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Abstract
We address entropic uncertainty relations between time and energy or, more precisely, between
measurements of an observable G and the displacement r of the G-generated evolution e−irG. We
derive lower bounds on the entropic uncertainty in two frequently considered scenarios, which can
be illustrated as two different guessing games in which the role of the guessers are fixed or not. In
particular, our bound for the first game improves the previous result by Coles et al [Phys. Rev. Lett.
122 100401 (2019)]. To derive our bounds, we extend a recently proposed novel algebraic method
by Gao et al [arXiv:1710.10038 [quant-ph]] which was used to derive both strong subadditivity
and entropic uncertainty relations for measurements.

1. Introduction

Uncertainty principles are a cornerstone of modern physics [1]. The most famous instantiation is perhaps
the Kennard relation [2] σxσp � �/2 where σx and σp are the standard deviations of the measurement of
the position and the momentum of a particle respectively. Entropic uncertainty relations, in contrast, offer
an operational interpretation of the uncertainty principle, which is often more desirable in applications
such as quantum cryptography. The most well-known entropic uncertainty relation, derived by Maassen
and Uffink [3], can be interpreted as a guessing game: Alice has the quantum state ρ and can choose
whether to measure V or W, Bob wins if he can correctly guess the result of the measurement. Let ρ be the
density matrix of a system A and EV and EW be the measurement quantum channels for the observables V
and W, then the uncertainty of Bob’s guesses, characterized by the (von Neumann) entropy, satisfies the
inequality

S(A)EV (ρ) + S(A)EW (ρ) � − log max
k,j

|〈vj|wk〉|2, (1)

where |vi〉 and |wi〉 are the eigenvectors of V and W and S(A)ρ is the von Neumann entropy of the state ρ
on system A. Equation (1) prevents Bob from perfectly winning this game, provided the right-hand side is
non zero, i.e. V and W do not commute. Indeed, if S(A)EV (ρ) = 0, meaning that he can perfectly guess the
measurement result of V, then the inequality implies S(A)EW (ρ) � − log maxk,j|〈vj|wk〉|2, and thus Bob will
not be able to perfectly guess the measurement result of W.

The entropic uncertainty relation in equation (1) has been further extended to account for the effect of
quantum memories [4, 5]: if a quantum memory B is entangled with the original system A, Bob could use it
to deduce Alice’s measurement outcomes. There are essentially two possible uses of the memory,
corresponding to two guessing games. The first game, also referred to as the tripartite game, concerns
splitting the quantum memory into two parts B1 and B2, where B1 is used for guessing V and B2 is used for
guessing W. Then the following entropic uncertainty relation holds [4, 5]

S(A|B1)EV (ρ) + S(A|B2)EW (ρ) � − log max
k,j

|〈vj|wk〉|2, (2)
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where the measurements are performed only on the system A and S(A|B)ρ is the quantum conditional
entropy of A conditioned on B. On the other hand, the second game regards the memory as a whole and is
referred to as the bipartite game. In this case, the uncertainty relation becomes

S(A|B)EV (ρ) + S(A|B)EW (ρ) � − log max
k,j

|〈vj|wk〉|2 + S(A|B)ρ. (3)

In this case, Bob, who keeps the quantum memory, can increase his chance of winning by referring to it. In
fact, since the quantum conditional entropy can be negative, Bob can win the game with certainty by using
a suitable entangled state for which the right-hand side of equation (3) vanishes.

The two guessing games differ only in whether the memory is split into two parts or not. This difference
highlights a subtlety of the uncertainty principle: It is impossible to simultaneously know the values of two
noncommuting observables of the same system. On the one hand, since the memory is split into two parts
in the tripartite game, Bob can guess both observables at the same time. The fact that the tripartite game
cannot be won then matches the uncertainty principle. On the other hand, in each round of the bipartite
game Bob can only guess one of the observables. Therefore, even though using a quantum memory can
allow him to win the game with certainty, there is no contradiction with the uncertainty principle.

Various extensions of these entropic uncertainty relations with memory have been put forward [see, e.g.,
references [6–9] and reference [10] for a full survey]. A natural question is whether there is an entropic
time–energy uncertainty relation. This is a more subtle situation than relations involving measurements of
observables, since an ideal time observable does not exist for finite dimensional systems [11–13]. Possible
ways out include defining an approximate time operator [14], or considering the uncertainty of measuring
the duration of evolutions, i.e. measuring the state as a quantum clock, instead of directly measuring
time.

