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ABSTRACT We propose a CNN based visual servoing scheme for precise positioning of an eye-to-hand
manipulator in which the control input of a robot is calculated directly from images by a neural network.
In this paper, we propose Difference of Encoded Features driven Interaction matrix Network (DEFINet),
a new convolutional neural network (CNN), for eye-to-hand visual servoing. DEFINet estimates a relative
pose between desired and current end-effector from desired and current images captured by an eye-to-hand
camera. DEFINet includes two branches of the same CNN that share weights and encode target and current
images, which is inspired by the architecture of Siamese network. Regression of the relative pose from
the difference of the encoded target and current image features leads to a high positioning accuracy of
visual servoing using DEFINet. The training dataset is generated from sample data collected by operating a
manipulator randomly in task space. The performance of the proposed visual servoing is evaluated through
numerical simulation and experiments using a six-DOF industrial manipulator in a real environment. Both
simulation and experimental results show the effectiveness of the proposed method.

INDEX TERMS Visual servoing, neural network, manipulator.

I. INTRODUCTION
Visual servoing [1], [2] is a method of controlling a robot by
the feedback of features extracted from images in real-time.
Various studies of visual servoing have been conducted so far
such as end-effector pose control of a manipulator [3]–[6],
formation control of multiple mobile robots [7]–[9], posi-
tion and attitude control of unmanned aerial vehicle (UAV)
[10]–[12], control of surgical manipulator [13], [14], and so
on.

Visual servoing is generally classified into two types:
position-based visual servoing (PBVS) and image-based
visual servoing (IBVS) [1], [2]. PBVS is a method of posi-
tioning a robot through the minimization of the difference
between target and current poses of the robot which is
estimated from captured images. PBVS has been attracting
attention due to the recent price reduction and spread of 3D
sensors, and the progress of 3D measurement [15], [16]
and pose estimation [17]–[19] technology. However, PBVS
requires an intrinsic parameter, which results in the
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vulnerability to the errors of the camera parameters. More-
over, the robot and the camera coordinate systems must be
calibrated beforehand, which limits the practical usage of
PBVS.

IBVS is a technique to position a robot by minimizing
the difference between the features extracted from the cur-
rent image and target image. The identification of camera
parameters and the calibration between the robot and the
camera coordinate systems are unnecessary by computing
the matrix called interaction matrix that projects the image
feature vector in image space to a robot motion in Euclidean
space. In traditional IBVS, the positions/poses of geometric
features, such as points and straight lines [1], in the image
plane are commonly chosen as the image features and utilized
to analytically compute the interaction matrix.

Hand-crafted image features such as points and straight
lines can only be applied in some limited objects and
scenes. Instead of extracting geometric features from images,
a method of using the luminance values of images as fea-
tures has been proposed [20], [21]. These methods no longer
require image features matching. However, its convergence
domain is small due to the high nonlinearity between the
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image feature space and the workspace of the robot and the
positioning accuracy is sensitive to lighting conditions and
occlusions. To overcome such limitation, many researches
have been conducted including methods based on Monte
Carlo sequential importance sampling [22], Kalman fil-
ter [23], and Q-learning [24].

Convolutional neural networks (CNN) have shown supe-
rior performance with state-of-the-art method in some areas,
such as object identification [25], [26], camera relocaliza-
tion [27], [28], and pose estimation of objects [29], [30],
etc.. Recently, CNN has been applied to visual servoing
scheme [31]–[33] in order to overcome the limitation of
visual servoing, such as the requirement of hand-crafted
image features, and the sensitivity to lighting conditions and
occlusions.

Saxena et al. [31] trained FlowNetSimple [34] by synthetic
image data to position a camera mounted on UAV and accom-
plished visual servoing through various scenes and target
poses. The networks used in [31] extracts image features
from concatenated two images. To the best of our knowledge,
their research is the first to servo a robot toward a target by
minimizing the estimated relative camera pose between the
target and current.

Bateux et al. [32] trained AlexNet [25] and VGG16 [35]
by image data generated from a single image to position
an eye-in-hand manipulator through perturbation of lighting
conditions and occlusions. Themain contribution of the paper
is to propose a method to generate a training dataset for an
eye-in-hand manipulator from a single image.

Yu et al. [33] proposed a new network based on Siamese
architecture [36] for camera pose estimation to position
an eye-in-hand manipulator. The network proposed by
Yu et al. [33] processes images through two branches of con-
volutional layers which have the same structure and weights.
The network regresses the camera pose from concatenated
two flattened image features that are extracted from two
backbones.

In this paper, we propose Difference of Encoded Fea-
tures driven Interaction matrix Network (DEFINet) (Fig.3)
for CNN based eye-to-hand visual servoing that utilizes
subtracted image features extracted from Siamese architec-
ture for a regression, which results in efficient performance.
DEFINet consists of two parts, the feature extraction part
and the regression part. Inspired by the architecture proposed
in [33], the feature extraction part consists of two networks
with the same structure that share weights to process two
images in parallel. The biggest difference from the network
in [33] is that the difference between the two encoded features
is fed into the regression part to regress the relative pose,
which results in high positioning accuracy. The architecture
of the network is further discussed in Section III. The network
is trained by a dataset for eye-to-hand configuration (Fig.1)
generated from a sample dataset of images collected by oper-
ating a manipulator automatically for a given task space. The
positioning evaluation is conducted through various types of
architecture to reveal the effectiveness of DEFINet.

