indoor Spaces Dataset (S3DIS) [21]
and our dataset due to the improvements of feature
extractor.

• The proposed method requires only point cloud. Thus
training datasets can be generated from simulation and
easily applied to other objects.

• A novel loss function is proposed and applied to make
the training loss easier to converge compared to the loss
function of SGPN.

• The proposed Graph CNN trained by synthetic data has
excellent performance on real data.

• Experimental results for the proposed method shows
the high accuracy of pose estimation of piled-up
objects.

The remainder of this paper is organized as follows: Section II
introduces some previous progresses and the structure of
SGPN. Section III proposes a method of instance segmen-
tation of point cloud. Section IV proves the validity of the
proposed method with S3DIS dataset and our dataset for
cluttered scene. Section V concludes the paper.

II. RELATED WORK
Object detection and segmentation are core tasks of
computer vision. Extracting features from the image by
CNN [22], [23] has a better performance than the con-
ventional methods which use hand-crafted features [24].
On the other hand, the past decade has witnessed a rapid
increase in the demand for understanding and application
of 3D scenes. Pioneers used 3D convolutional neural net-
works on voxelized shapes [25]. This simple, 3D network-like
structure for 3D point clouds, requires high memory
requirement and computational cost that limit the practical
application.

A. SEGMENTATION ON 2D
FCNs [26] uses a fully connected network (FCN) structure
to predict the category of each pixel, which is an end-to-
end semantic segmentation network. In SegNet [27], the fully
connected network is replaced with the encoder-decoder
network, which reduces the computational time and makes
predictions more accurate. Since semantic segmentation is
unable to distinguish object instances, He et al. [18] and
Dai et al. [28] propose methods of instance segmentation.
Based on the work of Faster R-CNN [17], Mask R-CNN [18]

adds a subnet to predict themask of objects. New training data
needs to be created to identify new objects, thus the process
is time-consuming and laborious. Moreover, data quality can
also have an unpredictable effect on prediction results.

B. SEGMENTATION ON POINT CLOUD
In the past few decades, research using point cloud has
achieved remarkable achievements. High-quality point cloud
scanning technology [29], [30] and breakthroughs in machine
learning have strongly promoted the progress in this field. But
so far, there are not many methods for point clouds instance
segmentation. The methods proposed by Yi et al. [19]
and Hou et al. [20] require not only point cloud but also
RGB images. Making such a dataset is resource and time-
consuming.

The usual point cloud is unordered, therefore they are
invariant to permutations of its members. For the permutation
invariance of point clouds, most pioneers prefer to deal with
point clouds in a way that handles 2D images, transforming
point cloud data to 3D voxel grids [25], [31]. These methods
are limited by computational cost. PointNet [5] uses symmet-
ric function to address the permutation invariance of point
clouds.

Because PointNet treat each point individually, learn
features of each point by multi-layer perception, it does
not perform well in the extraction of local information.
Wang et al. [8] and Qi et al. [6] explore the local information
of point clouds by searching for the nearest or similar points
in embedding space.

Based on PointNet, SGPN [7] proposes a novel method
of point cloud instance segmentation. Due to its excellent
performance and flexibility, we propose a new method of
point cloud instance segmentation based on it.

C. STRUCTURE OF SGPN
SGPN [7] formulates instance segmentation as a clustering
problem. It uses PointNet to extract features of point clouds
and train a network to predict semantic results, a similar-
ity matrix and point-wise confidence from which instance
segmentation results were generated. As shown in Figure 2,
SGPN uses a feature extractor to extract features F of size
Np×Nf . Np is the size of point cloud and Nf is the dimension
of feature. F are fed into three subnets, and three feature
matrices FSIM , FCF , FSEM are generated with the same shape
Np × Nf . Three subnets are responsible for generating the
similarity matrix, point-wise confidence map, and seman-
tic segmentation map, respectively. The loss of SGPN is a
combination of three subnets. L = LSIM + LCF + LSEM .
In brief, SGPN makes the points belonging to the same
instance closer in the embedded space, transforming the seg-
mentation problem into a clustering problem.

1) FEATURE EXTRACTOR
SGPN uses the segmentation network of PointNet to extract
features of point cloud. Each point corresponds to a
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128-dimensional feature, and then these features are sent into
three subnetworks for further processing.