In this work, we take the latter approach and study the tradeoff between uncertainties of measuring an
observable G (e.g. the Hamiltonian of the system) and determining a parameter r of the unitary evolution
e−irG. Unlike most of the previous works, whose proofs are built on basic properties of quantum entropies
and distances, we take a new algebraic approach that makes use of a strong subadditivity on algebras,
developed recently by Gao, Junge, and Laracuente [15]. As a result, we obtain entropic uncertainty relations
for both of the aforementioned guessing games. Entropic time-uncertainty relations were recently studied in
the setting of the tripartite guessing game by Coles et al [16]. In comparison, we show that our bound is
strictly tighter than their result for von Neumann entropies, though they also study more general Rényi
entropies.

The rest of the paper is arranged as follows. In section 2, we define the two guessing games under
consideration and state our main results on the entropic uncertainty relation. In section 3, we prepare for
the proofs of the uncertainty relations by introducing a few useful results from reference [15]. In section 4,
we prove our bounds on the entropic uncertainties. In section 5, we present some numerical examples
that show the tightness and advantage of our results. Finally, in section 6, we conclude with a few
discussions.

2. Guessing games and entropic uncertainty relations

In this section, we introduce the setting and the main results of our paper. Entropic uncertainty relations
arise naturally from guessing games, where players are asked to make guesses on random operations
performed by an extra player. Guessing games involve a game operator A and one or multiple guessers,
where the operation performed by A is either a measurement of an observable G or a rotation

ρ �→ e−iGrkρeiGrk generated by G with rk being a random number drawn from a fixed finite set {rk}|R|k=1.
Now we introduce the first guessing game:

Definition 2.1 (The tripartite guessing game). The game concerns two guessers B1 and B2 and runs as
follows:

(a) (Setup) three players A, B1, and B2 share a quantum state ρAB1B2 , fix a probability distribution {pk}|R|k=1,

a generator G acting on A, and a set of rotations {rk}|R|k=1.

(b) A tosses a coin to choose between measuring G or applying a rotation e−iGrk .2

(c) If A gets a head, she chooses an rk following the probability distribution {pk}|R|k=1 and applies e−iGrk to
her part of ρ. She then sends the rotated state to B1, with instructions to guess rk.

2 Since the rotation does not affect the measurement, we could also say that A always applies a random rotation and then randomly
chooses whether to measure G. This version is more easily interpretable if one wants to consider time evolution as the rotation.
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Figure 1. The tripartite guessing game. The above figure illustrates the setting of the tripartite guessing game, where two
guessers B1 and B2 are assigned different tasks. Depending on the outcome of a coin toss, Alice asks either B1 to guess a rotation
or B2 to guess a measurement outcome.

(d) If A gets a tail, she measures G on her part of ρ and asks B2 to guess the measurement outcome.

(e) Accordingly, B1 or B2 provides his guess.

A graphical illustration of this game is portrayed in figure 1. To quantify the uncertainty of the guesses
in the above game, we use an ancillary Hilbert space HR for the random number {rk}, which has
probability distribution {pk}. If A chooses to perform the rotation, the state afterwards is

κRAB1B2 =

|R|∑
k=1

pk|rk〉〈rk| ⊗ e−iGrkρAB1B2 eiGrk . (4)

If A chooses to measure G, the state afterwards is

ωAB1B2 =

|A|∑
k=1

|gk〉〈gk|〈gk|ρAB1B2 |gk〉, (5)

where {|gk〉} are the eigenstates of G with eigenvalue gk. The quantity S(R|AB1)κ + S(A|B2)ω represents the
total uncertainty of the game, in the sense that the larger it is, the more difficult it is to guess correctly.
Notice that these are entropies of classical random variables conditioned on quantum states, hence they are
positive.

Our first result is a lower bound of the total uncertainty, as described in the following theorem.

Theorem 2.2. The total uncertainty of the tripartite game is lower bounded as

S(R|AB1)κ + S(A|B2)ω � S(R)κ + D(κAB1‖ωAB1 ) + max{0, I(A : B1)ω − I(B1 : B2)ρ + S(A|B1B2)ρ}. (6)

The bound is saturated if ρAB1B2 is pure or ρAB1B2 = ρAB1 ⊗ ρB2 .

Our bound (6) manifests a tradeoff relation between guessing the measurement outcome and guessing
the rotation. In particular, it shows that it is impossible for both guesses to be perfect for the same state
(unless R is trivial), since the right-hand side of the bound (6) is always positive. If the conditional entropy
S(A|B2)ω is low, meaning that B2 can easily guess the measurement value, then the entropy of the rotation
chosen must be large to satisfy the bound, making it hard for B1 to guess precisely which rotation has been
applied.

