IEEE Access

Multidisciplinary : Rapid Review : Open Access Journal

Received July 26, 2021, accepted August 13, 2021, date of publication August 20, 2021, date of current version August 30, 2021.

Digital Object Identifier 10.1109/ACCESS.2021.3106327

Tactile Servoing Based Pressure Distribution
Control of a Manipulator Using a Convolutional

Neural Network

CHEN-TING WEN 1, SHOGO ARAI"'!, (Member, IEEE), JUN KINUGAWA?, (Member, IEEE),

AND KAZUHIRO KOSUGE 34

! Department of Robotics, Graduate School of Engineering, Tohoku University, Sendai 980-8579, Japan

2Physics and System Engineering Course, Faculty of Symbiotic Systems Science, Fukushima University, Fukushima 960-1296, Japan
3Center for Transformative Al and Robotics, Graduate School of Engineering, Tohoku University, Sendai 980-8579, Japan
4Department of Electrical and Electronic Engineering, Faculty of Engineering, The University of Hong Kong, Hong Kong

Corresponding author: Chen-Ting Wen (wen.chen.ting.r4 @dc.tohoku.ac.jp)

ABSTRACT In this paper, we propose a novel tactile servoing based pressure distribution control scheme of a
manipulator using a convolutional neural network (CNN). The CNN significantly improves the performance
of the tactile servoing scheme compared to the one based on the tactile Jacobian. LeNet-5, originally
proposed for image classification problems, is applied to represent a nonlinear relationship between current
and desired pressure distributions and the robot velocity command by using mean squared error as the loss
function. In the proposed control scheme, the trained CNN directly generates the velocity command of the
manipulator so that the pressure distribution converges to a given desired pressure distribution. Validation
experiments are carried out to evaluate the performance of the proposed control scheme. Experimental results
show that the proposed tactile servoing control scheme has better performance than the Jacobian-based tactile
servoing control scheme.

INDEX TERMS Manipulator control, pressure distribution control, tactile servoing, convolutional neural

network.

I. INTRODUCTION

The sense of touch is one of the most important basic sensory
functions of human beings, alongside the sense of sight, hear-
ing, taste, and smell. The sense of touch is provided on the
entire surface of the human body, and it plays a particularly
important role in physical interactions with the environment
when using hands. Humans routinely perform several tasks
using their entire hands or palms based on tactile sensation
feedback, such as applying cosmetics and massaging stiff
shoulders. The tactile sensation is indispensable for physical
interaction with the environment.

Robots with tactile sensation have been proposed to real-
ize human-like skillful manipulation and physical interaction
with the environment. In [1], Mukai ef al. proposed a robot
system, RIBA, for lifting and transferring a patient from a bed
to a wheelchair with dual robot arms. RIBA is equipped with
smart rubber sensors for detecting the pressure distribution of
its arms. The smart rubber sensor was used for both, the tactile
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guidance of the robot and monitoring the pressure distribution
between the robot arms and the patient. The pressure distri-
bution itself was not controlled in this system.

Khoramshahi et al. have proposed a unified motion-force
control approach for physical human-robot interaction and
developed a robot for massage therapy on the forearm [2].
Luo et al. have proposed a robotic tapping massage using
an impedance control scheme to ensure a safe tapping
motion [3]. Wang and Whitney have proposed a robot, which
can shave a human’s beard via teleoperation [4]. The robot,
equipped with fluid-based soft actuators, can safely shave a
human’s beard by using the feedback of the internal fluid
pressure of the actuators. Compliant motion control schemes
were implemented for physical human-robot interaction in
these systems.

Real-time control of a robot motion via tactile feedback
was proposed by Berger and Khosla [5]. In the proposed sys-
tem, the manipulator was controlled so as to track the edges
of an object in real-time by using the Hough Transform of
the threshold tactile image [5]. The use of image-based visual
servoing for control of dexterous hands using finger-tip tactile
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arrays was suggested by Weiss et al. [6]. Inspired by that
paper, P. Sikka and H. Zhang et al. proposed a control scheme
using features derived from tactile images and applied it to the
rolling task of a cylindrical pin on a planar surface [7].

N. Chen and H. Zhang et al. further extended the approach
in [7] to a more general scheme of a tactile servo for perform-
ing point and edge contacts with curved and planar sensing
surfaces [8]-[11]. Li et al. proposed a control framework
using task-dependent projector matrices for a whole set of
tactile servoing tasks with task specific tactile interaction
patterns [12]. Kappassov et al. proposed an external hybrid
tactile position controller to realize more general tasks [13].
All of these tactile servo schemes were designed using
the geometric tactile features derived from tactile image
moments [8]-[11], principle component analysis of the tactile
image [12], among others [13]. The selection and design of
an appropriate feature for each task are required for the tactile
servoing based on the geometric tactile features.