FIGURE 1. A system to position a grasped object using a camera. The
camera is fixed to the ground.

More precisely, the contributions of this paper are as
follows:

1) We propose DEFINet, a new CNN for visual servoing,
that utilizes subtracted image features extracted from
Siamese architecture based network, which results in
high positioning accuracy.

2) We evaluate the performance of various networks
through numerical simulation and show that the posi-
tioning accuracy and convergence domain of DEFINet
is superior compared to the other networks and direct
visual servoing.

3) We demonstrate that the end-effector of a 6-DoF
manipulator can be positioned in high accuracy in a real
environment. We show that DEFINet can generalize to
unseen lighting conditions, unseen objects, and unseen
occlusions in a real environment.

In the following, Section II overviews existing research
regarding CNN based visual servoing. Section III proposes
DEFINet for a high precision visual servoing. The experi-
mental results of the proposed visual servoing technique are
presented in Section IV. Section V concludes this paper.

II. RELATED WORKS
Deep learning, especially CNN has been applied to
visual feedback control for the position control of robots.
Levine et al. [37] achieved a complex task by a dual manip-
ulator from captured images by using reinforcement learning
and CNN. The reinforcement learning and the CNN are used
to estimate the motor torques to complete tasks such as
opening a lid of a bottle and hanging a hanger to a pole. CNN
is trained by reinforcement learning to learn the policy of the
robot motion for each task. Rahmatizadeh et al. [38] proposed
amethod for multi-task picking and placing tasks by applying
CNN and long short-term memory (LSTM). Images and a
task selection vector are input to CNN and LSTM to generate
robot arm trajectories for the selected task. Levine et al. [39]
applied CNN to estimate the quality of the various candidate
of the command velocity to servo a manipulator towards the
object to grasp it. The manipulator in eye-to-hand config-
uration moves toward an object by applying the command
velocity with the highest quality.

Some researches [31]–[33] use CNN to estimate the rela-
tive pose between target and current images to servo a robot
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toward a given target pose. Note that these methods differ
from [37]–[39] in the sense that the positioning task is accom-
plished by servoing the robot so as to reduce the difference
between the pre-captured target image and the current image.
As mention in Section I, A. Saxena et al. [31] achieved
camera mounted quadrotor (eye-in- hand) positioning into
different target poses in various scenes. CNN takes a concate-
natedmatrix of a current image and a target image and outputs
the relative pose between the current and target camera. The
positioning error evaluated in the synthetic environment is
(x, y, z) = (5.1 mm, 2.8 mm, 0.5 mm), while the posture
error is (x, y, z) = (0.28 deg., 0.42 deg., 0.42 deg.). An
experiment in a real environment is accomplished using the
neural network trained by a publicly available dataset.

As well, Bateux et al. [32] proposed a new method to gen-
erate a dataset from a single image to position an eye-in-hand
manipulator. The micro-meter-order positioning accuracy is
achieved using AlexNet [25] without disturbance and about
10 cm accuracy is achieved for the worst case disturbance
considered in the paper. VGG16 [35] is trained by 100k
images to extend their method toward the scene-agnostic
scheme. The concatenated matrix of the current image and
target image is fed into the neural network to estimate the
relative pose between the current and target camera pose. The
authors succeeded in positioning the manipulator in various
scenes with the same neural network.

Yu et al. [33] proposed a new network for CNN based
visual servoing to position eye-in-hand manipulator for a
VGA-connector insertion task. The desired image and the
current image are fed into Siamese architecture. The two
image features of desired and current images extracted from
the backbones are concatenated to regress the relative pose
between the current and camera pose. The network can reduce
positioning error to 0.6 mm in translation and 0.4 deg. in rota-
tion, from initial errors of 10 mm in translation and 5 deg.
in rotation.

Saxena et al. [31] and Bateux et al. [32] showed that the
convergence domain of the CNN based visual servoing is
larger than that of the conventional visual servoing methods.
However, themajor limitationwas the positioning accuracy in
the vicinity of the desired pose. To overcome the limitation,
Yu et al. [33] focused on the positioning accuracy near the
desired pose and proposed new architecture. In this paper,
we also focus on the positioning accuracy in the vicinity of the
desired pose. We propose a new network based on Siamese
architecture by considering the basics of visual servoing. The
performance of our method is evaluated in both simulation
and real environments.

III. PROPOSED VISUAL SERVOING
In this section, a new CNN based visual servoing scheme is
proposed for a precise positioning task of an industrial object
grasped by a manipulator for a kitting task using an eye-
to-hand system as shown in Fig.1.

The kiting task considered in this paper is an assembly
task including the peg-in-hole problem. For the assembly

FIGURE 2. Block diagram of the proposed visual servoing. The relative
pose between the desired and the current end-effector is estimated by a
neural network.

task, the motion of the manipulator can be divided into two
types of motions: gross-motion and fine-motion [40]. First,
the object is picked up and transferred to the vicinity of
the assembly pose by the gross-motion of the manipulator.
The visual servoing proposed in this paper is for the fine
motion, which is used for precise positioning of the object
for the assembly of the object. The task space is pre-defined
considering the position of the assembly pose, the location
of the camera fixed to the task space, singular points of the
manipulator, and joint constraints.