Note that, in the case pk =
1
|R| for all k, the term S(R)κ is simply log|R|. Clearly, to minimize the

uncertainty, B1 and B2 want to reduce the last term in the bound (6). From this we can deduce the following
conditions for making the uncertainty small:

• B1 and B2 need to be as correlated as possible so as to maximize I(B1 : B2)ρ.

• The system B1, which is used to guess the rotation, should be as uncorrelated as possible with the
measurement result so as to minimize I(A : B1)ω .

• A and B1B2 should be entangled so that S(A|B1B2)ρ is negative.

The guessing game proposed by Coles et al [16] is a special case of the tripartite game presented here.
They showed in [16, equation (8)] that when the distribution over R is uniform, the total uncertainty can
be bounded as

S(R|AB1)κ + S(A|B2)ω � log |R|. (7)

3
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Figure 2. The bipartite guessing game. The above figure illustrates the setting of the bipartite guessing game, where the guesser
may be asked to guess either a rotation or a measurement outcome.

Furthermore, for B1 = C and B2 = B, they find a stronger bound in [16, equation (E10)]:

S(R|A)κ + S(A|B)ω � S(R)κ + D(κA‖ωA), (8)

which is tight if ρAB is pure. It is clear that our bound (6) is tighter since the additional term
max{0, I(A : B1)ω − I(B1 : B2)ρ + S(A|B1B2)ρ} is positive.

In the tripartite game, the system B is broken into two subsystems B1 and B2 and distributed to
individual players, whose tasks are fixed. Alternatively, we can consider a variation of the game where B is
given to a single player, who may be given either task (to guess the measurement outcome or the rotation).

Definition 2.3 (The bipartite guessing game). The game concerns only one guesser B and runs as follows:

(a) (Setup) two players A and B share a quantum state ρAB, fix a probability distribution {pk}|R|k=1, a

generator G acting on A, and a set of rotations {rk}|R|k=1.

(b) A tosses a coin to choose between measuring G or applying a rotation e−iGrk .

(c) If A gets a head, she chooses an rk following the probability distribution {pk}|R|k=1 and applies e−iGrk to
her part of ρ. She then sends the rotated state to B, with instructions to guess rk.

(d) If A gets a tail, she measures G on her part of ρ and asks B to guess the measurement outcome.

(e) B provides his guess.

A graphical illustration of this game is portrayed in figure 2.
In this game the quantity that characterizes the uncertainty is

S(R|AB)κ + S(A|B)ω, (9)

where κ and ω are defined by equations (4) and (5), respectively. Just as the tripartite game, we can bound
this total uncertainty as well.

Theorem 2.4. The total uncertainty for the bipartite game is lower bounded as

S(R|AB)κ + S(A|B)ω � S(R)κ + D(κA‖ωA) + S(A|B)ρ. (10)

The bound is saturated if ρAB = ρA ⊗ ρB is a product state or if ρA is a pure eigenstate of G.

An intriguing distinction between this bound and the bound for the tripartite game (6) is that B may be
able to always guess correctly. This is analogous to the bound for the uncertainty principle in the presence
of quantum memory [5], in the sense that quantum correlations that make S(A|B)ρ negative can reduce the
bound (10) to zero. To see this, let us consider a simple example in which Alice and Bob hold a qubit each
and the two qubits are in the maximally entangled state. Furthermore, take G = σz, |R| = 2 and the
uniform distribution for the rotations. In this case κAB = ωAB = 1

2 (|00〉〈00|+ |11〉〈11|). Then clearly the
right-hand side is 0 as the relative entropy is 0 and S(A|B)ρ = −1. Moreover one may verify that
S(RAB)κ = 1 and thus the left-hand side is also 0. Intuitively, in this case the rotations have the same effect
of a σz measurement, and Bob can apply the same strategy in both cases.