In order to avoid this problem, Wen et al. proposed to
employ raw pressure distribution data as the tactile fea-
ture [14]. The control input is computed using the deviation
between current and desired pressure distributions, and the
tactile Jacobian [14]. The tactile servoing control scheme
using tactile Jacobian works well when an initial contact state
is close to the desired one, since the linearity assumption for
the use of the tactile Jacobian holds only in the vicinity of the
desired pressure distribution.

This paper proposes a novel tactile servoing control
scheme using a convolutional neural network (CNN) to
represents the nonlinear relationship [15] between cur-
rent and desired pressure distributions and robot motion.
In the proposed control scheme, the desired velocity of the
end-effector is predicted directly from the measured and
desired pressure distributions using the CNN. We organize
this paper as follows. Section II describes an overview of
the tactile servoing control scheme using constant tactile
Jacobian. Section III introduces the neural network used in
the tactile control scheme. Section IV introduces the exper-
imental results that compare the performance of the pro-
posed method to the constant tactile Jacobian-based method.
Section V concludes this paper.

Il. TACTILE SERVOING USING CONSTANT

TACTILE JACOBIAN

The conventional tactile servoing (see Fig. 1) can be viewed
as an optimization problem similar to the visual servoing as
follows:

r* =argmin [|f .(r) = fqll, (M

where f, € R is the current tactile feature extracted from the
current pressure distribution at the current robot end-effector
pose r € R™ f, e RF is the desired tactile feature
extracted from the desired pressure distribution at the robot
end-effector pose rq € R™. f is assumed to be a function of
r and can be written as f . (r).
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FIGURE 1. Block diagram of the tactile servoing using tactile Jacobian [7].
For the current pressure distribution p. measured by the tactile sensor,
the current tactile feature f . is extracted. Based on the desired tactile
features f 4 and the extracted tactile feature f, the velocity command to
the robot 7 is calculated using the tactile Jacobian.

By rewriting (1) using the entire pressure distribution as
the tactile feature [14], the optimization problem of the tactile
servoing is expressed as

r* = argmin [|p.(r) — pyll, )
r

wherep.(r) € R" is the vector of the current pressure distribu-
tion at pose r, and p4 € R”" is a vector of the desired pressure
distribution. n is the number of cells of the tactile sensor array.
The control law using the tactile Jacobian proposed in [14] is
given as follows:

ic = —kJ'e, 3)

where 7. € R™ is the velocity of the end-effector, k is
the gain, JT € R™ " is the pseudo inverse matrix of the
tactile Jacobian, and e = p_.(r) — p4 is the deviation between
the current and desired pressure distributions. J t relates
the pressure distribution deviation to the robot end-effector
velocity. By using the least squares method, J T is calculated
as follows [14]:

Jt = ARTAP, )

where AP = [Apy App Ap(N)]T, and AR =
[Arqy Arp Argn]T. Ap(;, represents the i-th
deviation between desired pressure distribution and the cur-
rent one. Ar(; represents the corresponding difference of the
end-effector poses. N is the total number of data used for the
least squares method.

Il. TACTILE SERVOING USING A CONVOLUTIONAL
NEURAL NETWORK

A. CONVOLUTIONAL NEURAL NETWORK: LeNet-5

The constant tactile Jacobian-based method works well in the
vicinity of the desired pressure distribution since the con-
stant tactile Jacobian approximates the relationship between a
small deviation of pressure distribution and the corresponding
small deviation of the end-effector pose around the desired
pressure distribution. The constant tactile Jacobian-based
method can control the end-effector around the desired pres-
sure distribution, but does not work for any other given
desired pressure distribution.

To solve this problem, we propose a novel tactile servoing
scheme using LeNet-5 [16], [17] with appropriate input and
output dimensions as shown in Fig. 2. The LeNet-5 used in
the proposed control scheme is shown in Fig. 3. The LeNet-5
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FIGURE 2. Block diagram of the proposed tactile servoing scheme. The
CNN is used to represent the nonlinear relationship between current and
desired pressure distributions and the end-effector velocity instead of the
tactile Jacobian proposed in our previous method.
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FIGURE 3. Structure of LeNet-5 used in the proposed tactile servoing
scheme. The input includes two pressure distributions, the current and
desired ones. Each convolution kernel adopts six filters. In each pooling,
max-pooling is used with size 2 x 2 using stride 2. For full connection,
two fully connected layers are adopted with 64 neurons and 32 neurons,
respectively. The structure of LeNet-5 finally outputs the predicted
velocity of the end-effector.

uses convolution and pooling to extract features. The feature
extraction is implemented twice as shown in Fig. 3. The
extracted tactile features are converted to the velocity com-
mand of the end-effector in the fully connected layers.