This section proposes a new visual servoing scheme for the
eye-to-hand system which corresponds to the fine-motion of
the manipulator.

A. CONTROL LAW
Fig.2 shows a block diagram of the proposed visual servoing
system. In contrast to the networks proposed in [31], [32],
and [33], whose outputs are the relative pose of the camera,
our network is trained to estimate the difference between the
current end-effector pose and the desired end-effector pose
r−r∗ from the current image I and target image I∗, where r =
(t f , ηf )

T and r∗ = (t∗f , η
∗
f )
T are the current and desired poses

of the end-effector with respect to the base coordinate of the
robot, respectively. t f and t∗f is defined as the current and
desired translational vector, respectively. ηf and η∗f is defined
as the current and desired rotation vector that is represented in
the XYZ Euler angle, respectively. The output of the network
is expressed as

r− r∗ = f (I∗, I). (1)

The visual servoing can be realized by the following con-
trol law

θ̇ = −λJ−1robot (r− r
∗), (2)

where θ̇ ∈ R6 is the joint velocity commanded to the velocity
servo controller of the manipulator, λ ∈ R is the gain,
and J−1robot is the inverse of the manipulator Jacobian. The
manipulator Jacobian, Jrobot , is defined as a differentiation of
the six-dimensional pose vector with respect to the joint angle
vector. The inverse of themanipulator Jacobian, J−1robot , relates
the endpoint velocity vector to the manipulator joint velocity
vector. The end-effector positioning control is achieved by
servoing the robot toward the target pose by controlling the
joint velocity by (2) in real-time.

B. NETWORK ARCHITECTURE
To estimate the relative pose of the end-effector between
the target and current images, we apply a Siamese network
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architecture [36]. As shown in Fig.3, DEFINet consists of two
parts, the feature extraction part and the regression part.

The feature extraction part contains two parallel CNN
architectures, which share the weights and parameters. Each
branch of the feature extraction part is designed based on
VGG16. The network accepts an input image of size 512 ×
512 × 3 pixels to extract 16 × 16 × 512 feature tensor.
Note that we choose VGG16 as a feature extractor from
the perspective of the estimation accuracy and the prediction
time.

The regression part is composed of a subtraction pro-
cess, a global average pooling layer [41], and a fully con-
nected (FC) layer. The two feature maps (16 × 16 × 1664)
extracted from each branch are fed into the subtraction pro-
cess to obtain a feature map that represents the difference of
the extracted features.

Merging the two feature maps by a concatenating process
could be another solution to process two extracted features.
Although considering the conventional networks proposed
for CNN based visual servoing, we think that the high non-
linearity between the image feature space of the concatenated
tensor and the end-effector space causes the decrease of the
estimation accuracy. The subtraction process constrains the
extracted features to be zero when two input images are the
same. Such constrain mitigates the high nonlinearity between
the image feature space and the end-effector space, which
makes the network easy to learn the feature embedding.

The global average pooling is applied to the subtracted
feature map and produces a 512-dimensional vector. The
commonway of connecting the convolutional layers to the FC
layer is the flattening of the feature maps extracted from con-
volutional layers, although the FC layers are prone to over-
fitting. In [41], global average pooling is proposed to solve
the problem of over-fitting of FC layers. We experimentally
confirmed that the global average pooling is more effective
for over-fitting than the flatten process when trained with our
dataset.

The last layer of the network is the FC layer with 6 units
regressing the XYZ translation vector and XYZ Euler angle
vector. For the FC layer, the Linear activation function is
applied. The output of the network is directly calculated
after the global average pooling. Experimentally, we found
out that it is not necessary to use the fully connected layers
between the layers after the backbone and the output layer.
The high non-linearity between the image feature space and
the output of the network is mitigated by the subtraction
process, therefore, any additional fully connected layers are
unnecessary to learn the feature embedding, which reduces
the parameters of the network and the training time.

C. DATASET
It is essential to have a large number of training data
for precise regression, though gathering such data is time-
consuming. Therefore, we generate a dataset from a few
sampled image data collected using a robot. The proposed
approach is divided into two steps. The first step is to sample

FIGURE 3. The architecture of DEFINet. The two image features extracted
from the feature extraction part are fed into the regression part to
estimate the relative pose between the current and desired end-effector.

a relatively small amount of image data by operating a robot
randomly in the given task space. The second step is to
generate a dataset based on the combinatorial theory using
the data sampled in the first step. By the generated dataset,
the robot can be positioned in the given task space.

In the first step, the hand of the manipulator which grasps
an object is randomly moved i times in a task space around
a reference hand pose. The image I i captured by a camera
and the hand pose ri of the manipulator are stored in every
iteration to form a sample data (I i, ri). In the second step, two
data are chosen randomly from the sample data and a training
data ([I∗, I], 1r) (set of two images and a difference of the
hand pose) is generated using two selected sample data. For
example, if (I1, r1) and (I2, r2) are chosen from the sample
data, training data is ([I1, I2], r1 − r2). At this point, (I1, r1)
corresponds to the target state and (I2, r2) corresponds to the
current state. Using the i-sample data, i2-training data are
collected by brute force. Finally, n data are chosen without
duplication from the i2 training data to reduce the number of
training data. Both input images and outputs are normalized
by their maximum and minimum values, respectively.