3. Preliminary: a general framework for entropic uncertainty relations

In this section, we introduce part of the main results of reference [15] that will be used in our proof.
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3.1. Commuting squares and uncertainty relations
Let M be an algebra of observables and let an N ⊂ M be subalgebra. For instance, M may be the observables
on a bipartite system, and N the observables on just one system. The conditional expectation onto N is the
unique surjective CPTP and unital map EN : M → N such that for all ρ ∈ M,σ ∈ N

Tr(σEN (ρ)) = Tr(σρ). (11)

Given a state ρ ∈ M, the asymmetry measure of ρ with respect to N is defined as

DN(ρ) := inf
σ∈s(N)

D(ρ‖σ), (12)

where D(·‖·) is the relative entropy and s(N) denotes the states on N. When N is the image of a conditional
expectation EN , we have

DN (ρ) = D(ρ‖EN(ρ)) = S(N)EN (ρ) − S(M)ρ, (13)

where S is the von Neumann entropy. We remark that DN, albeit not a distance measure, captures the
distinction between N and M.

Definition 3.1 (Commuting square). A set of four observable algebras satisfying the inclusions⎛
⎝N ⊂ M
∪ ∪
R ⊂ T

⎞
⎠ (14)

is called a commuting square if the conditional expectations satisfy

EN ◦ ET = ET ◦ EN = ER. (15)

The following theorem will be the core of our proof, which says that one entropic uncertainty relation
can be identified from each commuting square.

Theorem 3.2. Let N, M, R, T form a commuting square as in (14). Then for all ρ ∈ M

S(N)EN (ρ) + S(T)ET (ρ) � S(M)ρ + S(R)ER(ρ), (16)

which is equivalent to
DN(ρ) + DT(ρ) � DR(ρ). (17)

The relation is saturated if and only if there exists a CPTP map R such that

R(EN(ρ)) = ρ R(ER(ρ)) = ET(ρ). (18)

or equivalently
R(ET(ρ)) = ρ R(ER(ρ)) = EN (ρ). (19)

Equations (16) and (17) are uncertainty relations with respect to a commuting square, which we will use to
derive bounds on the time–energy uncertainty.

3.2. Examples of conditional expectations
We provide here some examples of conditional expectations that will be useful later. From now on, Latin
uppercase letters will be used to refer to the algebra of Hermitian operators on a corresponding Hilbert
space.

3.2.1. Embedding
Let AB be the algebra of Hermitian operators on HA ⊗HB. We want to find a conditional expectation that
takes us to the algebra B. One may notice that the partial trace is not a conditional expectation, as it is not
unital. To solve this problem, following Example 2.2 in [15], instead of embedding B ⊂ AB we embed
IA ⊗ B ⊂ AB where IA � C is the algebra generated by {cIA : c ∈ C}. The embedding is done by the map

TA(ρAB) =
1

|A| IA ⊗ ρB, (20)

where ρB = TrA[ρAB]. The map is clearly unital and CPTP. Let σ = cIA ⊗ σB ∈ IA ⊗ B and ρAB ∈ AB,

moreover let {|ak〉}|A|k=1 be a basis of HA. We have

5
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Tr[σρAB] = Tr[cIA ⊗ σBρAB]

= cTrB

⎡
⎣∑

k

∑
j

〈ak|
(
|aj〉〈aj| ⊗ σB

)
ρAB|ak〉

⎤
⎦

= cTrB

[∑
k

〈ak|AσBρAB|ak〉
]
= cTrB[σBρB]. (21)

On the other hand

Tr[σTA(ρAB)] = Tr

[
(cIA ⊗ σB)

(
1

|A| IA ⊗ ρB

)]

=
c

|A| Tr[IA ⊗ σBρB] = cTrB[σBρB]. (22)

3.2.2. Pinching

Let G be an observable with full support on HA and {|gk〉}|A|k=1 be the eigenbasis of G. The pinching map

PG : ρA �→
|A|∑

k=1

|gk〉〈gk|〈gk|ρA|gk〉 (23)

is a conditional expectation onto span{|gk〉〈gk|}|A|k=1. Notice that this is also an algebra, consisting of all
diagonal elements in A, and from now on we denote this kind of subalgebras by Ã.

It is clear that the pinching map PG : A → Ã is unital and CPTP, and for σ =
∑|A|

k=1 pk|gk〉〈gk| we have

Tr(σPG(ρA)) =

|A|∑
k=1

pk〈gk|ρA|gk〉 (24)

and

Tr(σρA) =
|A|∑

k=1

Tr(pk|gk〉〈gk|ρA) =
|A|∑

k,j=1

〈gj|pk|gk〉〈gk|ρA|gj〉 =
|A|∑

k=1

pk〈gk|ρA|gk〉. (25)

Therefore, PG is a conditional expectation on the subalgebra Ã that is diagonal with respect to the
eigenbasis of G.