2) SIMILARITY MATRIX
In the FSIM , the ith row of feature matrix is a Nf -dimensional
tensor representing the position of point Pi in the embedded
space. similarity matrix subnet uses the acquired features
FSIM to generate a similarity matrix S. The size of S is
Np × Np. The element Sij in the S is the feature distance
of each point pair in the embedded space, which implicitly
indicates whether the points Pi and Pj belong to the same
instance. SGPN makes the similar point pairs have a close
feature distance in the embedded space, although they are far
away in the physical space. The relationships of each pair of
points Pi,Pj are defined as three classes: 1) Pi and Pj belong
to the same instance; 2) Pi and Pj are in the same category
but belong to different instances; 3) Pi and Pj do not belong
to the same category. Their loss function is:

LSIM =
Np∑
i

Np∑
j

l(i, j)

l(i, j)=


‖FSIMi − FSIMj‖2 Cij = 1
αmax(0,K1 − ‖FSIMi − FSIMj‖2) Cij = 2
max(0,K2 − ‖FSIMi − FSIMj‖2) Cij = 3

(1)

where FSIMi is the feature of Pi in the embedding space,
Cij represents the similarity classes of corresponding point i
and j. α, K1, K2 are constants. α > 1 is to increase the
weight of semantic segmentation loss. AndK1 < K2, because
the feature distance of point pairs of different categories in
embedding space should be greater than that of the same
category.

3) CONFIDENCE MAP
The confidence map is a Np × 1 matrix that indicates how
confidently the model thinks the grouping candidate provided
by the point is correct. SGPN regresses confidencemap based
on ground truth groups G as the same form Np × Np as
similaritymatrix. Each row of the similaritymatrix is a cluster
proposal: the same instance is less than a certain threshold.
For this group proposal, SGPN compares the result of this
prediction with ground truth and calculate the intersection
over union (IoU). The larger the IoU, the closer the predicted
result is to the real cluster, and the more credible the grouping
candidate is. The loss LCF between predict group and ground
truth group is the L2 loss.

4) SEMANTIC SEGMENTATION MAP
The semantic segmentation map is a point classifier. The
number of categories isNc. SGPN sends FSEM into the subnet
and outputs a Np × Nc sized matrix MSEM . The element
MSEMij represents the likelihood that the point belongs to
each category. The LSEM of the semantic segmentation map
is calculated through cross-entropy function.

FIGURE 1. Instance segmentation results generated by the proposed
method. We first use the same method as [1] to obtain boundary points,
and output instance labels for each boundary point. (a) Organized point
cloud of Scene. (b) Boundary points in scene cloud. (c) Instance
segmentation on boundary point clouds.

III. METHOD
We propose a novel method for instance segmentation on
point cloud without color. Figure 1 illustrates the real scene
and our instance segmentation result. Inspired by the method
of SGPN, which treats instance segmentation as a clustering
problem, we directly perform instance segmentation on our
boundary point cloud dataset. Boundary points of real scenes
are captured by the method proposed in [1]. The boundary
points are extracted by performing the Canny Edge algorithm
on the RGB image and mapping the corresponding pixels
to the point cloud in the scene. We train the network with
synthetic data and evaluate our proposed network with real
data.

We use DGCNN [8] instead of PointNet as feature extrac-
tor of SGPN. DGCNN is a semantic segmentation network
with a similar structure to PointNet. The difference is that
DGCNN introduces a novel algorithm named EdgeConv [8],
which exploit local geometric structures and learn global
feature. These features are vital when the synthesized data is
missing color information. Besides, for our scenes, we have
made some adjustments to the loss function and added a dis-
tance mask in the prediction stage. The details are explained
in Sec III-B and III-C. Our method is experimentally proven
to have better performs on our data set and S3DIS.

A. REPLACE FEATURE EXTRACTOR
The point cloud information we synthesize contains only
coordinates, so local features become particularly important.
However, PointNet used as the feature extractor in SGPN
processes points individually so that the network is unable to
learn local features. The problem is caused by the absence of
color information because it is difficult to determine the cate-
gory of a point only by space coordinates. To solve the prob-
lem, we first replace feature extractor PointNet with DGCNN
and evaluate this modification on S3DIS. We experimen-
tally prove that such a replacement is effective. We report
the recognition results of 12 categories (except clutter). The
effect of such a replacement plays more important role on our
datasets that do not contain color information.