D. LEARNING
The Euclidean loss between the estimated vector and the
ground truth vector is computed to regress the relative pose of
the end-effector between the target and current images. The
loss function is defined as

E = α‖1t̃ f −1t f ‖2 + β‖1η̃f −1ηf ‖2 (3)

where 1t̃ f , 1η̃f , 1t f , and 1ηf are the ground-truth of the
relative translation, the ground-truth of the relative orien-
tation, the predicted relative translation, and the predicted
relative orientation. α and β are parameters to adjust the
training speed of translation and rotation vector. In this paper,
α = 1.0 and β = 1.0 are used. The network is trained for
100 epochs by Adadelta [42] using Keras library [43].

IV. EXPERIMENTS AND RESULTS
We first measure the positioning accuracy of the proposed
method and the conventional method through numerical
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TABLE 1. Specification of the PC.

simulation to evaluate the performance of each visual ser-
voing scheme without any disturbances such as flickering
of lights and sunlight from windows. We then implement
the proposed method in a real system and demonstrate the
proposed visual servoing in a real environment. All the exper-
iments are performed using PC shown in Table 1.

A. EXPERIMENT THROUGH NUMERICAL SIMULATIONS
In this experiment, we evaluate the positioning accuracy of
the proposed visual servoing using DEFINet through numer-
ical simulation. The experiments are divided into three parts.
The first part evaluates the positioning accuracy of the object
at the reference pose using DEFINet. The second part evalu-
ates the validation loss of DEFINet and the other networks.
The third part evaluates the average positioning accuracy
to position the object into various target poses using the
proposed DEFINet, the other networks, and direct IBVS.

OpenGL is used to render a six-DOFmanipulator (DENSO
VS-068), a parallel gripper, target objects, and the work-
ing space using CAD models. Three objects, ‘‘Object A’’,
‘‘Object B’’, and ‘‘Object C’’, illustrated in Fig.5, are chosen
for the simulation experiments. The rendered environment
and the target objects are shown in Fig.4 and Fig.5, respec-
tively. The base coordinate system is attached at the base of
the manipulator as shown in Fig.4 (b). 1,000 sample data
are collected by moving the manipulator randomly in the
task space to generate 3,000 training data for each object
as described in Section III-C. 3,000 data of each object are
stacked to generate 9,000 training data. The reference pose
is r = (−440 mm, 75 mm, −1024 mm, 180 deg., 0 deg.,
−180 deg.). The task space is defined as the reference pose
±5 mm in translations along X, Y, Z axes and±5 deg. around
X, Y, Z axes. Fig.6 shows the example images of the training
image data.

In the experiments, we consider a high precision position-
ing task and the small task space is defined. Note that any
dimension of task space can be defined as long as the robot
singular points and physical joint angle limits are not included
in the task space.

1) POSITIONING AT THE REFERENCE POSE
In this section, the positioning accuracy of the object at the
reference pose is evaluated. The initial pose of the visual
servoing is r = (−460 mm, 55 mm, −1044 mm, 160 deg.,
-20 deg., −200 deg.) (Fig.7 (a), Fig.8 (a), Fig.9 (a)) and the
desired pose is r = (−440 mm, 75 mm,−1024 mm, 180 deg.,
0 deg., −180 deg.) (Fig.7 (b), Fig.8 (b), and Fig.9 (b)). It is
worth noting that the initial displacement 1r = (−20 mm,
−20 mm, −20 mm, −20 deg., −20 deg., −20 deg.) is much

FIGURE 4. A manipulator and positioning object rendered by OpenGL.
(a) The overview of the system. A positioning object is grasped by a
gripper. (b) The base coordinate system is attached to the base of the
manipulator. The camera captures images of the object grasped by a
gripper.

FIGURE 5. Three rendered object using CAD models. (a) Object A.
(b) Object B. (c) Object C.

FIGURE 6. The example images of the sampled data. The sample data are
collected by moving the end-effector of the manipulator randomly from a
reference pose. (a) Example sample data of object A. (b) Example sample
data of object B. (c) Example sample data of object C.

larger than the displacement given by the training dataset
(Fig.6). λ = 1.5 is used as a visual servoing gain during
the simulation experiments, which is determined by trial and
error.
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FIGURE 7. The result of positioning object A. (a) Initial pose. The initial
displacement is much larger than the displacement given by the training
dataset. (b) Desired pose. (c) Initial error image. (d) Error image after
visual servoing. (e) The sum of the squared difference between the
desired image and the current image. (f) The absolute difference between
the desired and current pose.

Fig.7 (c), Fig.8 (c), and Fig.9 (c) show the image error of
the initial state of the visual servoing. Fig.7 (d), Fig.8 (d),
and Fig.9 (d) show the image error of the final state of the
visual servoing. Note that the image error is an absolute value
of the difference between desired and current images. Using
the proposed method, the pose of all objects converged to
the desired pose as shown in Fig.7 (e), (f), Fig.8 (e), (f), and
Fig.9 (e), (f). Note that the sum of squared differences (SSD)
are normalized by the value of the initial SSD. The position-
ing error of Object A, Object B, and Object C is |1r| =
(0.003 mm, 0.001 mm, 0.004 mm, 0.008 deg., 0.001 deg.,
0.007 deg.), |1r| = (0.051 mm, 0.084 mm, 0.039 mm,
0.022 deg., 0.013 deg., 0.023 deg.), and |1r| = (0.001 mm,
0.006 mm, 0.002 mm, 0.031 deg., 0.006 deg., 0.027 deg.),
respectively. In spite that the initial pose is located outside
of the task space, the positioning is accomplished by the
generalization of the network.