4. Proof of rotation-measurement uncertainty relations

Theorem 3.2 can be readily applied to obtain an entropic uncertainty relation between noncommutative
observables [15]: one can take M to be the (total) von Neumann algebra of AB and take the conditional
expectations (11) to be the pinching maps corresponding to the two observables. This approach, however,
does not apply immediately to the case of time–energy uncertainty relations, since the rotation generated by
time parameters is not a legitimate conditional expectation.

Instead, we find a suitable commuting square of the following structure:⎛
⎝ energy ⊂ total

∪ ∪
minimum ⊂ time

⎞
⎠ . (26)

Here ‘time’ or ‘energy’ refers to a subalgebra of ‘total’ containing elements that are diagonal in the time or
energy basis respectively. In this case, the time basis is a basis of the classical register R. ‘Minimum’ is the
intersection of ‘time’ and ‘energy’ determined by the conditional expectations (11). We then consider a
variation of the state κ in equation (4) with different rotations applied coherently in a superposition. A
time–energy uncertainty relation is then established by applying theorem 3.2.

Another interesting finding for the time–energy uncertainty is that different choices of the commuting
square (26) lead to independent bounds. In fact, for the tripartite game we can find two distinct
commuting squares as such. Combining the two obtained bounds yields a stronger bound as given by
equation (6).

4.1. The tripartite game
As mentioned, we will find two distinct bounds and combine them.

6
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4.1.1. The first bound
The following proposition, stated and proved for quantum Rényi entropies in reference [16], will be useful.

Proposition 4.1. Let ρM be a state and EN be a conditional expectation, then

DN(ρ) = −S(E|M)UρU† , (27)

where U is a Stinespring dilation of EN on ME.

Proof. Equation (13) states that
DN(ρ) = S(N)EN (ρ) − S(M)ρ. (28)

Clearly S(M)UρU† = S(N)EN (ρ) as U is a Stinespring dilation of EN . Moreover, conjugation by an isometry
preserves the eigenvalues, we have S(M)ρ = S(ME)UρU† . Combining both equalities, we have

DN (ρ) = S(M)UρU† − S(ME)UρU† = −S(E|M)UρU† . (29)

�

Let HR be a register to store the parameter of rotation, namely that, if the state of R is
∑

k pk|rk〉〈rk|,
Alice will perform the rotation e−irkG with probability pk. Here R̃ is the diagonal subalgebra of R with
respect to the observable

∑
k rk|rk〉〈rk|, and G̃ is the diagonal subalgebra of A with respect to the observable

G. With this convention in mind, let us now consider the following commuting square⎛
⎝R̃AB1 ⊂ RAB1

∪ ∪
R̃ÃB1 ⊂ RÃB1

⎞
⎠ ,

where the conditional expectations are the simply corresponding pinching [see equation (23)]. For any state
ρAB1B2 , we define φRAB1 = |Ω〉〈Ω|R ⊗ ρAB1 with |Ω〉 =

∑
k

√
pk|rk〉.

Now, let us consider the uncertainty relation of the state

ψRAB1 =

|R|∑
k,j=1

√
pkpj|rk〉〈rj| ⊗ e−iGrkρAB1 eiGrj , (30)

obtained by applying the unitary U =
∑|R|

k=1 |rk〉〈rk| ⊗ e−iGrk to φRAB1 . The conditional expectations result
in the states

ψR̃AB1
=

|R|∑
k=1

pk|rk〉〈rk| ⊗ e−iGrkρAB1 eiGrk = κRAB1 ,

ψRÃB1 =

|R|∑
k,j=1

|A|∑
l=1

√
pkpj|rk〉〈rj| ⊗ e−igl(rk−rj)|gl〉〈gl|〈gl|ρAB1 |gl〉 , and

ψR̃ÃB1 =

|R|∑
k=1

pk|rk〉〈rk| ⊗
|A|∑
l=1

|gl〉〈gl|〈gl|ρAB1 |gl〉 = κR ⊗ ωAB1 .

(31)

For a register C and an arbitrary state ρ on it, let QC,ρ be the discard and reprepare map

QC,ρ(σC) = ρC (32)

that resets the register’s state to ρ. We have

UQAB1,ρ(ψR̃ÃB1
)U† = ψR̃AB1

UQAB1,ρ(ψRÃB1
)U† = ψRAB1 .