B. FOCAL DOUBLE-HINGE LOSS
SGPN [7] divides the relationship of point pair{Pi,Pj} into
three classes. Inspired by RetinaNet [32], we make the
network more focused on some point pairs, which are on
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FIGURE 2. Network architecture of modified SGPN. We feed the boundary point cloud into the network and output the instance result for each
point. The features of each point are extracted by DGCNN and then sent to three subnetworks respectively. Np is the size of point cloud, we set
Np = 4096. Nc is the number of object categories, in S3DIS Nc = 13, in our dataset Nc = 1.

the boundary of two different instances. When the feature
distance of the point pair is less than a certain threshold, it can
be regarded as the same instance. Thus, there is no need for
2 points to contribute to the loss function if they are already
close enough. To achieve this, we redefine the loss function
as follows:

L∗SIM =
Np∑
i

Np∑
j

l∗(i, j)

l∗(i, j)=


βmax(0, ‖FSIMi − FSIMj‖2 −M1) Cij = 1
αmax(0,M2 − ‖FSIMi − FSIMj‖2) Cij = 2
max(0,M3 − ‖FSIMi − FSIMj‖2) Cij = 3

(2)

α, β, M1, M2 and M3 are constants such that β > α > 1,
M3 > M2 > M1 > 0. Compared to the original loss
function, the proposed loss function tends to make the feature
distance between two points in the same instance smaller
than the threshold M1 but not need to close to zero. Thus
the contribution of easily distinguishable point pairs is down-
weighted. Through the improvement, we can find that the
prediction results have been greatly improved.

C. DISTANCE-MASK
Inspired by Hinterstoisser et al. [12], if the distance dij
between two points is greater than the longest distance dmax
in the model, then these two points cannot belong to the same
instance as shown in Figure 3. So, we add a distance judgment
during the process of clustering points. If their euclidean
distance exceeds the maximum size, even if they are very
close in embedding space, they will not be regarded as the
same instance. We show the improvement effect in Table 2.

IV. EXPERIMENT
We compared the segmentation accuracy of our proposed
network with SGPN on S3DIS. The results of SGPN are
implemented by the author’s code published on GitHub [33].
Scannet Evaluation [34] is adopted to evaluate test results.
The predicted instance is considered to be true positive only
if the IoU between each predicted and ground truth group is
greater than 0.5. An experiment of pose estimation using our

FIGURE 3. The blue circle corresponds to the Distance-Mask of the Pi ,
and the radius of the circle is the longest distance dmax in the model.
Even if Pi and Pj have high similarity in the embedded space, they will
not be grouped into one object. Clustering errors can be reduced after
adding Distance-Mask.

dataset is further conducted to prove the validity of segmen-
tation. Our method is implemented in the Tensorflow frame-
work and the hardware devices are an Nvidia GTX1080, Intel
Core i7 8700K CPU, and 32G RAM. We use an ADAM [35]
optimizer with initial learning rate 0.0001, batch size 2 and
momentum 0.9. The network is trained for 200 epochs, which
took about 10 hours on each part. During the training phase,
α = is set to 2 initially and is increased by 2 every 5 epochs,
with a maximum of 10. we set β = 2 to balance the loss,
and M1 = 5,M2 = 10,M3 = 80. M1,M2, and M3 are set
according to experience and need to satisfy the relationship
of 0 < M1 < M2 < M3. Different values have no obvious
influence on the results in our experiment.

• S3DIS: The data set involves 3D scans in 6 areas cov-
ering 272 rooms. Each point has instance and semantic
labels of 13 semantic categories. the network is trained
by S3DIS except Area 5 and the network is evaluated by
Area 5 of S3DIS. Note that Area 5 did not appear in the
rest of the area.

• Our dataset: We use three industrial parts to evaluate
the proposed method. Synthesized scenes are generated
as the same method as [1], involving 1000 training
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FIGURE 4. (a), (b) and (c) are the models. (d), (e), and (f) are the synthetic
boundary point cloud scenes. We visualize the training set and represent
different objects in the same scene in different colors.