2) COMPARISON OF VALIDATION LOSS
In this section, the validation loss of DEFINet is compared
with the other networks: Network α and Network β, using
1,000 data prepared for validation. Network α is designed
based on Siamese architecture as same as the networks

FIGURE 8. The result of positioning object B. (a) Initial pose. The initial
displacement is much larger than the displacement given by the training
dataset. (b) Desired pose. (c) Initial error image. (d) Error image after
visual servoing. (e) The sum of the squared difference between the
desired image and the current image. (f) The absolute difference between
the desired and current pose.

proposed in [33]. Each branch of the backbone takes the
desired and current images, respectively. Two extracted
image features are flattened and concatenated with each other
and fed into fully connected layers to output the pose dif-
ference of the end-effector. Network β is designed based on
networks proposed in [31] and [32], which is composed of
backbone and fully connected layers. The backbone takes
a concatenated image of the desired and current images to
output the extracted image feature. The image feature is
flattened and fed into two fully connected layers that consist
of 1024 units to output the pose difference of the end-effector.
Both of the backbones of Network α and Network β is
VGG16 as same as DEFINet. Network α and Network β are
trained using Adagrad [44] due to the trap to a local minimum
when using Adadelta [42].

Fig.10 shows the validation loss of each network. The
validation loss of DEFINet is especially low compared toNet-
work α and Network β, which indicates that the architecture
of DEFINet is effective for visual servoing usage. Further-
more, the comparison between Network α and Network β
reveals that Siamese architecture improves the accuracy of
the estimation.

The training time of the proposed DEFINet is 39.2 hours
using the PC specified in Table 1. The training time of the
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FIGURE 9. The result of positioning object C. (a) Initial pose. The initial
displacement is much larger than the displacement given by the training
dataset. (b) Desired pose. (c) Initial error image. (d) Error image after
visual servoing. (e) The sum of the squared difference between the
desired image and the current image. (f) The absolute difference between
the desired and current pose.

other two networks, Network α and Network β are 55.0 hours
and 26.4 hours, respectively. The prediction time of the
proposed network, Network α, and Nework β are 0.20 s,
0.26 s, and 0.15 s, respectively. The computation time of the
proposed DEFINet is slightly larger than Network β, but the
validation loss of the proposed network is better thanNetwork
β as shown in Fig.10.
Through the validation, we found that the fully connected

layers in the regression part do not affect the prediction
accuracy. DEFINet does not include the fully connected
layers except the output layer. The number of parameters
of DEFINet, Network α, and Network β are 14,717,766,
284,206,918, and 149,990,918, respectively. The number of
the proposed network is less than 10% of the other net-
works. Therefore, the proposed network with two backbone
networks can be trained even using a single GPU such as
GeForce GTX1080.

3) COMPARISON OF POSITIONING ACCURACY
Direct IBVS based on estimated Jacobian [45] is imple-
mented for comparison experiments. The image Jacobian
for each object is estimated from 3,000 data of relative
pose between current and desired end-effector and the

FIGURE 10. The validation loss of DEFINet, Network α, and Network β.
The performance of DEFINet is superior in all of the case. Validation loss
of network that is trained by training data generated from 1,000 sample
data. D, α and β stands for DEFINet, Network α and Network β,
respectively.

difference of the image intensity. Note that Photomet-
ric visual servoing [20] is also implemented using ViSP
library [46], although the pose of the end-effector often con-
verged to local minima.

In this section, the average positioning accuracy to position
the object into various target poses using DEFINet, Network
α, Network β, and direct IBVS is evaluated. The initial pose
and the desired pose are randomly chosen within the range
of ±5 mm in translation and ±5 deg. in rotation from the
reference pose.

The average positioning accuracy of 50 times of trial using
DEFINet, Network α, Network β, and direct IBVS are shown
in Fig.11. Fig.11 (a), (b), and (c) show the experimental
results of positioning Object A, Object B, and Object C,
respectively. Three networks and direct visual servoing suc-
ceeded in positioning all three objects. The positioning accu-
racy of DEFINet is especially high for all the three objects
compared to Network α and Network β. Direct IBVS also
succeeded in positioning Object A and Object C in high
accuracy, however, the positioning accuracy of Object B is
low compared to the other objects. DEFINet succeeded in
positioning all the objects under 0.073 mm translation error
and 0.042 deg. rotation error, while the positioning error of
the other networks and direct IBVS depends on the objects.
The positioning accuracy of each method is shown in Table 2.

Next, the initial pose and the desired pose are randomly
chosen from the range of [−10,−5] mm and [5, 10] in trans-
lation and [−10, −5] deg. and [5, 10] deg. in rotation from
the reference pose, which is outside of the task space. The
objective of this experiment is to evaluate the performance of
positioning outside of the task space.