(33)

Therefore, R(·) :=UQAB1,ρ(·)U† constitutes a valid recovery map. By theorem 3.2, we have

DR̃AB1 (ψ) + DRÃB1 (ψ) = DR̃ÃB1 (ψ). (34)

The following isometry is a Stinespring dilation on AE of the pinching map on A

V =

|A|∑
k=1

|gk〉E ⊗ |gk〉〈gk|A. (35)

7
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Proposition 4.1 applied to the second term of equation (34) yields the term −S(E|RAB1)VρV† . Consider a
purification ρAB1B2B′ of ρAB1B2 (if ρAB1B2 is already pure B′ is trivial), using the duality of conditional entropy
one gets −S(E|RAB1)VρV† = S(E|B2B′)ω, with ω the state in equation (5). Since the complementary channel
of pinching under the Stinespring dilation V is also the same pinching, which means ωE = ωA, and thus
S(E|B2B′)ω = S(A|B2B′)ω. Using equation (13) on the two remaining terms one gets for ρAB1B2 , we obtain

S(R̃AB1)κ + S(A|B2B′)ω = S(R̃)κ + S(ÃB1)ω. (36)

Abandoning the notation where one keeps track of which subalgebra the state is in for the more standard
one and subtracting S(AB1)κ from both sides, the relation becomes

S(R|AB1)κ + S(A|B2B′)ω = S(R)κ + S(AB1)ω − S(AB1)κ. (37)

Since the pinching PG (as the conditional expectation) on κA yields ωA, equation (13) implies

S(AB1)ω − S(AB1)κ = D(κAB1‖ωAB1 ), (38)

and thus we can express the entropic uncertainty as

S(R|AB1)κ + S(A|B2B′)ω = S(R)κ + D(κAB1‖ωEB1 ). (39)

Finally, using the strong subadditivity S(A|B2B′)ω � S(A|B2)ω , we obtain the following bound on the
entropic uncertainty

S(R|AB1)κ + S(A|B2)ω � S(R)κ + D(κAB1‖ωEB1 ). (40)

From equation (39) it is immediate that the equality holds if and only if I(A : B′|B2)ω = 0, which is satisfied
when ρAB1B2 is pure.

Notice that our bound (40) holds for arbitrary B1 and B2, and any arbitrary state of R (i.e. the
distribution of the rotation parameter {rk} can be non-uniform). On the other hand, the previous result by
Coles et al [16], given by equation (7), does not have the second term on the right-hand side of
equation (40) and assumes R to have a uniform distribution.

4.1.2. The second bound
Let us now consider an alternative commuting square:⎛

⎝R̃AB1IB2 ⊂ RAB1B2

∪ ∪
R̃ÃIB1B2 ⊂ RÃIB1 B2

⎞
⎠ . (41)

We start from the same state as before, namely

ψRAB1B2 =

|R|∑
k,j=1

√
pkpj|rk〉〈rj| ⊗ e−iGrkρAB1B2 eiGrj . (42)

For the new commuting square, using the uncertainty relation (16), we get the relation

S(RAB1)κ + S(RÃB2)ω � S(RAB1B2)ψ + S(R̃Ã)ω. (43)

Notice that ψRÃB2
= U

(
|Ω〉〈Ω|R ⊗

∑|A|
k=1 〈gk|ρAB2 |gk〉|gk〉〈gk|

)
U† with U =

∑|R|
k=1 |rk〉〈rk| ⊗ e−iGrk ,

hence S(RÃB2)ψ = S(ÃB2)ω . Similarly ψRAB1B2 = U
(
|Ω〉〈Ω|R ⊗ ρAB1B2

)
U†, thus S(RAB1B2) = S(AB1B2).

Moreover ψR̃Ã is a product state. Hence by subtracting S(A)κ + S(B1B2)ω from both sides and changing the
notation like before

S(R|AB1)κ + S(A|B2)ω � S(R)κ + S(AB1B2)ρ + S(A)ω − S(AB1)κ − S(B2)ρ. (44)

To have a better comparison with (40) we can write, using (38)

S(AB1B2)ρ + S(A)ω − S(AB1)κ − S(B2)ρ = D(κAB1‖ωAB1) + S(AB1B2)ρ − S(B2)ρ + S(A)ω − S(AB1)ω

= D(κAB1‖ωAB1) + I(A : B1)ω − I(B1 : B2)ρ + S(A|B1B2)ρ. (45)

We can combine this with the previous relation and get, as promised

S(R|AB1)κ + S(A|B2)ω � S(R)κ + D(κAB1‖ωAB1 ) + max{0, I(A : B1)ω − I(B1 : B2)ρ + S(A|B1B2)ρ} . (46)
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If ρAB1B2 is pure this bound simply reduces to the previous one: as a matter of fact in this case the new
term vanishes, since:

S(AB1B2)ρ − S(B2)ρ + S(A)ω − S(AB1)ω = −S(B1|A)ω − S(B2)ω � 0 (47)

because ωAB1 is classical in A. Hence since due to equation (39) the previous bound is saturated by pure
states, this one is saturated as well. Otherwise, recall that by theorem 3.2 the relation holds as an equality if
there exists a recovery map R such that

R
(
ERAIB1 B2 (ρ)

)
= ρ R

(
ER̃ÃIB1B2

(ρ)
)
= ER̃ÃB1IB2

(ρ) (48)

hold for this particular ρRAB1B2 . If ρAB1B2 = ρAB1 ⊗ ρB2 we may define R(·) :=UQÃB1
(·)U†, where

U =
∑|R|

k=1 |rk〉〈rk| ⊗ e−iGrk and QÃB1
(·) is the discard and prepare map

QAB1 (σAB1C) = ρAB1 ⊗ σC (49)

where C is any additional system beyond AB1. It is straightforward to check that R indeed satisfies
equation (48).

4.1.3. Significance of the bounds
Let us comment on the significance of these bounds for the tripartite game. The right-hand side of
equation (46) is always positive, so the relation does in fact pose non trivial bounds on the probability of
Bob to win the game, nevertheless it is worth noticing that

κRA = UκR ⊗ ρAU†, (50)

with U =
∑|R|

k=1 |rk〉〈rk| ⊗ e−iGrk , which is unitary. Hence S(RA)κ = S(R)κ + S(A)ρ. The relation in
equation (46) reduces to

S(AB1)ρ + S(AB2)ω � S(AB1)ω + S(B2)ρ + max{0, I(A : B1)ω − I(B1 : B2)ρ + S(A|B1B2)ρ} . (51)

This is not a trivial bound, but it only involves the pinching map and it is not a statement about the
rotation twirl. The problem is the artificial conditioning of the entropy S(RA)κ. As a matter of fact, in light
of equation (50), the non trivial contribution of the state κ is the conditioning of the entropy. In the next
section we will obtain a relation for the bipartite game by trying to make the conditioning of the entropy of
the state κRAB1B2 appear naturally in the inequality.

4.2. The bipartite game
In this case, one expects a constraint on the quantity S(R|AB)κ + S(A|B)ω. To obtain such a relation, let us
exploit the property in equation (50) and try to get the term S(AB)κ on the right-hand side naturally.
Consider the following commuting square ⎛

⎝AIB ⊂ AB
∪ ∪

ÃIB ⊂ ÃB

⎞
⎠ (52)

and start from the state

κAB =

|R|∑
k=1

pke−iGrkρABeiGrk . (53)

The state on ÃB is just ωAB and the log|B| terms cancel as always. The relation, keeping the notation
Ã → A, is

S(A)κ + S(AB)ω � S(AB)κ + S(A)ω. (54)

One can immediately see that this is a non trivial relation involving both the state κ and the state ω. We
can now add S(R)κ + S(AB)ρ on both sides, use equation (50), and subtract S(B)ρ to get

S(R|AB)κ + S(A|B)ω � S(R)κ + S(A|B)ρ + S(A)ω − S(A)κ. (55)

Using (38), this can be rewritten as

S(R|AB)κ + S(A|B)ω � S(R)κ + D(κA‖ωA) + S(A|B)ρ. (56)

9
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Figure 3. Comparison of bounds for the tripartite game when B1 is trivial. The above plots compare the bounds obtained by
us [cf equation (6)] and by Coles et al in reference [16] for different states ρAB1B2 . In the case when ρAB1B2 = ρAB1 ⊗ ρB2 , our
bound (6) is tight whereas the one by Coles et al [16, equation (E10)] is not. In the generic case, our bound is not tight but still
better than the one in reference [16].

Equality holds if (54) takes equality, and this by theorem 3.2 holds if there exists a recovery map

R(EÃIB
) = EAIB (ρAB) R(EÃB) = ρAB. (57)

If ρAB is a product state we may simply take R to be QA, the operation of resetting the state of A to ρA

just as in section 4.1. If ρA is a pure eigenstate of G clearly the recovery map is the identity, hence in both of
these cases the bound is saturated.

5. Numerical calculations

Here we present some explicit numerical results as an example of our bounds.