The proposed control scheme directly calculates the veloc-
ity command of the end-effector from the current and desired
pressure distributions at each sampling time. The input and
output relation of the proposed control scheme using LeNet-5
is expressed as follows:

Fe = ¢(p(r),py). &)

The proposed scheme works around any desired distribu-
tions, because the network is trained for different desired
pressure distributions. How to collect the training data set will
be discussed later in this section.

B. LOSS FUNCTION

The loss function is defined for evaluating how well the neural
network works to train the neural network. The neural net-
work used in the proposed control scheme predicts the desired
velocity of the end-effector. This belongs to a regression
problem, unlike the pattern recognition problem. The use of
mean squared error (MSE) as the loss function is a common
approach for regression problems in neural networks. MSE
is used as the loss function in the training process of LeNet-5
in the proposed control scheme as well. The loss function is
the sum of squared errors between the predicted and ground
truth of the desired velocities of the end-effector, which is
represented by

N
L= lkg—Fapl. (6)
i=1
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where #(; and F(;) are the i-th data of the desired and predicted
velocities, respectively.

C. TRAINING DATA SET

How to collect the training data set is considered in this
subsection. Figure 4 shows the experimental system. The
end-effector of the manipulator is equipped with a tactile
sensor array, and the tactile sensor array has physical contact
with the target object.

The target object consists of nine shafts with roller bearings
as shown in Fig. 4. The roller bearings in the shafts of the
object are the physical contact points with the robot end-
effector. The manipulator has 3 DOF, and the end-effector
of the manipulator moves along the y and z-axis, and rotates
around the x-axis by a Cartesian control scheme. It can move
its end-effector while keeping its physical contact with the
object.

The resistive type of tactile sensor array, ShuntMode
Matrix Array [18], [19], consists of 70 tactile cells. The
dimension of each cell is 8 mm x 5 mm as shown in Fig. 5.
Each cell of the array can measure pressure ranging from
0 to 690 [kPa].

The pressure distribution is assumed to be a function of
the end-effector pose since the tactile sensor array used in the
experimental system is not completely rigid. The training data
set is obtained as follows:

1) Randomly select an end-effector pose rq =
[ray 7d: 6Oax]' having contact with the object and
record its pressure distribution py = [p4,1  pd.2
pqmo]—r and the end-effector pose rg as a desired pres-
sure distribution, and its corresponding end-effector
pose.

2) Move the end-effector to a randomly selected pose
r around the end-effector pose rq within £15 mm
in translation and + 2 degrees in rotation from the
end-effector pose rq. Record the pressure distribution
and the corresponding pose as p(r) and r, respec-
tively. Note that the sensor array could cover the object
surface within £15 mm in translation and could be
rotated +2 degrees keeping the contact with the object
surface.

3) Move the end-effector from r to rq linearly and record
the velocity of the end-effector 7;) and pressure distri-
butions p(r(;)) at each sampling time.

We performed a total of 1, 132 processes to collect the
training data set. For each process, initial and desired pressure
distributions were selected randomly, and the end-effector
was moved from r to rq for five seconds. During each process,
200 data sets were collected and as a result, 226, 400 data sets
were obtained. Each data set contains one current and one
desired pressure distribution, and the desired velocity of the
end-effector. Randomly selected 2, 000 data sets were used as
the validation data set, 4, 400 data sets were utilized for the
test data set, and 220, 000 data sets were used as the training
data set.
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FIGURE 4. Experimental system using 3 DOF manipulator.
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FIGURE 5. ShuntMode Matrix array.
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FIGURE 6. Results of the loss function in training process.

D. TRAINING RESULTS
Adam optimization and MSE loss functions were used for
training the LeNet-5. For validation of the training, 2, 000
validation data sets were utilized as mentioned above. The
training and validation losses of the training process are
shown by blue and yellow lines in Fig. 6, respectively. The
training was carried out successfully.

The distributions of the errors between the predicted and
the desired velocities using the test data are shown in Fig. 7.
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FIGURE 7. Probability distributions in histogram plot of the error in
predicted velocities for LeNet-5 used in the tactile servoing scheme.

While Fig. 7a shows the velocity error distribution along the
y-axis, Fig. 7b shows that along the z-axis, and Fig. 7c shows
the angular velocity error distribution around the x-axis. The
LeNet-5 was trained with reasonable accuracy for the tactile
servoing approach we propose in this paper.
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FIGURE 8. Experimental results of Case 1.