The average positioning accuracy and the success ratio
through 50 times of trial using DEFINet, Network α, Net-
work β, and direct IBVS are shown in Fig.12. Fig.12 (a),
(b), and (c) shows the experimental results of positioning
Object A, Object B, and Object C, respectively. The average
positioning accuracy is calculated only using the ‘‘success
positioning’’ attempt in which the positioning error is smaller
than the initial error since the pose of the end-effector did not
always converge. The success ratio of positioning Object A
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TABLE 2. Positioning accuracy inside of the task space.

FIGURE 11. The average positioning error of each network and direct
IBVS. The positioning is conducted inside of the task space. D, α, β,
I stand for DEFINet, Network α, Network β, and direct IBVS, respectively.
(a) Positioning error of object A. (b) Positioning error of object B.
(c) Positioning error of object C.

using DEFINet, Network α, Network β, and direct IBVS are
100%, 72%, 82%, and 66%. The success ratio of positioning

Object B using DEFINet, Network α, Network β, and direct
IBVS are 100 %, 62 %, 64 %, and 48 %. The success ratio of
positioning Object C using DEFINet, Network α, Network β,
and direct IBVS are 98%, 74%, 78%, and 72%. The success
ratio of positioning reveals that the convergence domain of
DEFINet is larger than that of Network α, Network β, and
direct IBVS.

As for the positioning accuracy, DEFINet succeeded in
positioning all the objects under 1.259 mm translation error
and 0.485 deg. rotation error, while the positioning error
of the other networks vary depending on the object. The
positioning accuracy of Network α is low compared to Net-
work β, which indicates that Siamese architecture is frag-
ile against unseen initial pose and desired pose. However,
the architecture of the regression part of DEFINet improves
the robustness against the unseen initial pose and desired
pose, which leads to high positioning accuracy outside of the
task space. The positioning accuracy of eachmethod is shown
in Table 3.

B. EXPERIMENT THROUGH REAL ENVIRONMENT
In this section, we measure the performance of position-
ing into a reference pose in a real environment to evalu-
ate the positioning accuracy of DEFINet. Fig.13 shows the
experimental system used for the evaluation. The experi-
mental system consists of a 6-DOF manipulator (DENSO
VS-068), a parallel gripper (TAIYO ESG2) attached to the
manipulator, and an industrial camera (The Imaging Source
DMK33UX265) which captures an image of 512 pixels ×
512 pixels with 60 fps. The experimental system is equipped
with a LED lighting device attached to the frame as shown
in Fig.13 and covered by a black curtain to remove the effect
of the external lighting source. The brightness of the LED
lighting device is kept constant for each lighting condition.

The robot end-effector grasping the object is first posi-
tioned at the target pose to capture the target image. Then the
end-effector of the robot is moved randomly in a predefined
area for visual servoing in the task space. After the visual
servoing is completed, the pose of the manipulator is acquired
by solving the forward kinematics from the joint angles. The
positioning error is measured from the difference between the
desired and final end-effector pose.
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TABLE 3. Positioning accuracy outside of the task space.

FIGURE 12. The average result of the positioning error of each network
and direct IBVS. The positioning is conducted outside of the task space.
D, α, β, I stand for DEFINet, network α, network β, and direct IBVS,
respectively. (a) Positioning error of object A. (b) Positioning error of
object B. (c) Positioning error of object C.

The dataset is generated in the same manner described in
Section III-C. 1,000 sample data are collected to generate

FIGURE 13. Experimental setup in a real environment.

3,000 training data. The network is trained for a single object,
which we name ‘‘Real Object A’’ (Fig.14 (a)). The task space
is defined in the range of [−5, 5] mm in translations along
X, Y, Z axes and [-5, 5] deg. around X, Y, Z axes. The refer-
ence pose is r = (−420.93 mm, 69.17 mm, −1056.53 mm,
180 deg., 0 deg., −180 deg.), where the base coordinate
system is set at the base of the manipulator.

The initial and desired pose of the visual servoing are
r = (−440.93 mm, 49.17 mm, −1076.53 mm, 160 deg.,
−20 deg., −200 deg.) and r = (−420.93 mm, 69.17 mm,
−1056.53 mm, 180 deg., 0 deg., −180 deg.), respectively,
where the difference between initial pose and the desired pose
is given by 1r = (−20 mm, −20 mm, −20 mm, −20 deg.,
−20 deg., −20 deg.). The visual servoing gain λ = 1.0 is
adjusted by trial and error so that the calculated joint velocity
does not exceed the joint angular velocity constraint. The
velocity command is updated at about every 65 ms.

Fig.15 shows the time-series images of visual servoing.
The pose of the manipulator changes dramatically through
the visual servoing to position the object. The object con-
verged into the desired pose, in spite that the difference
between initial pose Fig.16 (a) and the desired pose Fig.16
(b) is much larger than the difference given for the training
dataset.

Fig.16 (c) and (d) show the error image between the desired
and current images of the initial and final state of the visual
servoing, respectively. Despite the large displacement in the
initial state, the desired and current images match exactly
in the final state. The corresponding behavior can be also
observed from Fig.16 (e), where the error of the sum of the
squared difference between the desired and current image
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FIGURE 14. The dimension of each object used in the experiment shown in section IV-B and C. (a) Real Object A. (b) Real
Object B. (c) Real Object C. (d) Real Object D. (e) Real Object E.