5.1. The tripartite game
Our bound for the tripartite game is given by equation (6), which is saturated when either ρAB1B2 is pure or
ρAB1B2 = ρAB1 ⊗ ρB2 . Let us restrict for the moment to the case B2 � B, B1 � C, then the bound reduces to

S(R|A)κ + S(A|B)ω � S(R)κ + D(κA‖ωA) + max{0, S(A|B)ρ}. (58)

This is to be compared to the following bound obtained in [16]:

S(R|A)κ + S(A|B)ω � S(R)κ + D(κA‖ωA). (59)

We take |A| = |B| = 2, |R| = 6 with random angles following a uniform distribution and G = σx. In the
following the right and left-hand sides of the bounds are computed and compared for

ρAB = |ψ〉〈ψ| ⊗ |ψ〉〈ψ|, (60)

with |ψ〉 = cos θ
2 |0〉+ sin θ

2 |1〉, where θ ∈ [0,π]. This is a pure product state. Random noise is added to
either |ψ〉〈ψ| or ρ itself to obtain a mixed product state or a mixed non product state respectively. The
random noise is obtained by adding a random state produced by the function rand_dm from the Python
package QuTiP [17] and rescaling to obtain a trace one matrix. In figure 3 the relevant quantities are
plotted for the three cases of a pure product state, a mixed product state and a mixed non product
state.

For the tripartite case, where both B1 and B2 are nontrivial, equation (6) is to be compared with the one
found in [16]

S(R|AB1)κ + S(A|B2)ω � log |R|. (61)

Note that since in these computations the angles follow a uniform distribution, and thus S(R)κ = log|R|. In
figure 4 the relevant quantities are plotted taking |B| = 4, |B1| = |B2| = 2, for the state

ρAB = |ψ〉〈ψ| ⊗ |ψ〉〈ψ| ⊗ |ψ〉〈ψ| (62)

with added random noise. From the plots, it is clear that our bounds outperform the previous ones in
reference [16] in both cases.
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Figure 4. Comparison of bounds for the tripartite game when B1 is not trivial. The above plot compares the bounds obtained
by us [cf equation (6)] and by Coles et al [16, equation (8)] for generic ρAB1B2 . Notice that the bound [16, equation (8)] is simply
log|R| and is thus independent of the state’s parameter θ. The plot manifests the gap between the entropic uncertainty and the
bound by Coles et al, and that our bound is very close to the real uncertainty.

Figure 5. Performance of the entropic uncertainty bound for the bipartite game. In this plot, we examine the tightness of our
bound (10) for the bipartite guessing game. It can be seen that our bound is very close to the true value of the uncertainty, even
for generic, non-product states.

5.2. The bipartite game
Recall that our bound for the entropic uncertainty in the bipartite game, given by equation (10), is
S(R|AB)κ + S(A|B)ω � S(R)κ + D(κA‖ωA) + S(A|B)ρ. It is saturated if ρAB is a product state or if it is a pure
eigenstate of G. In figure 5, the bound is further tested for generic, non-product states generated in the same
random way as in section 5.1 for |A| = |B| = 2. It can be seen that the bound is still considerably, though
not rigorously, tight for generic states.

6. Conclusions

In this work, we utilized the commuting square framework to derive time–energy entropic uncertainty
relations based on two different guessing games. Our bound for the tripartite game tightens a previous
bound in reference [16], in a way similar to other improvements [18, 19] made to the standard entropic
uncertainty bound. Our bounds also strengthen the understanding of time–energy uncertainty, by showing
that there is a fundamental difference between the case where the quantum memory is split between two
parties and the case where one party holds the whole quantum memory. More precisely, the former case
renders a game that is impossible to win, while the latter corresponds to a game that is possible to win but
only with quantum memory.

Our work demonstrates the power of the commuting square approach. For time–energy uncertainty, the
approach yields a simple and more intuitive proof and, more importantly, a tighter bound. We stress that
this approach can also be applied to derive other entropic uncertainties. Several possible generalizations,
however, remain open to investigation. One example is how to extend our result to generic Rényi entropies.
Some hints have already been given in reference [15], but it might still require a considerable amount of
effort to generalize the algebraic approach to this more general setting. Another interesting direction is to
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extend our approach to the multi-measurement setting [10, 20–22], where Alice is given more options than
measuring an observable and performing a unitary. For instance, Alice could choose to implement an
evolution on her system or measure one out of two different observables. To achieve this goal, one would in
principle have to generalize the algebraic tools in reference [15] to the scenario where the commuting
square contains more than two subalgebras. Such a generalization would, in return, lead to more
applications of the algebraic tools in quantum information processing.
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