FIGURE 5. Qualitative results of SGPN and ours on the S3DIS. The first col
is the real scene, the second col is the ground truth, the third col is the
instance segmentation results of SGPN, the last col is the instance
segmentation results of ours.

samples. The test samples are real scenes and the ground
truth instance labels are made manually. There are 20 to
30 identical types of parts randomly piled up in a scene.
Each scene contains about 60,000 boundary points. Each
point in the scene has instance annotations. The parts are
texture-less and have no discernible color. The models
and examples of synthetic scenes are presented in Fig-
ure 4. Note that, both of training samples and test sam-
ples only contain the boundary points of parts.

A. S3DIS INSTANCE SEGMENTATION
Same as SGPN, we use each point as a 9-Dimension vec-
tor (XYZ, RGB, and normalized spatial coordinates). The
experimental settings have not changed. Each room is divided
into many 1m × 1m blocks, and then 4096 points are sam-
pled. In the test phase, we use all points as the input.
Our method is implemented with Tensorflow, Python, and a
single GTX1080 GPU. Benefiting from our improvements,
Table 1 shows the results on S3DIS, which outperforms
SGPN by 4.8-point. The metric is average precision (AP) for
each category with an IoU threshold of 0.5. The visualization
results are shown in Figure 5.

B. REAL SCENES INSTANCE SEGMENTATION
Figure 6(e) shows instance segmentation results on
different real scene. Note that only synthetic data is used
during training. Most of the boundary point clouds of

FIGURE 6. (a) is the real scenes. (b) is the organized point cloud of
scenes. (c) col is the boundary point cloud of scenes. (d) is the instance
results of SGPN. (e) is the instance results of ours.

container are removed before instance segmentation. Differ-
ent instances are represented by different colors. We eval-
uated the segmentation accuracy using two backbones:
PointNet and DGCNN. To evaluate our predicted results,
we manually make 20 ground truth of Part A. The effect
of focal double-hinge loss function and distance mask are
reported in Table 2. The metric is AP with IoU threshold
of 0.5 and 0.75.

C. POSE ESTIMATION
We test the proposed method in picking scenes where a
large number of industrial parts are arranged in a highly
unstructured manner in a container. Industrial robots need
to measure the 6D pose of the object before handling it.
Point pair feature (PPF) based methods or its variants are
currently the most effective methods [1], [36]–[39], while
pose estimation remains a challenging task with much room
for improvement.

We apply the proposed segmentation method to the pick-
ing scene. With our segmentation method, the pose estima-
tion method achieves a higher result. The number of points
clouds in the model is P, these point groups which contain
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TABLE 1. The results of instance segmentation in S3DIS. NL: new loss function.

FIGURE 7. (a) is the real scene. (b) is the boundary point cloud of scene. (d) is the instance results of ours. (e) is the results of the pose estimation.
We estimate three results for each scene.

(1 ± 10%)P point clouds are selected as candidates for pose
estimation from the recognition results of each scene.

PPF-MEAM [1] is used to estimate the pose of parts.
PPF-MEAM creates point pair features on the boundary point

cloud. Many candidate poses are generated by comparing the
point pair features in the model and the real scene. Next,
a Hough-like voting scheme is performed to estimate the pose
of the part.
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TABLE 2. The Results Of instance segmentation in our part a scenes. NL:
new loss function, DM: distance-mask.

TABLE 3. The results of pose estimation on our bin-picking scenes.

We reported the recognition rate in Table 3. The results
are shown in Figure 7. Each scene contains approximately
80,000 points, 20 to 30 identical parts with random poses.
After segmenting the point clouds in the scene, 3 to 5 groups
with the number of points closest to the number of points of
model are selected for pose estimation. The estimated pose
error can be considered correct if it is within an acceptable
range. In our experiment, the metric is 10%× dmax and 5◦ in
rotation.

V. CONCLUSIONS
This paper proposes a simple and elastic method to segment
point cloud at instance-level. We need only the coordinate
information of point clouds, so the proposed method is more
efficient and convenient, and has overcome the biggest defect
of deep learning: dataset. We use S3DIS to confirm that the
modification is effective, and the new loss function improves
the performance of the model. Experiments show that our
algorithm can segment point cloud more precisely than the
original instance segmentation method SGPN and has excel-
lent segmentation performance in cluttered point clouds. Fur-
thermore, we conducted a pose estimation experiment using
the proposed method and showed that the proposed method
could be applied to a precise pose estimation process.
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