FIGURE 15. Time-series images of the visual servoing from 0 s to 8 s. The pose of the manipulator changes dramatically through
visual servoing.

converges near zero. Fig.16 (f) presents the result of the error
of the hand pose. The position error is (x, y, z) = (0.324 mm,
0.110 mm, 0.046 mm) and the posture error is (x, y, z) =
(0.005 deg., 0.075 deg., 0.038 deg.), which can be said that
the proposed method can be used in a practical scene.

C. TOWARDS UNSEEN ENVIRONMENTS
1) POSITIONING UNDER UNSEEN LIGHTING CONDITIONS
In this section, we evaluate the generalization ability of
DEFINet to unseen lighting conditions. The network is
trained by the same training dataset as described in previous
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FIGURE 16. An example of the experimental results of visual servoing in
a real environment using DEFINet. (a) Initial pose. The initial
displacement is much larger than the displacement given by the training
dataset. (b) Desired pose. (c) Initial error image. (d) Error image after
visual servoing. (e) The sum of the squared difference between the
desired image and the current image. (f) The absolute difference between
the desired and current pose.

Section IV-B. Note that the network is trained by dataset only
for Real Object A under the constant light condition.

The positioning experiment is conducted in darker and
brighter lighting conditions than that of the training dataset
using Real Object A to evaluate the generalization to the
unseen lighting condition. Bright and dark lighting condi-
tions are created by changing the brightness of the LED
lighting device. The initial pose and the desired pose
is r = (−430.93 mm, 59.17 mm, −1066.53 mm, 170 deg.,
−10 deg., −190 deg.) and r = (−420.93 mm, 69.17 mm,
−1056.53 mm, 180 deg., 0 deg., −180 deg.), respectively,
where the difference between initial pose and the desired pose
is given by 1r = (−10 mm, −10 mm, −10 mm, −10 deg.,
−10 deg., −10 deg.).
Fig.17 shows the initial image, desired image, final image,

initial error image, and final error image. The first and second
row shows the result of the positioning experiment using
Real Object A under dark environment and bright environ-
ment, respectively. The positioning accuracy for each lighting
condition is shown in Table 4. The network succeeded in
positioning Real Object A under unseen lighting conditions
under 1.068 mm error in translation and 0.224 deg. error in
rotation.

The positioning accuracy under the dark lighting condition
is higher than that of the bright lighting condition as shown
in Table 4. The color of the objects used for experiments is
almost white and brighter than that of the background. Under
the dark lighting condition, the image of the object was not
affected so much and was captured well. Under the bright
lighting condition, the background image was not affected so
much but the object image was affected to a certain extent.
Actually, 23.9% of the image pixels related to the object were
saturated under the bright lighting condition. This caused
the positioning accuracy under the bright condition lower
than that of the bright condition. However, the positioning
accuracy of objects with unseen lighting condition can be
improved by including different lighting conditions in the
training dataset.

2) POSITIONING OF UNSEEN OBJECTS
Visual servoing is conducted using four unseen objects: Real
Object B, Real Object C, Real Object D, and Real Object E,
under the same light condition as the training dataset to eval-
uate the generalization ability of NEFINet to unseen objects.
The shape of Real Object B is similar to Real Object A,
and the shapes of Real Object C, Real Object D, and Real
Object E are completely different from Real Object A. The
dimension of each object is shown in Fig.14. The initial pose
and the desired pose are r = (−425.93 mm, 64.17 mm,
−1061.53 mm, 175 deg., -5 deg., −185 deg.) and r =
(−420.93 mm, 69.17 mm, −1056.53 mm, 180 deg., 0 deg.,
−180 deg.), respectively, where the difference between the
initial pose and the desired pose is given by 1r = (−5 mm,
−5 mm, −5 mm, −5 deg., −5 deg., −5 deg.).

Fig.18 shows the result of the positioning experiment using
Real Object B, C, D, and E under the same lighting condition
as the training dataset. The positioning accuracy for each
object is shown in Table 5. The positioning accuracy of
Real Object B, Real Object C, and Real Object D are high
even though the shapes are completely different from Real
Object A. The positioning error of Real Object E is larger
than the other objects. The resin material of the Real Object A
(Seen object), B, C, and D is the same and only the Real
Object E is made of different resin material and has different
reflectance and transparency. There is a certain limitation
of generalization to unseen objects with unseen reflectance
and transparency. We expect that the positioning accuracy
of objects with unseen reflectance and transparency can be
improved by including objects with different resin materials
in the training dataset.

3) POSITIONING OF UNSEEN OBJECTS UNDER UNSEEN
LIGHTING CONDITIONS
To evaluate the generalization ability of DEFINet to both
unseen objects and lighting conditions, we conducted visual
servoing using four different objects: Real Object B, Real
Object C, Real Object D, and Real Object E, under darker and
brighter lighting conditions than that of the training dataset.
The positioning of unseen objects under unseen lighting

91830 VOLUME 9, 2021



F. Tokuda et al.: CNN-Based Visual Servoing for Eye-to-Hand Manipulator

FIGURE 17. Experimental results of positioning experiments under unseen lighting conditions using a seen object (real object A).
The network is trained by a dataset of real object A. The first row corresponds to the result shown in section IV-B. The second and
third row corresponds to the result of the positioning experiments under unseen lighting conditions. The network managed to
position the object under the unseen dark environment and bright environment.