Case 2

Result I Result IT | Result IIT | Result IV | Result V
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IV. EXPERIMENTAL RESULTS

A. CRITERIA FOR EVALUATION OF PROPOSED TACTILE
SERVOING CONTROL SCHEME

We use two criteria for evaluating the experimental results,
as described below:
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Case 3
Desired Result I Result II | Result IIT | Result IV | Result V
pressure -
distribution -
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based |- : : :
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Final : N - -
pressure
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CNN- | 4 j : :
based |- : : :
: g - : :
Jacobian- |- - . : Z
based |- ek : :
Residual : - - - -
pressure N
distribution - - - - :
CNN- |- B : . :
based | - : : :

FIGURE 10. Experimental results of Case 3.

« Similarity between the desired pressure distributions and

the converged pressure distribution

o Error between the desired pressure distribution and the

converged pressure distribution

The similarity between both pressure distributions is com-
puted by a normalized cross-correlation (NCC) defined by

Poee = Z?:] PiDPd,i ’

NONBI O Rhe
where p; and pg; represent the measured and desired val-
ues in the i-th tactile cell, respectively. n is the number
of tactile cells comprising the tactile sensor. When the
current pressure distribution converges to the desired one
exactly, P,.. converges to 1. Thus, the high P, represents
a high similarity between the converged and desired pressure
distributions.

In order to evaluate the error between the converged and
desired pressure distributions, we utilize root-mean-square
error (RMSE), which is the sum of the error between the
measured and desired values in each tactile cell. RMSE,
Prmge, s computed by:

N

P rmse —

1 n
= (i — pai* ®)
n

i=1

B. EXPERIMENTS

We experimentally compare the performance of the pro-
posed control scheme with that of the constant tactile
Jacobian-based scheme. The experiments are conducted for
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FIGURE 11. Evaluation for pressure distribution in tactile servoing
scheme.

three different desired pressure distributions using both the
constant tactile Jacobian-based scheme and the proposed tac-
tile servoing scheme. For each desired pressure distribution
using each scheme, the experiments are performed five times.
The initial pressure distribution of each trial was selected
as much as identical. Fig. 8, Fig. 9, and Fig. 10 show the
experimental results.

Figure 8 contains the experimental results of the desired
pressure distribution, Case 1. The desired pressure distribu-
tion is selected corresponding to a pose in the vicinity of
the area where the training data sets were collected. For the
presentation of the experimental results, initial pressure dis-
tributions, final pressure distributions, and residual pressure
distributions are shown. The residual pressure distribution
shows the deviation of the final pressure distribution from
the desired pressure distribution. Figure 11 shows an example
of the transient response of Ppcc and Pryse for Result 1 of
Case 1 shown in Fig. 8. When Py is kept equal to or larger
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FIGURE 12. Average Ppcc of the constant tactile Jacobian-based and
proposed method.
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FIGURE 13. Average Prmse of the constant tactile Jacobian-based and
proposed method.

than 0.9 over 1.5 second, the pressure distribution is consid-
ered to have converged to the desired pressure distribution.
Figure 8 shows that the residual pressure distribution of the
proposed CNN-based scheme is much smaller than that of the
constant tactile Jacobian-based scheme.

Figure 9 shows the experimental results for the desired
pressure distribution, Case 2. The desired distribution of
Case 2 is also selected corresponding to a pose in the
vicinity of the area where the training data sets were col-
lected, but the total force along z direction is about two
times of the Case 1. The sum of the pressures of each
cell for Case 1 is 97 [kPa], while the sum of the pres-
sures for Case is 142 [kPa]. Similar to Case 1, the residual
pressure distribution of the proposed CNN-based scheme is
much smaller than that of the constant tactile Jacobian-based
scheme.
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Figure 10 shows the experimental results for the desired
pressure distribution, Case 3. The desired pressure distribu-
tion of Case 3 is selected outside of the area where the train-
ing data sets were collected. Similar to the cases, the residual
pressure distribution of the proposed CNN-based scheme is
much smaller than that of the constant tactile Jacobian-based
scheme.

Fig. 12 and Fig. 13 show the average of Pp.. and the
average of Prye for the cases, respectively. The proposed
scheme has higher NCC and smaller RMSE for all of the
cases.

According to the validation experimental results, we con-
firm that the proposed scheme can achieve more precise phys-
ical contact compared to the constant tactile Jacobian-based
scheme.

V. CONCLUSION

In this paper, we propose a novel pressure distribution-based
tactile servoing control scheme of a manipulator that has
physical interaction with the environment. The proposed
method utilizes a convolutional neural network, LeNet-5,
to represent highly nonlinear relationships among the robot
velocity command, current pressure, and desired pressure
distributions. The proposed method enabled a robot to touch
its surroundings more precisely than with the conventional
method, and also the experimental results show that the pro-
posed method has better performance than that of the constant
tactile Jacobian-based method. In this paper, the pressure dis-
tribution is assumed to be a function of the end-effector pose.
The system could be used for several applications including
the physical human-robot interaction. We believe that our
method can facilitate the advancement of solutions for the
issues in tactile robot-human interaction.
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