TABLE 4. Positioning accuracy of the seen object under unseen lighting conditions.

FIGURE 18. Experimental result of positioning experiment using unseen objects (real object B, real object C, real object D, and
real object E) under the same lighting condition as the training dataset. Note that the network is trained by a dataset of real
object A. The network succeeded in positioning real object B, real object C, and real object D. However, the positioning error of
real object E is larger compared to the other objects, which can be mitigated by including various objects to the training dataset.

conditions is a challenging task and the network could not
position the objects from initial error of±5mm in translation
and±5 deg. in rotation, therefore we chose a slightly smaller
initial error than former experiments. The initial pose and

the desired pose for the unseen object is r = (−423.93 mm,
66.17mm,−1059.53mm, 177 deg., -3 deg.,−183 deg.) and r
= (−420.93 mm, 69.17 mm,−1056.53 mm, 180 deg., 0 deg.,
−180 deg.), respectively, where the difference between initial
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TABLE 5. Positioning accuracy of the unseen objects under seen lighting condition.

FIGURE 19. Experimental result of positioning using unseen objects (real object B, real object C, real object D) under
unseen lighting condition (dark env. and bright env.). The network positioned unseen objects under unseen lighting
conditions.

TABLE 6. Positioning accuracy of the unseen objects under unseen lighting conditions.

pose and the desired pose is given by1r = (−3 mm,−3 mm,
−3 mm, −3 deg., −3 deg., −3 deg.).
Fig.19 shows the result of the positioning experiments

using Real Object B, C, and D under two types of unseen

lighting conditions: dark environment and bright environ-
ment. The positioning accuracy of each object is shown
in Table 6. The network positioned Real Object B, C, and
D under both dark and bright environments under 0.571 mm
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FIGURE 20. Experimental result of positioning using real object A under seen lighting condition. The network positioned
the object with occlusion.

TABLE 7. Positioning accuracy under occlusion.

error in translation and 0.630 deg. in rotation. As for Real
Object E, the network could not position the object under
unseen lighting conditions. As discussed in Section IV-C-(2),
the effect of the differences in reflectance and transparency of
Real Object E could not be completely removed by the gener-
alization of the proposed network. The positioning accuracy
can be improved by increasing the objects with different resin
materials included in the training dataset.

4) POSITIONING WITH OCCLUSIONS
To evaluate the generalization to occlusion, we conducted
visual servoing using Real Object A with occlusion, under
the same lighting condition as the training dataset. The cap-
tured images are occluded by image processing. The initial
pose and the desired pose is r = (−430.93 mm, 59.17 mm,
−1066.53 mm, 170 deg., -10 deg., −190 deg.) and r =
(−420.93 mm, 69.17 mm, −1056.53 mm, 180 deg., 0 deg.,
−180 deg.), respectively, where the difference between initial
pose and the desired pose is given by 1r = (−10 mm,
−10 mm, −10 mm, −10 deg., −10 deg., −10 deg.).
Fig.20 shows the result of the positioning experiments

using Real Object A with occlusion. The first, second, and
third row show the experimental result when 1/8, 2/8, and
3/8 of the captured images are occluded, respectively. The
positioning accuracy of the object with each occlusion is
shown in Table 7. The network positioned Real Object A
with 1/8 occlusion and 2/8 occlusion with the error of less
than 0.210 mm in translation and 0.110 deg. in rotation. The
positioning accuracy of Real Object A with 3/8 occlusion is
under 1.178 mm error in translation and 0.823 deg. error in
rotation. Note that the network could not position Real Object

A with 4/8 occlusion where half of the image is occluded.
We can conclude that the restoration process of the occluded
image pixel is one of a solution to overcome the limitation,
which is left for future work.

V. CONCLUSION
We presented a CNN based visual servoing scheme for
an eye-to-hand manipulator. We proposed DEFINet that
estimates a relative pose between the desired and current
end-effector from the desired and current images captured by
a camera. DEFINet regresses a relative pose from a difference
of target image feature and current image feature, which
results in efficient and high accuracy positioning. The dataset
is generated from a small amount of sample data collected by
operating a manipulator.

Numerical simulation shows that DEFINet is able to posi-
tion an object from a large displacement between the initial
and desired pose that the network had never learned. Fur-
thermore, we compared the positioning accuracy of DEFINet
inside and outside of the task space with other networks
and direct IBVS. We confirmed that the positioning accuracy
and the convergence domain is larger than that of the other
networks and direct IBVS

We demonstrated the positioning of an object from a large
displacement of the initial pose and the desired pose in a
real environment. We confirmed that the proposed method is
also effective in a real environment. The proposed method
achieved micro order accuracy using seen lighting condi-
tions and objects. We further confirmed that DEFINet is
robust against unseen lighting conditions, unseen objects, and
occlusions.
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The future works include increasing the positioning accu-
racy of the unseen objects under unseen lighting conditions
in a larger task space with large occlusion by using a larger
dataset and considering Sim2Real methods.
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